NH
Natural Hazards

Luigi Lombardo

My name is Luigi Lombardo and I am a Post-Doctoral fellow at King Abdullah University of Science and Technology since March 2016. I completed my Ph.D. in 2015 in a co-tutelle programme between the Universities of Palermo (Italy) and Tübingen (Germany). My research interests lies in the area of spatial predictive modeling ranging from primary applications in geomorphology to soils science and hydrology. I joined the EGU early career scientists of the Natural Hazard division (NhET) in 2016. Since then I contributed to the activities of the group and now, together with part of the team we will manage the Natural Hazard blog of the EGU. It goes without saying it, but being Italian, I love cooking and has also worked as a sous chef in my youth.

Hazard chains: from anthropic oil spills to ecosystem pollution. Can tiny organisms be the solution?

Hazard chains: from anthropic oil spills to ecosystem pollution. Can tiny organisms be the solution?

Hello to everyone. Today I have the personal pleasure to interview Dr. Grégoire Michoud. He is a friend and a brilliant scientist working on ecosystem microbial ecology. In the interview, Grégoire will talk to us about oil spills in the marine system, a specific anthropic hazard that can evolve into a natural hazard with terrible environmental consequences.

Grégoire Michoud is a Post-Doctoral Scientist at KAUST (Saudi Arabia), since 2015. He obtained his Ph.D. from the Université de Bretagne Occidentale, in Brest France. His primary research interest focuses on the characterization of the coping mechanisms of microbes in extreme environments (deep sea, brine pools, hydrocarbon pollution) by genomics and cultures approaches. His work has application in hazard chain from anthropic sources to natural targets.

 

 

Hello Grégoire, please tell us a bit about environmental issues related to oil spills.

When it comes to oil spills, widespread publicized releases are rare events and represent just 10% of the overall release in the marine ecosystem. The remaining 90% is actually due to ship activities or other land-based industries that contribute to the pollution. One example of rare oil spill is the Deep Water Horizon case where, in a relative short time, a huge amount of oil was released into the Gulf of Mexico. However, in the vast majority of situations, small quantities of oil can be released from random events adding up to a considerable pollution.

[Read More]

Natural Groundwater Quality: an underestimated and yet dangerous hazard.

Natural Groundwater Quality: an underestimated and yet dangerous hazard.

Today I have the pleasure to interview Dr. Evangelos Tziritis, a brilliant scientist and a friend. He will talk to us about Natural groundwater quality hazard and its implications. This blog aim is to discuss Natural Hazards. Therefore, today we will focus on the natural component of water quality, disregarding anthropogenic sources. 

Evangelos is a Research Scientist at the Soil and Water Resources Institute of the Hellenic Agricultural Organization “Demeter”. His main research domain is focused on environmental hydrogeochemistry, as well as on other aspects including hydrogeology, aquifer vulnerability, geostatistics, isotope hydrology, water resources management, and environmental monitoring of water reserves. His record of achievements includes more than 10 years of experience in geo-environmental projects of basic and applied research in liaison with private firms, stakeholders, and academia. He has published more than 50 scientific papers in peer-reviewed journals and international conferences.

 

 

  1. Today we are going to talk about Natural Groundwater Quality Hazards. What can you tell us about it? How would you define the Natural Groundwater Quality Hazards?

Natural groundwater quality hazards are defined as the natural factors that adversely influence the environmental quality of aquifer systems. In contrast to anthropogenic factors which are purely man-induced (e.g. agricultural or industrial impacts, domestic sewage and wastes, seawater intrusion due to overexploitation, etc), the natural causes are triggered solely by geogenic factors, such as the weathering of geological formations; the impact of diagenetic processes; the influence of geothermal fields, etc.

Groundwater quality is dynamically affected by external (e.g. precipitation) and internal (e.g. lithology) factors, which may alter the initial, potentially pristine, chemical composition of the solution.  Groundwater moving through rocks and soils may pick up a wide range of inorganic compounds including major and minor ions, heavy metals and metalloids, some of which are toxic in certain concentrations (e.g. Cadmium, Selenium, Arsenic, Copper, Boron, Lead, etc). It should be noted that natural hazards define along with other characteristics the hydrogeochemical background on an aquifer system, thus they are not related to contamination (defined as the deviation of the natural background values of a constitute) but rather to a relative enrichment of specific chemical constitutes, which depending on their overall concentrations and unique attributes (e.g. toxicity, bioavailability, etc) may be detrimental to natural and anthropogenic environment.

 

[Read More]

Permafrost fever, do we need a doctor?

Permafrost fever, do we need a doctor?

Today we will shed some light on permafrost thanks to Dr. Dmitry (Dima) StreletskiyDima is an Assistant Professor of Geography and International Affairs at the George Washington University. He leads several research grants focusing on various aspects of climate change and its impacts on natural and human systems in the Arctic. Streletskiy is the President Elect of the United Sates Permafrost Association and the Chair of Global Terrestrial Network for Permafrost.

If you want to see some videos on the topic, feel free to check the following links:

Video on youtube from Siberia field class on permafrost and urban sustainability: https://youtu.be/ZlblSd4g4gE

Video on youtube from Alaska field work https://www.youtube.com/watch?v=LqYcOiCQOGk

Dima has also agreed on sharing some pictures collected during his research. So, if you are curious, just scroll to the bottom of the interview and enjoy the view!

 

Hello Dima, could you please briefly define what permafrost is for our audience?

Permafrost plays an important role in global climate change, functioning of arctic ecosystems, and human activities in the cold regions. Permafrost is soil, rock, and any other subsurface earth material that exists at or below 0°C throughout at least two consecutive years, usually for decades up to millennia. Permafrost stands for perennially frozen ground (“existing more than two years”), not permanently frozen.  I think that this is one of the major popular misconceptions about permafrost. Permafrost is not permanent and is a rather dynamic phenomenon, which makes it increasingly relevant in the context of natural hazards. Even more dynamic, is the active layer, the layer overlying the permafrost, which thaws during the summer and refreezes the following winter affecting many biological and hydrological processes in permafrost regions.

[Read More]

Multi-Natural-Hazards: how can we deal with such complex chain of events?

Multi-Natural-Hazards: how can we deal with such complex chain of events?

Today we have the honor to have Prof. Victor Jetten as our guest. Throughout his career Victor, has been working in modelling of natural hazard and land degradation processes. Starting with biomass and grazing capacity, the effects of logging on the natural rain forest water balance, he then moved to soil erosion and land degradation processes as a result of land use change and overgrazing. He believes that all these processes should not be studied and modeled as separate disciplines but in a much more holistic way. In the context of Natural Disasters stakeholders are confronted with chains of multiple hazards: such an earthquake leading to landslides leading to blockage of river systems leading to flash floods (such as happened in Wenchuan in 2008 and Nepal in 2016). Each subsequent extreme rainfall triggers landslides and extreme erosion, forging possibly more change in these areas than several decades of climate change, and wiping out years of development. Victor thinks science has to be useful for society and his aim is to provide timely and actionable spatial information in disaster preparedness, prevention and response. To this end he develops together with PhD researchers the opensource model openLISEM, that is able to simulate runoff, river discharge, floods, erosion and deposition and debris flows, in an integrated and spatially detailed way.

 

  1. Today we are going to talk about multi-hydromorphic-hazards. Victor, what can you tell us about it?

We have moved from theory and models to understand processes in nature to the application of that knowledge in a hazards context (as a result of triggers such as extreme weather events or earthquakes). The probability of that event was added, to serve stakeholders better. But things become complicated very rapidly: we almost never know the probability of the event itself, so we exchanged that for the probability of the driving process, which is not the same. Hazards happen at the same time or as a chain of events: the 2008 earthquake in Wenchuan had direct earthquake damage, triggered over 100000 landslides, hundreds of which dammed rivers that potentially led to flash floods. Flash floods are triggered after an el Nino year because the sparse vegetation led to overgrazing. This complexity gives us problems: we have different models for different processes made by separate groups of scientists: geomorphologists look at landslides, hydrologists at flooding (but not so much at sediment in floods and where sediment comes from), erosion is the domain of soil scientists and agriculture (but floods are far downstream), meteorologists focus on the weather part of hazards. This is perfectly natural as each of these are sciences in itself. But now you live on a Caribbean island and are hit by a hurricane. Your house is subject to sea surges, wind damage, flash floods and landslides. These effects are aggravated because of a lack of landscape management that gradually filled up the river channels with sediment. Who will help you? An army of scientists that each speak their own language! And of course the solutions are in spatial planning and governance, which are again separate sciences.

 

[Read More]