TS
Tectonics and Structural Geology

Tectonics and Structural Geology

Lisbon at the dawn of modern geosciences

Lisbon at the dawn of modern geosciences

Here, where the land ends and the sea begins...
Luís de Camões (Portuguese poet)

Lisbon. Spilled over the silver Tagus River, it is known by its beautiful low light, incredible food and friendly people. Here, cultures met, and poets dreamed, as navigators gathered to plan their journeys to old and new worlds. Fustigated by one of the greatest disasters the world has ever witnessed, Lisbon is intertwined with the course of Earth Sciences. For some, modern seismology was born here. For others, this might even have been the place where it all begun; what we now call geology.

On the morning of All Saints day of 1755, a giant earthquake struck the city of Lisbon. With a magnitude of ~8.7, the event was so powerful that it was felt simultaneously in Germany, as well as in the islands of Cape Verde. The main shock occurred around 9.40 am, when a significant portion of the population was attending the mass in churches. Lasting several minutes, many of the roofs collapsed and thousands of candles set fires that would last for days. While people were looking for safety at open areas near the river, three giant tsunami waves were on their way. Forty minutes after the main shock, the waves rose the Tagus River and flood the city’s downtown. The death toll in Lisbon reached up to 50,000 people, about one quarter of Lisbon’s population at the time. This event is known as the Great Lisbon Earthquake of 1755.

 

Painting depicting the day of the 1755 Great Lisbon Earthquake. Credit: Wikipedia.

 

The 1755 Lisbon Earthquake was a terrific natural disaster. A few years ago, the French magazine L´Histoire, considered this earthquake as one of the 10 crucial events that changed history. At the time, Lisbon was a maritime power in a maritime epoch. This was also the age of Enlightenment, when man started to realize that many events such as earthquakes, volcanoes and storms, had natural causes, and were not sent by gods.

Convento do Carmo, destroyed during the 1755 earthquake and kept as a ruin for memory. Credit: Flickr.

Lisbon was in the spotlight of the modern world and some of the most prominent philosophers like Kant, Voltaire and Rosseau focused on the destructive event of the 1st of November, 1755. In particular, Emmanuel Kant published in 1756 (yes, 1756!) three essays about a new theory of earthquakes (see Duarte et al., 2016 and the reference list below for two of the Kant’s essays). I recommend all geoscientists to read these documents. It is incredible how Kant understands and describes how earthquakes align along linear features that are parallel to mountain chains. Does this sound familiar? Moreover, he uses the then new physics of Newton to calculate the forces that were needed to set the seafloor off Lisbon in movement in order to generate the observed tsunami. He even refers to experiments with buckets full of water to explain how the tsunami formed (analogue modelling!?). And Kant was not alone…

The minister of the King of Portugal at the time, the Marquis of Pombal, sent an enquiry to all parishes in the country with several questions. While some of the questions were intended to evaluate the extent of the damage, it is now clear that the Marquis was also trying to gain (scientific) knowledge about the event (see Duarte et al., 2016 and references therein). For example, he asks if the ground movement was stronger in one direction than in other, or if the tide rose or fell just before the tsunami waves arrived. Today, we can reconstruct with rigor what happened that day because of the incredible vision of this man.

 

The center of Lisbon today. The statue of Marquis of Pombal facing the reconstructed downtown. Credit: Wikipedia.

 

Coming back to Lisbon. If you visit the old city by foot, you will realize that houses on the hills are closely packed, separated by narrow streets and passages, while in the flat downtown streets are wide and orthogonal. The hilly parts of Lisbon are an heritage of the Moorish and Medieval times. Mouraria and Alfama are the ideal neighborhoods to visit. The organized downtown was the area that was totally floored during the earthquake, due to ground liquefaction and the impact of the tsunami, and was rebuilt using a modern architecture (see Terreiro do Paço and the downtown area in the first figure in the top). The Grand Liberty Avenue is clearly inspired by the style of the Champs-Élysées. Going up the Liberty Avenue, from the downtown, you will find the statue of the Marquis of Pombal (see figure above). And if you are already planning to visit (or revisit) Lisbon, you should definitely stop by the Carmo Archeological Museum, a ruin left to remind us all of what happened on that day of 1755, and the Lisbon Story Centre.

The hills of Lisbon, with the Castle in the top left and the 25 de Abril bridge in the background. Credit: Flickr.

Rebuilding plan after the 1755 earthquake. Credit: Wikimedia Commons.

The 1755 Great Lisbon Earthquake was however not the only earthquake that hit the city. On the 28th of February 1969, another major quake, with a magnitude of 7.9, struck 200 km off the cost of Portugal, at 2 am in the morning. The earthquake generated a small tsunami but luckily, given the late hours, did not caused any casualties. This event also occurred in a particular point in history: The time of plate tectonics. The paper that inaugurated plate tectonics had been published only 4 years before, by Tuzo Wilson. And in 1969, geoscientists already realized that some continental margins were passive and did not generate major earthquakes, such as the margins of the Atlantic, while others were active and fustigated by major earthquakes, such as the margin of the Pacific (Dewey, 1969). It was somewhat strange that this Atlantic region was producing such big earthquakes, which therefore immediately resulted in scientists coming to study this area (see map below).

Fukao (1973), studied the focal mechanism of the 1969 earthquake and concluded that it was a thrust event. Purdy (1975), suggested that this could result from a transient consumption of the lithosphere, and Mckenzie (1977) proposed that a new subduction zone was initiating here, along the east-west Africa-Eurasia plate boundary (see the thinner segment of the dashed white line in the eastern termination of the Africa-Eurasia plate boundary, map below), SW of Iberia. Later on, in 1986, António Ribeiro, professor at the University of Lisbon, suggested that instead, a new north-south subduction zone was forming along the west margin of Portugal (yellow lines in the map), a passive margin transforming into an active margin. This could explain the high magnitude seismicity, such as the Great Lisbon Earthquake of 1755.

 

Map showing the main tectonic features in the SW Iberia margin. The Eurasia-Africa plate boundary spans from the Azores-Tripe Junction (on the left) until the Gibraltar Arc (on the right, with its accretionary wedge marked in grey). The yellow lines mark a new thrust front that is forming and migrating northwards away from the plate boundary and along the west Iberia margin. The smaller yellow line marks the approximate location of the 1969 earthquake. The 1755 Great Lisbon Earthquake might also have been generated in this region (see Duarte et al., 2013 for further reading on the tectonic setting of the region; the figure is adapted from this paper).

 

Today, we know that the SW Iberia margin is indeed being reactivated (Duarte et al., 2013). Whether this will lead to the nucleation of a new subduction zone is still a matter of debate, and we will probably never know for sure. Nevertheless, subduction initiation is one of the major unsolved problems in Earth Sciences, and the coasts off Lisbon might constitute a perfect natural laboratory to investigate this problem. It may be the only case where an Atlantic-type margin (actually located in the Atlantic) is just being reactivated, which is a fundamental step in the tectonic conceptual model that we know as the Wilson Cycle (see also Duarte et al., 2018 and this GeoTalk blog). In any case, we know that there are two other locations where subduction zones have developed in the Atlantic: in the Scotia Arc and in the Lesser Antilles Arc. How they originated is still being investigated; which is precisely what we are doing now in Lisbon. That is however a topic that deserves its own blog post.

 

Written by João Duarte

Researcher at Instituto Dom Luiz and Invited Professor at the Geology Department, Faculty of Sciences of the University of Lisbon. Adjunct Researcher at Monash University.

 

Edited by Elenora van Rijsingen

PhD candidate at the Laboratory of Experimental Tectonics, Roma Tre University and Geosciences Montpellier. Editor for the EGU Tectonics & Structural geology blog

 

For more information about the Great Lisbon Earthquake of 1755, check out these two video’s about the event: a reconstruction of the earthquake and a tsunami model animation

 

References:

Dewey, J.F., 1969. Continental margin: A model for conversion of Atlantic type to Andean type. Earth and Planetary Science Letters 6, 189-197.

Duarte, J.C., Schellart, W.P., Rosas, F.R., 2018. The future of Earth’s oceans: consequences of subduction initiation in the Atlantic and implications for supercontinent formation. Geological Magazine. https://doi.org/10.1017/S0016756816000716

Duarte, J.C., and Schellart, W.P., 2016. Introduction to Plate Boundaries and Natural Hazards. American Geophysical Union, Geophysical Monograph 219. (Duarte, J.C. and Schellart, W.P. eds., Plate Boudaries and Natural Hazards). DOI: 10.1002/9781119054146.ch1

Duarte, J.C., Rosas, F.M., Terrinha, P., Schellart, W.P., Boutelier, D., Gutscher, M.A., Ribeiro, A., 2013. Are subduction zones invading the Atlantic? Evidence from the SW Iberia margin. Geology 41, 839-842. https://doi.org/10.1130/G34100.1

Fukao, Y., 1973. Thrust faulting at a lithospheric plate boundary: The Portugal earthquake of 1969. Earth and Planetary Science Letters 18, 205–216. doi:10.1016/0012-821X(73)90058-7.

Kant, I., 1756a. On the causes of earthquakes on the occasion of the calamity that befell the western countries of Europe towards the end of last year. In, I. Kant, 2012. Natural Science (Cambridge Edition of the Works of Immanuel Kant Translated). Edited by David Eric Watkins. (Cambridge: Cambridge University Press, 2012).

Kant, I., 1756b. History and natural description of the most noteworthy occurrences of the earthquake that struck a large part of the Earth at the end of the year 1755. In, I. Kant, 2012. Natural Science (Cambridge Edition of the Works of Immanuel Kant Translated). Edited by David Eric Watkins. (Cambridge: Cambridge University Press, 2012).

McKenzie, D.P., 1977. The initiation of trenches: A finite amplitude instability, in Talwani, M., and Pitman W.C., III, eds., Island Arcs, Deep Sea Trenches and Back-Arc Basins. Maurice Ewing Series, American Geophysical Union 1, 57–61.

Purdy, G.M., 1975. The eastern end of the Azores–Gibraltar plate boundary. Geophysical Journal of the Royal Astronomical Society 43, 973–1000. doi:10.1111/j.1365-246X.1975.tb06206.x.

Ribeiro, A.R. and Cabral, J., 1986. The neotectonic regime of the west Iberia continental margin: transition from passive to active? Maleo 2, p38.

Wilson, J.T., 1965. A new class of faults and their bearing on continental drift. Nature 207, 343– 347

Meeting Plate Tectonics – Xavier Le Pichon

Meeting Plate Tectonics – Xavier Le Pichon

These bi-weekly blogs present interviews with outstanding scientists that bloomed and shape the theory that revolutionised Earth Sciences — Plate Tectonics. Stay tuned to learn from their experience, to discover the pieces of advice they share, to find out where the newest challenges lie, and much more!


Meeting Xavier Le Pichon


Prof. Xavier Le Pichon is one of the pioneers of the theory of plate tectonics. He developed the first global-scale predictable quantitative model of plate motion. The model, published in 1968, accounted for most of the seismicity at plate boundaries. Among many substantial contributions to the field, he also published, together with Jean Francheteau and Jean Bonnin, the first book on plate tectonics in 1973.

 

Your contributions have led to great advancements of our understanding of Plate Tectonics as we know it today. What‘s your main interest and what motivates your research?

My interest is the Earth and how it behaves. Discovering what type of animal the Earth is. I think of the Earth as a living organism, and we have to understand it. It’s very interesting to take the Earth as something that evolves, that changes, and that you have to understand how it evolves. The whole thing about research is getting very intimate with it and knowing really its behaviour.

I think of the Earth as a living organism

What would you say is the favourite aspect of your research?

I do not have any favourite aspect, but I think that to explain the change in the Earth is captivating. For example, how did we pass from an Earth where there were a single continent and a single ocean, ~200 Ma, to something where the continents are as dispersed as they are now… This had a tremendous influence on many things, including evolution, biology, climate… We know, for example, that when all the continents were together the pace of the evolution was much smaller than when continents are dispersed. All this fascinates me. I believe that if there is something that is not understood, you have to understand it. The basic question that proves you are a human is, you always have the “why” in your mind as the main thing that is present.

Claude Riffaud and Xavier Le Pichon – Credit: Jean-Claude Deutsch/Paris Match

 

What do you consider is the main problem that you solved during research?

I have been interested in many different aspects… I’m best known by the fact that I’ve been one of those who promoted plate tectonics. I made the first global model of quantifying the motion of the plates, knowing everywhere what would be the motion absorbed in the plate boundary. Also, I made the first finite and precise reconstruction of the configuration of the Earth, for nowadays, 70 Ma, 200 Ma, and so on. I also think that I was the first that proved that the Earth’s expansion did not work. Because if you take the shortening that is absorbed in the trenches of the world, in the mountain belts, and you claim there is no shortening there, then you are left only with the expansion of the ridges. And the expansion is asymmetric, and it’s produced much more in the east-west sense than it is in the north-south sense. And if you have that going on for several tens of millions of years, then the Earth would have a shape which is completely non-hydrostatic. It would not respect what the Earth has to have to be a planetary body turning on itself. So the Earth’s expansion was clearly impossible.

I believe that science that is completely regulated

top-down is not efficient

Le Pichon, X. (1968). Sea-floor spreading and continental drift. Journal of Geophysical Research, 73(12), 3661–3697.

 

After being many years active in the academia, looking back, what would you change to improve how science in your field is done today?

I never worried about “what is done”, I worried about “what I do”.  I have always found a way to get money, to get a position and to get a lab. I changed labs quite a few times. I created a few labs… I think it is a question of adjusting. I believe that science that is completely regulated top-down is not efficient. I think there has to be a lot of freedom. At least for fundamental science. For applied science, I don’t know but I think it is probably about the same. The reason is very basic: what is the purpose of research? It’s to discover something that is totally unexpected. If it is expected, then it’s not a discovery. When the guy who does the planification says: “we will focus all our energy to find out about that”, how does he know “that” is the thing that is going to come out? The most important things in the evolution of research have been totally unexpected and came from people that had no planification whatsoever of what they should find.

The most important things in the evolution of research have been totally unexpected

Where do you see the biggest challenges in your field right now?

Le Pichon, Francheteau, Bonnin (1973). Plate Tectonics: Developments in Geotectonics, 6 – Credit: Amazon

The plate tectonic was really a revolution that changed completely the concept. And it took a few tens of years to adjust to this revolution. Actually, we are still in the phase of adjusting to that. For example, we are adjusting to the fact that to understand that plate tectonics is not only what happens at the surface, but that it implies things that happen in the interior of the Earth, in the mantle and below. This is not fully understood. And we do not understand one very important thing, which is that plate tectonics is a relatively new thing on the Earth. In the beginning, there was no plate tectonics as we know it nowadays. And I think that even the style of the plate tectonics has changed in the last was 200 Ma for example. It probably was not the same before Pangea… So we have still lots of things to understand, and to incorporate. And then, the main thing about discoveries, again, is that they are unexpected. So, I would not be surprised that major discoveries focus our energy in a completely new direction in the near future. I think we are approaching a time where it seems that we need to trigger something else to get into something new.

 I am very afraid of people who get specialized too early

When you were an Early Career Researcher, what was your motivation, what stimulated you most?

Riffaud, Le Pichon (1976). Expédition ‘Famous’ à 3000 m sous l’Atlantique. Paris: Albin Michel. – Credit: Amazon

The fact that strikes me the most when I think about Europe is that the student’s mobility has been greatly increased and I think that this is extremely important. The mobility I had was not too frequent in my time – I have moved a lot: I moved to the United States, where I was offered a professorship, and came back, then I was an invited professor in other places, Oxford, Tokyo… I have created three different laboratories, and I’ve been in many places in the world. I think this is very important because you change with time and you cannot get stuck in a given thing. I think this is very basic in research. I mean, you learn a lot by comparing. You have to move, and confront yourself to other laboratories, to other ways to teach… Otherwise, you get stuck in a certain frame and that can be very dangerous. Then you become more interested in promoting your position and the place where you are than in the discoveries. Or you end up trying to be what your professor was and trying to imitate the guy that taught you is certainly one of the worst things you can do. I think anything that promotes mobility and independence and possibilities to change is a very good thing.

I am very afraid of people who get specialized too early. Of course, it is easier to get a job if you have a narrow speciality, you are more immediately usable. But I think the result is quite bad, quite often. You first have to see the different possibilities and then progressively you find out that you best express yourself in a certain direction, in a certain field. And that requests time and several tries and so on.

 

When you were a young researcher, did you always see yourself staying in academia?

I always wanted to do research. I wanted the freedom to choose. And I always went to places where I was sure that I would decide myself what type of research I would do. If that was not anymore the case, I quitted and I changed. I was very firm about the fact that I wanted to choose myself my own research direction. This has been a problem with financing. I had to change my source of financing. Whenever I had a problem with the state and the administration, I would go to oil people and other types of European financing in order to be able to keep this freedom.

You have to go to a place where research is thriving

The last question for today’s Early Career Scientists: what advice would you like to give the ECS that would like to stay in science?

Xavier Le Pichon – Credit: Instituto De Estudios Andinos Don Pablo Groeberg (IDEAN)

Basically, I have been an autodidact. I have always learned, in contact with other people, but mostly by myself. I cannot give any advice about what is best… but it is clear that you have to go to a place where research is thriving. If you go to a place where nothing happens, you will not start by yourself something unless you are a real genius. But even then, you don’t have the resources and so on. So you first need to identify the place where things are moving, where things are happening.

And then you try to go to this place and then, if possible, you try another one. Don’t get stuck to one thing only. Try to see the world, try to see how it moves, try to contact people…

One of the most interesting things in research is the contact with other people. Academia is a place where you have a lot of cooperation and you learn to interact with others and having a wide network of people with whom you interact is one of the gifts of this type of life. One very interesting thing is wherever you go you will agree if you talk about good science. Because when proper science is made, everybody agrees. This is not true in any other field. In philosophy, for example, you will never find people with whom you totally agree, it’s impossible. In science it’s so restricted, the rules are so clear that you are sure to come to a common agreement. So you can work with anybody on Earth that has the proper mind to do research and you will cooperate very well.

Xavier Le Pichon – Credit: Xavier Le Pichon

Interview conducted by David Fernández-Blanco

Meeting Plate Tectonics – Dan McKenzie

Meeting Plate Tectonics – Dan McKenzie

These bi-weekly blogs present interviews with outstanding scientists that bloomed and shape the theory that revolutionised Earth Sciences — Plate Tectonics. Stay tuned to learn from their experience, to discover the pieces of advice they share, to find out where the newest challenges lie, and much more!


Meeting Dan McKenzie


Prof. Dan McKenzie is one of the key actors empowering the Plate Tectonic Theory. He was Professor of Geophysics in Cambridge until he retired in 2012. He is mainly known to have published, together with Robert Parker, the first paper on Plate Tectonics. “The North Pacific: an example of tectonics on a sphere” describes the principles of plate tectonics, where individual aseismic areas move as rigid plates on the surface of a sphere.

The trick is to know what is tractable and also what is not understood.

You are known to have published the “very first paper” on plate tectonics. How did this contribution came about?

I was a Physics undergraduate in Cambridge. Then I became a graduate student of Teddy Bullard with whom I worked on the fluid dynamics of the mantle before it became at all understood. He got me to a conference in New York, where I heard for the first time all the works that Vine had done on, eventually, plate movements. While examiners were reading my PhD, I did the work of my first paper on plate tectonics. It was concerned with the thermal consequences of plate creation on ridges. In Summer 1967, I went to Scripps and there I was reading a paper by Teddy on fitting the continents. It occurred to me that the method he used, Euler’s theorem, actually was a way to describe all surface motions of the Earth. And so I did. I wrote, what then turned out to be the first paper on plate tectonics, which was published 1967. I don’t have priority. Jason Morgan gave a talk at the AGU in the Spring of 1967. But his abstract was completely different from the talk he gave. I had read his abstract not too long before he gave the talk, and I missed it. It made no impression at all on the AGU.

Since then, I worked a bit on Plate Tectonics, but it became quickly a dead end. I was intrigued by some observations from ocean Islands, which showed that their sources had been isolated from the convecting of the mantle for about a thousand million years. This seemed extraordinary to me! So I got interested in the whole question as how you generate melt. I worked on that for quite some time. I’m still working on that.

I have gone beyond my wildest dreams

I worked on a lot of areas in the Earth Sciences and I have gone beyond my wildest dreams (laughs). It never occurred to me that I would be given all this prices and funding –it is all very flattery!  But I am always amazed by the fact that my papers are read and cited.

 

Dan McKenzie (1976) – Credit: The Geological Society (Mckenzie Archive)

How do you remember the beginnings in your career, what was your main motivation?

I never had an overall plan about what to do for my career. I simply work on what I find interesting and what I think that I and other people might be able to understand. I put my mind to it. There is no point in working on things everybody understands, nor in working on something that is totally intractable, because eventually, you won’t catch it either. The trick is to know what is tractable and also what is not understood. I particularly watched the technology. Most of what I have done followed a change in technology. You have to have some feeling that you can do something new and interesting, otherwise you are just going to get lost. If hundreds or thousands of people do the same thing, that is not the sensible thing for me to do. I have nothing to add to that. They do much better than I would. But the data is marvellous, and I can use it to do all kinds of things. The best scientific problems are clearly interesting, clearly not known and not understood, but tractable. There is no point whatsoever, trying to attack problems that are not tractable.

[Plate Tectonics research] was frankly a bit of a disappointment

What would you say, has been the favourite aspect of your research? 

I think the one that had the most influence on my career was certainly plate tectonics. That was frankly a bit of a disappointment. It was so successful that it really needed no further work. I spent an enormous amount of energy in the 1960’s in trying to make the theory as simple and as obvious as I could. And I succeeded, and other people were part too, but we succeeded too well (laughs).  And it did become really routine. Since that time, there haven’t really been any changes. So, it isn’t my favourite at all!

My favourite is trying to understand the mantle convection (of which plate tectonics is one aspect). Trying to understand the fluid dynamics of mantle convecion is really the dominant aspect of the research I have done for fifty years.

I am driven by wanting to understand things, rather than by the uses that people make of my understanding

After all the time you have spent in science, where do you see the biggest challenges right now in your field?

Dan McKenzie (mid 1990s) – Credit: British Library (Voices of science)

The present surface of Mars is so thick that it isn’t actually moving, but it seems it did in the past. So probably, in the early history of Mars, it did have something like Plate Tectonics. And I am sure that, if and when we ever get good images, the works on fluid dynamics will actually give us a handle of what is happening on this and other planets. But you need extraordinary increased spatial resolution images to actually see what is happening on planets in the solar system.

 

You have contributed greatly to establishing the revolutionary Theory of Plate Tectonics. Still, one might wonder – what are the real-world applications of your research?

McKenzie & Parker (1967). Nature, 216(5122), 1276–1280.

The understanding of plate motions has completely changed our views on seismic risk. At present, I think GPS is an enormous step forward in our understanding of seismic risk. Now, you can actually see the elastic strain that accumulated on plate boundaries using GPS. For instance, Tibet is moving southwards with respect to India. But there have been no really big earthquakes along the Himalayan front in historical times. It is quite clear from the GPS that there have been huge but very infrequent earthquakes. What has been happening in Indonesia and also in Japan, is likely to happen here: it will unzip and there will be earthquakes. I wish the Indians would take it more seriously… My friends and I reckon that somewhere in central Asia this century there will be earthquakes which will kill millions of people. That is a frightful thought.

 

…somewhere in central Asia, this century there will be earthquakes which will kill millions of people, and that is a frightful thought

The thing  I have done that had the most economic impact is getting an understanding of how oil is produced in sedimentary basins. That is a paper in which I put together our understanding of how such basins were formed. Which is simply by stretching of the continental crust. It is not like Plate Tectonics, because the extension is not localised, but distributed. That was the key. It took us long to understand that because we were actually trying to think in terms of plate motions, or plate boundaries. The paper is six pages long but no one ever reads the second three pages (laughs). If I had written only three pages, it would have had the same impact…

What I am doing now doesn’t have the same impact… Understanding mantle convection beneath the plates is not going to be of nearly the same significance, frankly. It is fascinating to see how it works, but it is a different matter. I am driven by wanting to understand things, rather than by the uses that people make of my understanding.

Well,  it will come to a use eventually!

Yes, understanding can be always be used… for good and bad reasons… look at nuclear physics.

Rather than more support, there should be less support

After being many years active in the academia, what would you change to improve how science is done in your field now?

This is not a question I ever thought about… I think my answer to that will be a bit complicated…

The real danger, in all subjects, is that the bright young people have lots of opportunities to be a graduate student and to obtain a PhD. And then they get trapped. They are not really good enough to get a proper tenure position in a university. But they are basically good enough to get a postdoc. They discover quite late in their careers, sometime in their thirties, that this is not going to work, that they are not going to get any further. And then they have real crashes. I think there is too much encouragement, on the funding agencies particularly, to carry people to keep on doing postdocs. This is really quite unfair. These people are really clever and they could have a much better career. How do you stop people from doing this, I do not know. Rather than more support, there should be less support (laughs). Of course, the people employing the postdocs, the tenured staff, object very strongly to this. Scientists, once they get a tenured position, want someone to do the work. They got the grant to employ people. They get the credit.

Get out of [academia]!

So, taking this you just mentioned into account, what advice would you give to Early Career Scientists?

Get out of it! (laughs). Unless you have very good chances to get a good position, get out of it and do something else before you get too old! That is what I always tell.

My career is of no use whatsoever to anyone

When you were an Early Career Scientist, did you always see yourself staying academia? What were your career expectations in that sense?

To be honest I did not think about these things… My position was rather particular. I wrote the first paper on Plate Tectonics at age 25. And I reckoned I was going to get a job! (laughs). So, I did not worry too much about that. When I was offered a job, I was offered a position at Cambridge, a full professorship at Manchester and one of the grand professorships at ETH in Switzerland. All at the same time! (laughs). I chose to stay in Cambridge and got married. For some time I was very poor, but I reckoned that would change. And it did. I never really worried about money. My career was not in any way planned and is no guide to anyone. Nothing like Plate Tectonics has happened since, it was really singular. So my career is of no use whatsoever to anyone. Things were different. When I started, there were almost no postdoctoral positions…

 

Dan McKenzie (2014) – Credit: Cambridge University

 

Interview conducted by David Fernández-Blanco

Meeting Plate Tectonics

Meeting Plate Tectonics

The sixties brought us many moving moments: Woodstock, the civil rights movement, the moon landing… and the establishment of the plate tectonic theory.

Tectonic Smile – Credit: Google Earth

It is during the turbulent late sixties that scientists published groundbreaking manuscripts proving that pieces of the Earth’s outer layer are in a constant state of motion.

In Late 1967 to mid-1968, Dan McKenzie and Robert L. Parker, Jason Morgan and Xavier Le Pichon, amongst others, showed that crustal motions on Earth approximate rigid body rotations on a sphere and that plates conforming the Earth’s upper layer have rates of motion that can be calculated thanks to paleomagnetic data. Five decades have passed since the advent of the plate tectonics theory, and it might take many more decades to fully understand all its implications.

 

Here, at the Tectonics and Structural Geology ECS-team, we can’t help but wonder where are we standing today, what the biggest achievements have been and which aspects of the plate tectonic theory still escape our understanding. Fortunately, a commemorative conference celebrating the 50 anniversary of plate tectonics, held in Paris in June 2018 under the title “Plate tectonics: Then, Now & Beyond,” provided a unique opportunity to seek for answers. Initiator David Fernández-Blanco made his way to Paris and together with Anouk Beniest interviewed several researchers that greatly contributed and still contribute to the plate tectonics theory. This blog series presents bi-weekly the interviews (a total of 15) held with these outstanding minds, from which ECS have so much to learn!

Find the interviews here:

Mind Your Head #4: Job uncertainty in academia – know your strengths and possibilities!

Mind Your Head #4: Job uncertainty in academia – know your strengths and possibilities!

Mind Your Head is a blog series dedicated towards addressing mental health in the academic environment and highlighting solutions relieving stress in daily academic life.

In the three previous blog post of this ‘Mind your head’ series, we discussed the importance of communication with fellow ECS, time management, and a healthy relationship with your advisors. However, there is one big source of stress which we haven’t addressed yet: the insecurities regarding your future career, especially if you wish for an academic career. Unfortunately, this is also one of the most challenging stress factors to tackle.

How to decide if you are up for a career in academia, and if not, what to do next? And how can you increase your chances for a future academic position if there is often someone who has more experience, more publications, or simply better connections? And more often than not, this would involve a transfer to another country for a job, which can be a stress factor in itself – particularly when having a partner and/or a family to take care of.

Success rates in academia
To start with, let’s face reality. A study done by Nature last year has shown that worldwide, 75% of the PhD students think that it is likely that they pursue a career in academia. However, the large majority of these Early Career Scientists will end up somewhere else. In the United Kingdom for example, only 3-4% succeed in landing a permanent position at a university.

You probably already realized that the academic environment is very competitive, but numbers emphasize that it is in fact extremely difficult to maintain a career in academia. So how do we explain this apparent misconception that Early Career Scientists have? Why do so many wish to pursue a career in academia, despite the low success rates?

One important factor is probably the lack of examples of alternative career paths: in universities and research institutions we are only exposed to the academic success stories. Our advisors are senior scientists, or professors, who have successfully established their scientific career. Our colleagues might be post-docs, who have managed to find a position after their PhD that they like, or researchers who have written a successful grant proposal, which ensures them to work independently on their projects for several years.

However, where do the people go who do not find that post-doc after their PhD, or who write grant proposals which get rejected, maybe even more than once? Or the people who simply choose to leave academia after doing a PhD, after one or more post-docs, or even after tenure?

Transferable skills
Of course, where these people end up are excellent choices as well, even though there will always be people telling you that academia is the only path. Not choosing academia doesn’t mean failing! Besides having an academic career, there are many possibilities for people who obtained a PhD degree. And some of these careers might fit you even better than an academic career; you just have to know that they exist and how to make the switch! There are many articles that discuss the different career possibilities for Early Career Scientists, an excellent example being this EGU blog post. It introduces several current and former geoscientists who ended up outside academia, and who share their experiences.

Whether you’re already considering leaving academia, or whether you just want to have a back-up plan in case your desired academic career does not go as planned: it is important to know your possibilities, but more importantly your strengths, and how these can be useful in other careers. Are you aware of the many skills you acquire during a PhD that are extremely valuable to your future employers? All ECS have them! In sectors like industry, or consultancy, the exact topic of your PhD is usually of minor importance. It is the additional skills that you acquired that make the difference between hiring someone with a Master’s degree, or someone who obtained a PhD.

Examples of such transferable skills are your ability to work independently on a long-term project, problem-solving, time-management, communicating within an international community, or efficiently obtaining and transferring knowledge, through articles or oral presentations. When exploring future job possibilities, take a moment to identify your (strongest) transferable skills, and in which environments they might be most valuable.

Competencies
Many companies and institutions work with competencies, also called ‘key competencies’, or ‘core competencies’. These are specific personal qualities that recruiters use as benchmarks to rate and evaluate possible candidates for a job. There are many lists online, that display all different types of competencies, often grouped in categories like ‘dealing with people’, or ‘self-management’. Also the book ‘Competency-Based Interviews’, by Robin Kessler, features a list of core competencies and explains how they are used for job interviews. Using such an overview to identify your core competencies might be easier than trying to come up with them from scratch.

In the end, knowing  your core competencies and using them to ‘sell yourself’ (during an interview, in a motivation letter, or on your CV), will be useful for any type of career, also in academia! To learn more about increasing your chances in academia, check out this article about marketing for scientists.

Mind your head!
So, to wrap up this series: many Early Career Scientists are very passionate about pursuing an academic career and are willing to work very hard to achieve what they want. Of course, you shouldn’t let yourself be scared off by the statistics; if an academic career is what you really want, go for it! Be prepared for the hard work and strong competition, but don’t forget to have fun! In order to do that, it is important to know yourself, your strengths as well as your limits, to manage your time wisely and… to communicate with your colleagues and advisors!

If it turns out that academia is not for you, don’t panic! There are many wonderful careers outside academia, where you and your skills will be highly valued. However, it is important to get out of the ‘academia-only’ bubble and broaden your horizon. Alternative careers can provide many benefits, such as job certainty, more teamwork, short-term and diverse projects, and an office in the right geographical location! Explore other careers that might suit you, and identify your strengths that will help you land your dream job, inside or outside academia!

 

By Elenora van Rijsingen
Written with help and revisions from Anne Pluymakers

 

Resources

2nd workshop of the Marie Skodowska-Curie ITN project CREEP: Discussion sessions between senior- and early career scientists focused on reducing stress levels in academia.

PhD management training by Marie-Laure Parmentier from Belpaeme Conseil, France. 

Mind your head #3: A healthy relationship with your advisor

Mind your head #3: A healthy relationship with your advisor

Mind Your Head is a blog series dedicated towards addressing mental health in the academic environment and highlighting solutions relieving stress in daily academic life.

Besides the professional environment in general, the relationship between early career researchers and their advisors also plays an important role in the degree of stress researchers might experience. This relationship does not only depend on the type of advisor you have, but also on your own personality type. A tough supervisor for one person, might be a very good supervisor for someone else. The success of a healthy relationship therefore lies in the expectations you have for each other, and how you respond if those expectations are not met.

Different types of advisors
There are many different types of advisors, as there are many different types of people. A famous one is the ‘superbusy’ type, but also the ‘over-confident’ (“of course this never-tried method will work!”), or the ‘micro-manager’ (someone who checks every detail of your work), are common types.

The ideal advisor would be a supporting one, who cares about your future career, tries to teach you how to become an independent researcher and encourages you to do your work in a way that works best for you. The opposite would be someone who is interested in their own career and only sees you as someone who will simply take on some of their workload, whilst all the time keeping control on how you do that.

Generally speaking, advisors will fall in between these two extremes, and depending on their own stress levels, they might be easier to work with at some times than at others.

Expectations in both ways
The good news is that you can steer a little as well! So, how to make sure your situation will approach the ‘ideal’ situation, rather than the opposite? The first thing you need is probably a bit of luck; a good fit of characters might already be enough to obtain a healthy relationship.

If you’re not so lucky, then communication becomes key! Take the time to figure out what your advisor expects from you as an early career scientist and to think about what you expect from him or her. Advisors are all different, but students are too! Make sure to tell your advisor what you need in order to do a successful job. For example, does your advisor expect you to write your drafts mainly independent? Or does he or she prefer to work on it together, and check it after each section you’ve written? You both might have different preferences for this and it is important to discuss these and find a compromise.

If necessary, make an appointment once a year to simply discuss the process of decision-making and discuss what the best way of communication is for both of you. For example: some people prefer lengthy emails, some short, and some people you need to catch in person in order to work together. If you make it a habit to figure out what the best mode of communication is, it will definitely speed up any cooperation!

Most conflicts between PhD-students and supervisors arise in the final year of the PhD, since this is the point that the student thinks most independently. – Marie-Laure Parmentier (occasional consultant for Belpaeme Conseil)

When conflicts arise
When expectations are not met, a conflict may arise. An example is the case of the ‘superbusy’ advisor, who never has time to talk, whereas you would prefer to have regular short discussions (once in two weeks for example). This could lead to frustration on the students’ part, and even to giving up on trying to communicate at all.

A contrary situation could be an advisor who checks up on you daily to see how you are doing, probably with all the best intensions, whereas you prefer to work independently, and will only call your advisor when you are stuck. This situation could lead to the feeling of not working hard enough and not meeting expectations, which most likely is not the advisors intension.

Eventually these types of frustration will build up and slow down your work, so it is best to simply avoid it all together by discussing expectations clearly.

 

Albert Mehrabian’s 7-38-55 Rule of Personal Communication. Credit: www.rightattitudes.com

 

When a conflict arises, the most direct and understandable response is an emotional one; frustration, anger or quiet worry eating away at you. People often directly confront the person causing such an emotional response (which is very human!). However, as you probably know, this is not the smartest, nor the most professional way to deal with frustrations.

So, take a step back and calm down first, count to 10, briefly go to the gym, sleep on it, or go to a friendly colleague to shout out all your frustration; anything that works for you. Reflect on the situation, figure out what the main issue is, and then find a quiet moment during which you can discuss the problem in a calm and rational way. This will ensure your message is received and taken seriously.

In a direct conversation, the impact of your message is mainly determined by body language, while the contribution of the actual words is very little (only 7%). If your movements, space occupation, intonation and volume shout out your anger or your sadness, your conversation partner is likely to respond to the emotion, rather than the message, even if you manage to find the right words straight away.

To conclude: even when you have a different opinion than your advisor, when you are able to express your arguments carefully and clearly, it is much more likely that you’ll find a solution which works for both of you. Communication is key in becoming a better scientist, and will benefit you in any type of collaboration during your career!

By Elenora van Rijsingen
Written with help and revisions from Anne Pluymakers

 

Resources

2nd workshop of the Marie Skodowska-Curie ITN project CREEP: Discussion sessions between senior- and early career scientists focused on reducing stress levels in academia.

PhD management training by Marie-Laure Parmentier from Belpaeme Conseil, France. 

Minds over Methods: Linking microfossils to tectonics

Minds over Methods: Linking microfossils to tectonics

This edition of Minds over Methods article is written by Sarah Kachovich and discusses how tiny fossils can be used to address large scale tectonic questions. During her PhD at the University of Brisbane, Australia, she used radiolarian biostratigraphy to provide temporal constraints on the tectonic evolution of the Himalayan region – onshore and offshore on board IODP Expedition 362. Sarah explains why microfossils are so useful and how their assemblages can be used to understand the history of the Himalayas. And how are new technologies improving our understanding of microfossils, thus advancing them as a dating method?

 

                                                                          Linking microfossils to tectonics

Credit: Sarah Kachovich

Sarah Kachovich, Postdoctoral Researcher at the School of Earth and Environmental Sciences, The University of Queensland, Australia.

Radiolarians are single-celled marine organisms that have the ability to fix intricate, siliceous skeletons. This group of organism have captured the attention of artist and geologist alike due to their skeletal diversity and complexity that can be observed in rocks from the Cambrian to the present. As a virtue of their silica skeletons, small size and abundance, radiolarian skeletons can potentially exist in most fine-grained marine deposits as long as their preservation is good. This includes mudstones, hard shales, limestones and cherts. To recover radiolarians from a rock, acid digestion is commonly required. For cherts, 12-24 hours in 5 % hydrofluoric acid is needed to liberate radiolarians. Specimens are collected on a 63 µm sieve and prepared for transmitted light or scanning electron microscope analysis.

Animation of radiolarian diversity. Credit: Sarah Kachovich

Scale and diversity of modern radiolarians. Credit: Sarah Kachovich (radiolarians from IODP Expedition 362) and Adrianna Rajkumar (hair).

 

 

 

 

 

 

 

 

 

 

Improving the biostratigraphical potential of radiolarians

The radiolarian form has changed drastically through time and by figuratively “standing on the shoulders of giants”, we correlate forms from well-studied sections to determine an age of an unknown sample. A large effort of my PhD was aimed to progress, previously stagnant, research in radiolarian evolution and systematics in an effort to improve the biostratigraphical potential of spherical radiolarians, especially from the Early Palaeozoic. The end goal of this work is to improve the biostratigraphy method and its utility, thus increasing our understanding of the mountain building processes.

The main problem with older deposits is the typical states of preservation, where radiolarians partly or totally lose their transparency, which makes traditional illustration with simple transmitted light optics difficult. Micro-computed tomography (µ-CT) has been adopted in fields as diverse as the mineralogical, biological, biophysical and anatomical sciences. Although the implementation in palaeontology has been steady, µ-CT has not displaced more traditional imaging methods, despite its often superior performance.

Animation of an Ordovician radiolarian skeleton in 3D imaged through µ-CT. Credit: Sarah Kachovich

To study small complex radiolarian skeletons, you need to mount a single specimen and scan it at the highest resolution of the µ-CT. The µ-CT method is much like a CAT scan in a hospital, where X-rays are imaged at different orientations, then digitally stitched together to reconstruct a 3D model. The vital function of the internal structures provides new insights to early radiolarian morphologies and is a step towards creating a more robust biostratigraphy for radiolarians in the Early Paleozoic.

Linking radiolarian fossils to tectonics

Radiolarian chert is important to Himalayan geologists as it provides a robust tool to better document and interpret the age and consumption of oceanic lithosphere that once intervened India and Asia before their collision.The chert that directly overlies pillow basalt in the ophiolite sequence (remnant oceanic lithosphere) represents the minimum age constraint of its formation. In the Himalayas, over 2000 km of ocean has been consumed as India rifted from Western Australia and migrated north to collide with Asia. Only small slivers of ophiolite and overlying radiolarian cherts are preserved in the suture zone and it is our job to determine how these few ophiolite puzzle pieces fit together.

Another way I have been able to link microfossils to Himalayan tectonics is by studying the history and source of erosion from the Himalayas on board IODP Expedition 362. Sedimentation rates obtained from deep sea drilling can provide ages of various tectonic events related to the India-Asia collision. For example, we were able to date various events such as the collision of the Ninety East Ridge with the Sumatra subduction zone, which chocked off the sediment supply to the Nicobar basin around 2 Ma as the ridge collided with the subduction zone.

Left: Results from the McNeill et al. (2017) of the sedimentation history of Bengal Fan (green dots) and Nicobar Fan (red dots). Middle/right: Reconstruction of India and Asia for the past 9 million years showing the sediment source from the Himalayas to both basins on either side of the Ninety East Ridge.

 

 

 

 

 

 

 

 

 

 

 

 

Lastly, on board Expedition 362 we were able to use microfossils to understand how and why big earthquakes happen. We targeted the incoming sediments to the Sumatra subduction zone that were partly responsible for the globally 3rd largest recorded earthquake (Mw≈9.2). This earthquake occurred in 2004 and produced a tsunami that killed more than 250,000 people.

From the seismic profiles (see example below), we found that the seismic horizon where the pre-decollement formed coincided with a thick layer of biogenetically rich sediment (e.g. radiolarians, sponge spicules, etc.) found whilst drilling. Under the weight of the overlying Nicobar Fan sediments, this critical layer of biogenic silica is undergoing diagenesis and fresh water is being chemically released into the sediments. The fresh water within these sediments is moving into the subduction zone where it has implications to the physical properties of the sediment and the morphology of the forearc region.

The Sumatra subduction zone. The dark orange zone represents the rupture area of the 2004 earthquake. Also shown are the drill sites of IODP Expedition 362 and the location of seismic lines across the plate boundary.

Seismic profile: The fault that develops between the two tectonic plates (the plate boundary fault) forms at the red dotted line. Note the location of the drill site.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References

Hüpers, A., Torres, M. E., Owari, S., McNeill, L. C., Dugan, & Expedition 362 Scientists, 2017. Release of mineral-bound water prior to subduction tied to shallow seismogenic slip. Science, 356: 841–844. doi:10.1126/science.aal3429

McNeill, L. C., Dugan, B., Backman, J., Pickering, K. T., & Expedition 362 Scientists 2017. Understanding Himalayan Erosion and the Significance of the Nicobar Fan. Earth and Planetary Science Letters, 475: 134–142. doi:10.1016/j.epsl.2017.07.019

Mind your head #2: The importance of time management in academia

Mind your head #2: The importance of time management in academia

Mind Your Head is a blog series dedicated towards addressing mental health in the academic environment and highlighting solutions relieving stress in daily academic life.

An important struggle of people working in academia is how to complete all the different tasks in the limited time available. Even though time management is important for almost any type of career, the degree of freedom in academia and therefore the expected independence make good time management skills a necessity.

In this blog I discuss some highlights of the tips and advice I collected from various senior scientists and time management consultants. I divided them into these five sub-topics, which will hopefully help you in knowing what your goals are and which steps you can take to reach those goals in an efficient way.

Research strategy
The first step is to have a well thought-out research strategy. At the beginning of a PhD or post-doc project, the specific topic and research strategy is defined by you and your advisors or collaborators. It usually includes a pre-determined balance in terms of certain successes (i.e. known research paths that will certainly lead to publications) and innovative research (with some degree of risk).

However, such a pre-determined strategy does not mean that there is no change possible; it simply means that you have something to hold on to. This initial long-term plan is simply a guide through the forest of different research paths, but these strategies are never set in stone. It is important to keep in mind what the final goal of your work is and to periodically evaluate if this goal is still realistic.

Many side-paths will present themselves along the way and it is up to you to decide whether to take them or not. To help you make decisions like that, you have your colleagues and supervisors for discussions and advice, and sometimes you can do a small, quick test to see whether a side-path shows potential or not.

How to sub-divide
Then, there are different sub-projects in any long-term project. These could be different methods you use, like fieldwork, experiments or models, or maybe long-term vs. short term projects. You need to find a way of managing and keeping track of these multiple research lines.

The further along in your career, the more multi-tasking becomes part of the job. Try to find what works best for you: if you feel that it is better to finish one project first, before taking on the next step or method, than definitely do so. Another method is to create specific time blocks (during the week, or month), to which you assign your different tasks. There are numerous time-management apps, as well as old-fashioned paper calendars and notebooks to help you to keep track of things.

Decrease your stress levels by spending some time on thinking about how to efficiently subdivide your work and how to be in control; it doesn’t help if you are overwhelmed because you try to work on four different sub-projects simultaneously. And, especially in research, things often take more time than you would like, and then it is up to you to adjust the plan. Remember Murphy’s law: “ In general, things take longer than expected, because we often underestimate the difficulty of tasks, especially when they are new.”.

 

In order to be productive, make sure you assign the right amount of time to a task. Not too little, but not too much either. For more about Parkinson’s law, check out this article. Picture credit: Elenora van Rijsingen

 

Set priorities – and learn how to say no!
Have you ever heard of the Eisenhower matrix? By making the difference between urgent and important tasks, Eisenhower summarizes how to optimize the different tasks that you have in a job (or in life!). Urgent tasks are the ones that come with an approaching deadline, while important tasks are the ones that are useful for both your professional and personal development. This Eisenhower matrix is a tool that can help you decide which tasks of your to-do lists come first.

The first group consists of tasks that are both important and urgent (like finishing the revision of your article, or preparing a conference talk). These fall into two different categories: tasks that you could not have foreseen, and things you left yourself until the last minute. The first thing to do is to minimize the things in the second category, so your list of important and urgent tasks becomes shorter. Think about how you can manage your time better, which tasks you could have foreseen, so that not all your activities become urgent. This means you keep track of your deadlines!

The second group are the not-urgent, but important things (like reading articles to increase your knowledge or going to the gym in the evening). You might have the tendency to put these activities aside, because you always have more urgent things to do, but don’t forget that these tasks are important for a reason!

Then there are the urgent, but not so important tasks (like booking flights for your upcoming conferences or mandatory bureaucracy for the university). For some people, half their day consists of these tasks, which probably does not make them very happy. If possible, try to find a way to reduce the amount of time you spend on those tasks. Maybe you can delegate them? Also, many favours you do for other people belong in this group. Is there the possibility to say no, when someone asks you to do something? If so, do it, but politely. Maybe you can find another moment which is more convenient for you, or you can suggest someone else who would be more suitable for the job.

And what about the not-urgent and not-important tasks? Well, according to Eisenhower you should just eliminate them. There is no faster way to complete a task than not doing it at all.

The Eisenhower Matrix. Credit: James Clear

 

Work organized
This one seems obvious, but it’s importance is easily underestimated. Do you recognize that feeling when you quickly saved a file somewhere on your computer, but a few weeks later you have no idea where it went?

Organizing things like your computer, your email inbox, your desk, the lab and even your calendar might take some time, but it is definitely worth it. For example, if you organise your calendar in such a way that you can work on a task without (too many) interruptions, you will be much more efficient. Turning off the sound of your phone and your email notifications (and pop-ups) can already be very effective in reducing the amount of distraction during your work.

Also, keeping track of what you have done and which decisions you have made regarding your analyses or your models will be very useful if you do interrupt your task for several days (or months!). This all helps you to keep control, and increase your efficiency – and therefore decrease stress and frustration!

“An interrupted task will be less efficient and take longer than if it would have been carried out continuously”- Carlson’s Law

Do what you like
One of the most important pieces of advice I received was that I should do what I feel like doing in a particular moment. This means that if you feel like reading papers all day and making notes about things relevant for your work, you should do it!

You will be much more productive if you are actually in the mood, rather than pushing yourself to do something, simply because you feel like you should. Even though the degree of freedom in science is quite large, this strategy does not always work. Often there are deadlines and sometimes things simply must be done (i.e. the urgent things). If you make sure your list of Urgent & Important things is short at all times, there is the most opportunity to do such things.

So, to maximize the ‘do-what-you-feel-like-strategy’, it is necessary to think ahead. For example, start thinking about that poster a few weeks in advance, so that you can already create some figures when you have the time… and when you are in the mood!

 

By Elenora van Rijsingen
Written with help and revisions from Anne Pluymakers

 

Resources

2nd workshop of the Marie Skodowska-Curie ITN project CREEP: Discussion sessions between senior- and early career scientists focused on reducing stress levels in academia.

PhD management training by Marie-Laure Parmentier from Belpaeme Conseil, France. 

‘How to be more productive and eliminate time wasting activities by using the Eisenhower Box’, by James Clear

Mind Your Head #1: Let’s talk about mental health in academia

Mind Your Head #1: Let’s talk about mental health in academia

Mind Your Head is a blog series dedicated towards addressing mental health in the academic environment and highlighting solutions relieving stress in daily academic life.

Research has shown that almost 50% of people working in academia suffer from mental health issues (e.g. Winefield et al. 2003; The Graduate Assembly at the University of California Berkeley 2015; Levecque et al. 2017). Factors like job insecurity, limited amount of time and poor management often cause high stress levels and can lead to mental health problems, such as depression, anxiety or emotional exhaustion.

Even though these problems are pervasive in academia, openly discussing these issues is not easy. People are reluctant to come forward about their difficulties for fear of being judged and loosing career chances, while support mechanisms are poorly advertised.

Particularly at risk are those starting out their research careers. Early career scientists find themselves in a very competitive environment, facing high expectations to publish papers. Too often this results in working much harder than is good for anyone. Personally, I feel that a happy researcher produces better results in the end: so why compete instead of collaborating, or doubt instead of discussing? In the end, too much competition doesn’t drive your productivity, but hinders it instead.

Initiatives such as university support systems, time management courses or training in supervision are thus very important, and I call for those to be incorporated more frequently and more visibly in academic environments.

And even though problems like an unsupportive university, or an overstretched supervisor should be solved to improve the situation, we must not forget that we can do a lot ourselves as well. While many studies focus on institutions’ role in addressing mental health issues in academia, I would like to focus more on coping mechanisms for individuals, with special emphasis on early career scientists.

Through this short series of blog posts, I will address several topics that are often related to the high stress levels many of us experience, incorporating some of the advice I gathered from senior scientists and research management advisors.

Note that mental health issues are serious and should always be addressed with the help of professionals. Remember, acknowledging that things are not going well and seeking help is a sign of strength, and never a source of shame! The advice in this blog series should be seen as a complement, not an alternative, to seeking professional help.

So, to kick off this series, what can we do to deal with stressful circumstances and create a more relaxed working atmosphere for ourselves?

Communication is key
In my opinion, one of the most important tools is communication. The social stigma around mental issues in academia (or almost any other sector) is large and creates the tendency for people to keep their problems to themselves (Wynaden et al., 2014). However, communication is one of the key ingredients for solving a whole range of emotional problems, including those related to stress.

An easy example: if you don’t tell your advisors that something is going wrong, they won’t know about it and will not be able to help you fix it. Usually, your professors have thousands of things to do, and might not notice when you are upset, unless you actively tell them.

In addition, communication with your fellow early career scientists (PhDs and post-docs alike!) is important, since you are not the only one struggling. And odd as it sounds, it really does help to know you are not alone. In most cases, your colleagues will understand how you feel in a certain situation and might even give you some advice on how to solve it.

Setting your boundaries
Apart from communication, it is very important to be aware of your own boundaries. If there is no more energy left, there is no more creativity either. So make sure you recharge your batteries on time! Sometimes the best solutions come to you when partaking in sports, while riding the bus, or simply after a good night sleep. If you are aware of your own mental state, it can be easier to find a way to deal with it, seek the help you need, or simply give yourself permission to take off early for one day.

Of course, being an early career scientist will still be hard work; that is part of the job. But there is a difference between hard work and struggling. Getting a PhD degree is an achievement that requires you to work independently on a long-term project, facing many challenges along the way. But it is also an incredible experience during which, first and foremost, you are supposed to have some fun.

The joy that stems from doing research should not be mainly driven by awards and recognition, but because you are creating new things, gaining new knowledge, improving something or trying to understand the world a bit better! If this joy gets lost along the way, then something has to change. One aspect of learning how to become an independent researcher is not talked about enough: how to be in charge of yourself and your project, how to take control of the situation and make the necessary steps that you need to be a happy scientist!

 

By Elenora van Rijsingen
Written with help and revisions of Anne Pluymakers & Olivia Trani

 

References
Levecque, K., Anseel, F., De Beuckelaer, A., Van der Heyden, J., & Gisle, L. (2017). Work organization and mental health problems in PhD students. Research Policy, 46(4), 868–879. http://doi.org/10.1016/j.respol.2017.02.008

The Graduate Assembly at the University of California Berkeley. (2015). Graduate student happiness and well-being report 2014. Retrieved from http://ga.berkeley.edu/wp-content/uploads/2015/04/wellbeingreport_2014.pdf

Winefield, A. H., Gillespie, N., Stough, C., Dua, J., Hapuarachchi, J., & Boyd, C. (2003). Occupational stress in Australian university staff: Results from a national survey. International Journal of Stress Management, 10(1), 51–63. http://doi.org/10.1037/1072-5245.10.1.51

Wynaden, D., McAllister, M., Tohotoa, J., Al Omari, O., Heslop, K., Duggan, R., … Byrne, L. (2014). The silence of mental health issues within university environments: A quantitative study. Archives of Psychiatric Nursing, 28(5), 339–344. http://doi.org/10.1016/j.apnu.2014.08.003

 

Minds over Methods: Experimental seismotectonics

Minds over Methods: Experimental seismotectonics

For our next Minds over Methods, we go back into the laboratory, this time for modelling seismotectonics! Michael Rudolf, PhD student at GFZ in Potsdam (Germany), tells us about the different types of analogue models they perform, and how these models contribute to a better understanding of earthquakes along plate boundaries.

 

Credit: Michael Rudolf

Experimental seismotectonics – Seismic cycles and tectonic evolution of plate boundary faults

Michael Rudolf, PhD student at Helmholtz Centre Potsdam – German Research Centre for Geosciences GFZ

The recurrence time of large earthquakes that happen along lithospheric-scale fault zones such as the San Andreas Fault or Chile subduction megathrusts, is very long (≫100 yrs.) compared to human timescales. The scarcity of such events over the instrumental record of around 60 years is unfortunate for a statistically sound analysis of the earthquake time series.

So far, only few megathrust events have been monitored in detail with near-field seismic and geodetic networks. To circumvent this lack of observational data, we at Helmholtz Tectonic Laboratory use analogue modelling to understand plate boundary faulting on multiple time-scales and the implications for seismic hazard. We use models of strike-slip zones and subduction zones, to investigate several aspects of the seismic cycle. Additionally, numerical simulations accompany and complement each experimental setup using experimental parameters.

 

Seismotectonic scale models
In my project, we develop experiments that can model multiple seismic cycles in strike-slip conditions. Our study employs two types of experimental setups both are using the same materials. The first is simpler (ring shear setup) and is able to show the on-fault rupture propagation. The second is geometrically more similar to the natural system, but only the surface deformation is observable.

To model rupture propagation, we introduce deformable sliders in a ring shear apparatus. Two cylindrical shells of ballistic gelatine (Ø20 cm), representing the side walls, rotate against each other, with a thin layer (5 mm) of glass beads (Ø355-400µm) in between representing an annular fault zone. A see-through lid connected to force sensors holds the upper shell in place, whereas the machine rotates the lower shell. Through the transparent lid and upper shell, we directly observe the fault slip. We can vary the normal stress on the fault (<20 kPa) and the loading velocity (0.0005 – 0.5 mm/s).

The next stage of analogue model, features depth-dependent normal stress and a rheological layering mimicking the strike-slip setting in the uppermost 25-30 km of the lithosphere (see also Mehmet Köküm’s blog post). A gelatine block (30x30cm) compressed in uniaxial setting represents the elastic upper crust under far-field forcing. Embedded in the block is a thin fault filled with quartz glass beads. The ductile lower crust is modelled using viscoelastic silicone oil. The model floats in a tank of dense sugar solution, to guarantee free-slip, stress-free boundaries.

 

Figure 2 – Setup and monitoring technique during an experiment. Several cameras record the displacement field and the ring shear tester records the experimental results. Credit: Michael Rudolf

 

Analogue earthquakes
Both setups generate regular stick-slip cycles including minor creep. Long phases of quiescence, where no slip or very slow creep occurs, alternate with fast slip events sometimes preceded by slow slip events. The moment magnitude of analogue earthquake events is Mw -7 to -5. The cyclic recurrence of slip events is an analogue for the natural seismic cycle of a single-fault system.

 

Figure 3 – Detailed setup and results from the ring shear tester experiments. The upper right image shows a snapshot of an analogue earthquake rupture along the fault zone. The plot shows the recorded shear forces and slip velocities over one hour of experiment. Credit: Michael Rudolf

 

Optical cameras record the slip on the fault and the deformation of the sidewalls. Using digital image correlation techniques, we are able to visualize accurately deformations on the micrometre scale at high spatial and temporal resolution. Accordingly, we can verify that analogue earthquakes behave kinematically very similar to natural earthquakes. They generally nucleate where shear stress is highest, and then propagate radially until the seismogenic width is saturated. In the end, the rupture continues laterally along the fault strike. Our experiments give insight into the role of viscoelastic relaxation, interseismic creep, and slip transients on the recurrence of earthquakes, as well as the control of loading conditions on seismic coupling and rupture dynamics.

 

Figure 4 – Setup and Results for the strike-slip geometry. The surface displacement field is very similar to natural earthquakes. The plot shows that due to technical limitations of this setup, fewer events are recorded but the slip velocities are higher. Credit: Michael Rudolf

 

Future developments
Together with our partners in the Collaborative Research Centre (CRC1114 – Scaling Cascades in Complex Systems) we employ a new mathematical and numerical description of the fault system, to simulate our experiments and get a physical understanding of the empirical friction laws. In the future, we want to use this multiscale spatial and temporal approach to model complex fault networks over many seismic cycles. The experiments serve as benchmarks and cross-validation for the numerical code, which in the future will be using natural parameters to get a better geological and mathematical understanding of earthquake slip phenomena and occurrence patterns in multiscale fault networks.