WaterUnderground

Water Underground

Bedrock: A hydrogeologist’s devotional

Bedrock: A hydrogeologist’s devotional

Post by Kevin Befus, Assistant Professor at the College of Engineering and Applied Science at the University of Wyoming, in the United States.

_______________________________________________

I want to share a book with you that has encouraged me through initial academic mires (I was only in graduate school for 7 years…) and inspired me to expand my perception and appreciation of the natural world.

The book is Bedrock: Writers on the Wonders of Geology [Savoy et al., 2006]. It is a carefully curated collection of snippets and excerpts from international literary sources describing geologic processes and outcomes. Most of the writings come from the 20th century with several exceptions extending not quite as far back as the Pleistocene. Each chapter, or collection of writings, is oriented around a theme in the earth sciences, one of which is “Rivers to the Sea”…the creative views of hydrologic, mainly riverine, processes chapter. While the excerpts are the main event in each chapter, a quick introduction to each selection is given within the broader geologic context along with some reasoning in why each was chosen.

Bedrock is not a book about hydrogeology, and it really doesn’t directly talk about water underground. BUT, Earth is explored in the excerpts, and developing connections between groundwater and other geologic processes is our job, not the literary masters who “contributed” tidbits to the book. As you should have expected, John McPhee shows up a number of times, but not too much. Many of the early geologists (e.g., G.K. Gilbert, James Hutton, and John Wesley Powell) and environmentalists (e.g., Rachel Carson and John Muir) also share their reflections of geologic forces on nature.

As someone who reads blogs about groundwater, remember to extend the literary reflections to include how the topics interact with groundwater systems. For example, the cover image evokes excitement (or consternation) from a groundwater hydrologist, as it shows the coastline of Nullarbor Plain in southern Australia, home to the “world’s largest limestone karst area” (http://www.australiangeographic.com.au/travel/destinations/2016/04/hidden-nullarbor).

My suggestion for reading this book is to take it slow: one excerpt in the morning to kick-start the day, remembering why it is you do what you do. Be inspired, awed, and reminded of how geological processes have shaped our world over billions of years. Or, read an entry when the day has taken a turn to the slow or chaotic. Like any good devotional, Bedrock has great re-readability and also points you towards the original documents for more in-depth explorations of literary (hydro)geology.

Happy reading!

Savoy, L. E., E. M. Moores, and J. E. Moores (2006), Bedrock: Writers on the Wonders of Geology, Trinity University Press, San Antonio, TX.

__________________________________________________

 

.

Kevin Befus leads the groundwater hydrology group in the Civil and Architectural Engineering Department at the University of Wyoming. With his research group, he studies how groundwater systems respond to hydrologic conditions over glacial timescales and in mountainous and coastal environments.  You can follow along with Kevin’s research through any of the links below:

Twitter | Research Group Page | UW Faculty Page

 

 

 

 

 

 

__________________________________________________

Feature photo image source: 
http://tupress.org/img/upload/bedrock_front_cover_nl_copy.jpg

Community advice to young hydrologists, Part 1

Community advice to young hydrologists, Part 1

We at Water Underground loved reading Young Hydrologic Society’s post titled “Community advice to young hydrologists” – an advice column written by a network of established scientists in the field. We appreciated the column so much, in fact, that we have decided to re-blog the post to you (with YHS’s consent, of course). We’ve split up their post by question, and have added in hyperlinks to all contributors and related material (as has always been our inclination). Happy reading!

__________________________________________________

Question: What book or paper has been most influential to your career and why?

Groundwater by Freeze and Cherry – this textbook, now out of print, was a critical reference as I began my graduate training in hydrogeology and I still refer to it today.

Jean Bahr (University of Wisconsin)

 

 

 

 

 

 

.

I can think of no single one.  However, papers that were a combination of field observations and clever analyses leading to new insights always are intriguing.  Papers which I find of little value are those that propose a new modeling approach with little to no field verification, or which use existing models to reach some conclusion.  For example, we seem to be seeing a proliferation of papers using complex models to highlight some “new” effect of climate change on the hydrologic cycle, with no grounding in hindcasts. (See this, also) The musings of Keith Beven always have been insightful, including his Advice to a Young Hydrologist.

Jerad Bales (CUAHSI)

 

.

I can’t identify single “most influential” books or papers – I learned early to read as widely as possible, and not just within narrow/specific research problems of direct interest. I have been inspired by a range of articles – including books on philosophy, history of physics, etc. – which broadened my approach and ways of looking at a given problem. Indeed, some of my most influential work developed from studying methods and approaches in statistical physics and physical chemistry.

Brian Berkowitz (Weizmann Institute of Science)

 

.

The most important influence was a person – Mike Kirkby and particularly the undergraduate course on quantitative hydrology he taught at the University of Bristol when I was taking my degree there (later, I would do a post-doc with him at Leeds that resulted in the development of Topmodel). That gave me a lot of reading to do – but it was probably not the hydrological reading that had most influence, but rather the papers on theoretical geomorphology starting with Horton BGSA 1945, then picked up by Kirkby, Frank Ahnert and others in the late 1960s. I struggled to understand them (at the time I wanted to be a geomorphologist but I have never quite finished getting the water part right) but they left me the idea that it was possible to theorize about environmental processes and systems in approximate but useful ways.

During my PhD the most influential paper was undoubtedly Freeze and Harlan JH 1968, and the papers about the field site I was applying my model to by Darrell Weyman (HSB 1970, IAHS 1973). If I had talked to him a little more (he was doing his PhD at Bristol while I was an undergraduate) or read those papers more carefully, then I might have been more realistic in my PhD modelling.

The most important book at that time was Zienkowicz, Finite Element Modelling (that was the technique I was trying to master). Hillslope Hydrology edited by Kirkby was also important but came later.

Keith Beven (Lancaster University)

.

Paper: Scale of Fluctuation of rainfall models by I. Rodriquez-Iturbe. It formed the basis for my MSc research that I did during 11 months in Davis California (As a Dutch Student from Wageningen). It was extremely difficult stuff, but I kept on it and it understanding gave me the stamina to really dig into a subject. It was the basis for my first paper entitled “Analytically derived runoff models based on rainfall point processes” in WRR. To obtain better background I also read in depth the influential.

Book: Random Functions and Hydrology by R. Bras and I. Rodriquez-Iturbe.

Marc Bierkens (Utrecht University)

 

 

.

Dooge’ 1986 Looking for hydrologic laws in WRR. This paper gives a broad perspective on science, including scales.

Günter Blöschl (TU Vienna)

 

 

 

 

 

 

 

.

Konrad and Booth (2005), Hydrologic changes in urban streams and their ecological significance, American Fisheries Society Symposium, 47:157-177.  This paper is a bit outside my area of expertise, but I think the linkage they make between physically measurable streamflow changes and stream ecology represents a fundamental shift in thinking from engineering hydrology to more of an eco-hydrology perspective.  They illustrated that we need to go beyond analyzing just changes in peak flow or low flows (or fixed percentiles), to look at more derived metrics that better capture hydrologic regime change.

Laura Bowling (Purdue University)

 

 

.

That is a very hard question. As a Geography undergraduate student, I had to write a particular essay on the “all models are wrong” theme and this involved critiquing two papers which completely changed my worldview about models and modelling: Konikow and Bredehoeft’s 1992 ‘Ground-water models cannot be validated’ Advances in Water Resources 15(1):75-83.  and Beven’s 1989 ‘Changing ideas in hydrology – the case of physically-based models’ Journal of Hydrology.

But in the last year, I would say it has been Lab Girl by Hope Jahren (2016) who is a gifted and talented scientist and writer and has the knack of intertwining the natural world with tales of remaining brave in your career. I wish I’d had the opportunity to read it earlier in my career.

Hannah Cloke (University of Reading)

.

Ecological and General Systems – H.T. Odum. This book explores general systems theory in the context of ecosystem behaviors. It is holistic, comprehensive, and full of important insights about the structure and dynamics of systems.

Matthew Cohen (University of Florida)

 

 

 

.

It is a novel by Milan Kundera: “Slowness”. My natural tendency is to rush up, be as fast as possible, quickly fix things… Yet, speed often leads to miserable outcomes. Many lines of Kundera’s book are still in my mind, and they work as a continuous reminder for me that only slowness allows thoughtful consideration, serious reflection, and appreciation of reality. Realizing this has strongly influenced my academic career as it made me focus on the quality (and not the quantity) of my work.

Giuliano Di Baldassarre (Uppsala University)

 

.

Several hydrogeology-related texts were very helpful for me.  These include some of Mary Hill’s papers, John Doherty’s PEST manual (as much for the philosophy as the instruction), some of Jasper Vrugt’s early papers, and work by both Wolfgang Novak and Steve Gorelick on measurement design. The real recommendation would be to find authors that you enjoy and read as much of their work as possible – in this category, I would add Shlomo Neuman, Randy Hunt, Hoshin Gupta, Dani Or, Keith Beven and Graham Fogg. I am sure that I am forgetting more than I have listed. I think it is equally important to read broadly. Rather than provide a list, I’ll encourage you to look at my recent paper in Ground Water (Sept 2016) for some suggestions!

Ty Ferré (The University of Arizona)

 

 

.

Book:  Groundwater Hydrology by David Keith Todd, 1st edition, 1959. As a 3rd-year undergraduate in hydrology at the University of New Hampshire in 1973, this book (and course by Francis Hall) kindled my interest in groundwater and completely changed my career path, which previously was essentially an aimless sleepwalk through my major in mathematics.

Paper/report:  Kaiser, W. R., Johnston, J. E., and Bach, W. N.. 1978, Sand-body geometry and the occurrence of lignite in the Eocene of Texas: The University of Texas at Austin, Bureau of Economic Geology Geological Circular 78-4, 19 p.  This paper demonstrated in stunning detail how modern borehole geophysical data together with understanding of the geologic genesis of sedimentary deposits could be used to create unprecedented subsurface maps of aquifer/aquitard system heterogeneity and structure. This led me down the long path of better integrating groundwater hydrology and geologic depositional systems.

Graham Fogg (UC Davis)

.

My interests have been in predictive hydrometeorology. The following were influential books at the start of my carrier in the late 70s and early 80s: Dynamic Hydrology by Eagleson; by Wallace and Hobbs; Applied Optimal Estimation by Gelb (ed).  These represented the fields of hydrology, meteorology, and estimation theory with applications to prediction, and were the necessary pillars to build predictive hydrometeorology.

Konstantine Georgakakos (Hydrologic Research Center in San Diego)

 

 

 

 

.

Haitjema and Mitchell-Bruker (2005) which taught me to think of groundwater as a process that interacts with topography, climate and geology in complex but predictable ways.

Tom Gleeson (University of Victoria)

 

 

 

 

 

 

 

.

The paper that has been most influential to my career is most certainly  “Johnston, P. R., and D. H. Pilgrim (1976), Parameter optimization for  watershed models, Water Resources Research, 12(3), 477–486. I read this paper during my graduate work in the early 1980’s and was intrigued by their report that “A true optimum set of (parameter) values was not found in over 2 years of full-time work concentrated on one watershed, although many apparent optimum sets were readily obtained.”

On the one hand this paper clearly identified an important problem that needed to be addressed. On the other (as I often remark during talks on the subject), I think it was remarkable as an example of a paper reporting the apparent “failure” of the researchers to achieve their goals … how often do we see people reporting their failures in the literature these days :-). More of this kind of work – reporting a scientific study and accurately reporting both successes and failures … but especially failures … is critically important to the progress of science, so that people can both contribute to solutions and also avoid unsuccessful forays down paths already tried.

In any case, the paper clearly pointed me towards an important problem that led to me adopting a path of research over the past decades, which led to the development of the SCE and SCEM  optimization algorithms (and indeed a whole field of optimization developments), studies into impacts of model structural deficiencies, multi-criteria methods for parameter estimation, the diagnostic model identification approach, and more recently the Information Theoretic approach.

The 1990 paper by Michael Celia et al on the numerical solution of Richards equation, recommended to me by Philip Binning at the beginning of my Honours Project at Newcastle Uni. This paper made a big impression on me because it provided a very clear exposition of how to solve a challenging modelling problem – and played a bigly role in getting me interested in research.

Dmitri Kavetski (University of Adelaide)

.

The Ecological Studies Series, published by Springer, was the most influential in my career because several books published in the Series (e.g., Forest Hydrology and Ecology at Coweeta edited by Swank and Crossley and Analysis of Biogeochemical Cycling Processes in Walker Branch Watershed edited by Johnson and Van Hook) sparked my interest in forest hydrology and biogeochemistry. In tandem with the superb mentorship of Prof. Stanley Herwitz (Clark University), I decided to embark upon a career as a forest hydrologist as a sophomore in college. I never looked back.

Delphis Levia (University of Delaware)

 

 

 

.

The papers of the series “Plants in water-controlled ecosystems” (2001, Advances in Water Resources 24), by Laio, Porporato, Ridolfi, and Rodriguez-Iturbe have been among the first and most influential I have read. Their clean, analytical approach to the complex interactions among vegetation, soil, and climate remains deeply inspiring. As an example of inter-disciplinary work (actually outside hydrology), I would like to mention the book by Sterner and Elser (2002) “Ecological stoichiometry. The biology of elements from molecules to the biosphere” (Princeton University Press) – a great example of how integrating knowledge from various sources around a common theme can yield deeper understanding and perhaps even lay the foundation of a new discipline.

Stefano Manzoni (Stockholm University)

 

.

The Hewlett and Hibbert 1967 conference paper “Factors affecting the response of small watersheds to precipitation…” is perhaps the best paper ever written in hydrology. For a full homage, please look here. The paper is field-based, theory focused and a blend of bottom-up and top-down research, before that was even ‘a thing’. It inspired me in my graduate research in the 1980s; I continued to read it and ponder it in my first years as a professor, as I strived to follow in Hewlett’s footsteps. He was my mentor even though he retired before I could ever meet him.

Jeff McDonnell (U Saskatchewan)

 

 

.

 In general, the books that have been most influential to me refer to sister disciplines. The reason is that I found illuminating to study methods and models used in statistics and economics for the purpose of applying them to hydrology for the first time. Thus, the most influential book to me has been “Statistics for long-memory processes”, by Jan Beran. The very reason is that I found there a detailed explanation of models that were useful to get to target with my Ph.D. thesis. 

Alberto Montanari (University of Bologna)

 

.

Chamberlin TC. 1890. The method of multiple working hypotheses. Science 15: 92-96 (reprinted in Science 148: 754–759 [1965]). I read this paper as part of a second-year course in Archaeology, which I took as an elective in my undergraduate program. Although the writing style is somewhat archaic, this article introduced me to the value of hypothesis-based thinking in science and the need to avoid favouring a pet hypothesis or model. It is instructive also to read the many follow-up essays to gain a broader perspective on hypothesis-based research and, more broadly, the “scientific method.”

Dan Moore (University of British Columbia)

 

 

 

.

I think I was more influenced by my peers, colleagues, mentors, supervisors and friends as I learn better through discussions and challenges. One of the more memorable papers is one of Manning (Manning, R. (1891). “On the flow of water in open channels and pipes,” Transactions ofthe Institution of Civil engineers of Ireland.) and it’s associated history. In this paper he actually suggested a far more ‘complex’ formulation than the formula which is today widely known as the Manning equation – history has it that it was never adopted widely as well as many subsequent more more sophisticated formulations. Science doesn’t work linear and we are sometimes less rational or objective (if the latter is actually possible) than we believe.

Florian Pappenberger (ECMWF)

.

“Show me a person who has read a thousand books and I’ll show you my best friend; show me a person who has read but one and I will show you my worst enemy.” I have been influenced by many and I can’t say one is *the* most influential or important alone.  At the moment, I am reflecting on (McCuen RH. 1989. Hydrologic Analysis and Design. Prentice Hall: Englewood Cliffs.) As far as being a hydrology textbook it is not particular special, but it is written extremely clearly with a lot of good step-by-step workflows.  Most importantly, the book integrates throughout its whole development the concept of analysis versus synthesis, and this has been central to how I approach my research.  We do both analysis and synthesis.

Gregory Pasternack (UC Davis)

.

This is very difficult to say. I must admit that my academic work started from engineering practice and I only started reading the international literature very late in my career. But a book that has been very influential to me was the book by Fischer et al. (1979) “Mixing in inland and coastal waters”. Fischer soon died in an accident after this book was published. The book introduced me to the fundamentals of mixing processes in estuaries, on which I had done substantial field research and had developed my own practical engineering method, which I still use, but which lacked a fundamental theoretical basis. I am still working on finding this fundamental basis, and Fischer’s book put me on that track.

Hubert Savenije (TU Delft)

.

It would be tough to answer what’s been the most influential to my career as a whole, but I could answer what was the most influential to my early career, and that was Menke’s Geophysical Data Analysis: Discrete Inverse Theory.  I labored through that book for years during my PhD. My copy has dog-eared pages and writing throughout as I tried to figure out inversion methods.  Finally getting my head around the mathematics of inversion really opened up some doors for me early on.  Davis’ Tools For Teaching also really helped me think about how to be as effective a teacher as I could be.

Kamini Singha (Colorado School of Mines)

 

.

Books are hardly ever influential once you are actually ‘in’ research. Early on, look for the best review articles in your field. They will ‘set the scene’ for you.

Keith Smettem (The University of Western Australia)

 

 

 

 

.

Opportunities in the hydrologic sciences”, National Academy Press. This landmark book which defined hydrology as a science appeared right at the start of my PhD. It provided a nice framework for my own research and that of my fellow PhD students in those days.

Remko Uijlenhoet (Wageningen University)

 

 

 

.

It is difficult to select one single work from the literature that has been influential over my entire career in groundwater flow and transport modeling.  But, there is one book that I used as a grad student that I still refer to today.  It is “Conduction of Heat in Solids” by Carslaw and Jaeger.  The book is a treatise on analytical solutions to diffusion equations.  The lesson for me is that knowledge from other disciplines (in this case thermal engineering) can be applied to problems in hydrology.  Another lesson is that we can learn a lot and gain important insights through wise approximations that have analytical solutions.

Al Valocchi (University of Illinois at Urbana-Champaign)

.

Abramowitz & Stegun: Math is something you look up, not something you try to memorize.

Nick van de Giesen (TU Delft)

 

 

 

 

.

In hydrology, some of the most influential books for me have been Handbook of Hydrology (edited by David Maidment) and Principles of Environmental Physics (Monteith & Unsworth). These two books are so rich in physics, empirical equations, recipes, and references. Of course the times have changed and nowadays you can google almost anything, but some of the chapters in these books are so well written that I still regularly use them. They also have the benefit that they summarise areas of research where things haven’t actually changed too much since the 80ies – the physics we use haven’t become that much more sophisticated, and sometimes in fact less so; whereas the field measurements on which a lot of the empirical rules and equations are based generally also haven’t been added much to since.

Outside hydrology, some books that have made me think differently about the field and my research include

Emergence: The Connected Lives of Ants, Brains, Cities, and Software (Johnson) – one of the first popular science books I read that made me think different (about ecohydrology)

The Sceptical Environmentalist (Lomborg) – I didn’t accept his reasoning but it was seductive and it forces you to really pick apart the logical and rhetorical flaws he uses.

Thinking, fast and slow (Kahneman) – which really made me realise the questionable quality of my analytical rigour and decisions in general (also those of anyone else, though!).

Albert van Dijk (Australian National University)

.

Physical Hydrology by Dingman and Elements of Physical Hydrology are both great textbooks. Why: just lots of “basics” well explained, emphasizing the need to understand PROCESSES.

Doerthe Tetzlaff (University of Aberdeen)

 

.

House at Pooh Corner, specifically, Chapter VI. In which Pooh invents a new game and Eeyore joins in.  The first paragraph is an awesome description of a classic watershed and affirms my theory that hydrology is truly everywhere… even on Mars.  Indeed, the search for “life” has largely been a search for “water.”

Todd Walter (Cornell University)

 

 

 

.

Comparative hydrology, edited by Malin Falkenmark and Tom Chapman (1989). This book is one of the first to examine global hydrology phenomena. It asserts that a comprehensive and systematic description of hydrological processes is (i) possible (ii) not too complicated. Until then I’d thought the task was impossible, so I found the approach inspirational for my research.

Ross Woods (University of Bristol)

Of Karst! – short episodes about karst

Of Karst! – short episodes about karst

Post by Andreas Hartmann Assistant Professor in Hydrological Modeling and Water Resources at the University of Freiburg.

__________________________________________________

Episode 3 – Learning about karst by … KARST IN THE MOVIES!

Before writing about karst hydrology in “Of Karst! Episode 4”, I have been urged to present some more visual information on karst landforms. Of Karst! Episode 1 focused on the abundance of hilarious karst landforms in nature. This episode focusses more on the appearance of karst features in famous movies and TV programs that may be familiar to some of us, although we may not have watched them through the eyes of a karst fanatic at the time.

In the next episode, we follow the path of the water from the karstic surface with karstic towers and dolines, through caves and conduits, to spectacular karst springs where waters emerge to the surface.

Movie makers have their reasons to pick spectacular landscapes for their stories and, Of Karst!, those landscapes are crowded with karst features. Let’s begin with James Bond. Created in the 70s, “The Man with the Golden Gun” finds a spectacular showdown just in front of a lovely tower karst at the Khao Phing Kan island in Thailand. Tower karst is a karst landform that is, characterized by residual hills of limestone rising from a flat plain or the ocean.

Figure 1: Bonds‘ duel with villain Scaramanga in front of a tower karst rock (Khao Phing Kan, Thailand; http://www.criminalelement.com, http://www.marinaaonang.com)

Similar landforms were chosen as scenery for a recent remake of the King Kong saga. Fighting with intruders and evil monsters from the deep subsurface (karst caves?), Kong had the pleasure living on the beautiful Cat Ba Island in Northern Vietnam, whose characteristic landscape evolved due to the strong dissolution of limestone.

Figure 2: Silhouette of Kong between the Tower Karst mountains of Cat Ba Island located at Ha Long Bay, Vietnam (https://c1-zingpopculture.eb-cdn.com.au, http://www.baolau.com).

The opposite landform to tower karst landforms are karstic dolines, which occur commonly as funnel shaped depressions on the surface, also formed by carbonate rock dissolution. These depressions do not only funnel the water downwards to the subsurface, but also create favorable conditions for the installation of (very) large radio telescopes. The largest of those was built a couple of years ago in China but a similarly impressive one can be found in Puerto Rico, where James Bond had to deal with his evil competitor Trevelyan in “Goldeneye”.

Figure 3: Bond fighting with evil Trevelyan in Goldeneye high above the Arecibo Observatory in Puerto Rico that was built just in the middle of a karst doline (https://i.pinimg.com, http://www.si-puertorico.com).

Underneath the tower karst and dolines, karst dissolution creates wide networks of karstic caves and conduits. With increasing dissolution of the carbonate rock, these features may also emerge at the surface, which was probably the case for the Azure Window at Malta. This karst landform was chosen as the background of a conversation of the famous Khaleesi and her spouse Drogo in “Game of Thrones”. Unfortunately, this amazing land form is not available for further movies as it was recently destroyed by a storm.

Figure 4: Khaleesi speaking to her beloved Drogo in Game of Thrones in front of the Azure Window in Malta (http://nypost.com).

Deeper in the subsurface, the famous Devetàshka cave in Bulgaria set the stage for a dramatic showdown in “The Expendables 2”, when Stalone’s plane crashed through the cave entrance that used to be the exit of groundwater flows emanating from karst. Imagine the tremendous amounts of water filling the karst system over thousands of years that are capable of forming a cave that can (almost) host an entire airplane!

Figure 5: Stalone’s plane crashing into the Devetàshka karstic cave in Bulgaria in The Expendables 2 (www.huffpost.com, www.wikipedia.org).

Due to the formation of dolines, caves and channels, karst springs are usually quite large in terms of their discharge. They also provide amazing sets for fantasy movies. Even though the springs of the St. Beatus Caves in Switzerland only inspired Tolkien for the scenery of the Rivendell, the town of the elves, their similarity is obvious.

Figure 6: Elves’ town Rivendell in Lord of the Rings, whose scenery was inspired by the karst spring of the St Beatus caves in Switzerland (http://www-images.theonering.org, http://tilomitra.com).

This movie-based tour through karst systems may have given you an impression how rainfall becomes discharge in karst systems. Of Karst!, Episode 4, will combine this impression with the hydrological, and more scientific point of view. It will speak to the complexity of these specific surface and subsurface land forms, and elaborate on why exploring and understanding these processes is worthwhile.

__________________________________________________

 

Andreas Hartmann is an Assistant Professor in Hydrological Modeling and Water Resources at the University of Freiburg. His primary field of interest is karst hydrology and hydrological modelling. Find out more at his personal webpage www.subsurface-heterogeneity.com

Where does the water in streams come from when it rains?

Where does the water in streams come from when it rains?

Post by Anne Jefferson, associate professor in the Department of Geology at Kent State University, in the United States.

__________________________________________________

The title of this blog post might seem like a question with an obvious answer, or even a silly question to pose on a blog devoted to groundwater, but if you don’t see the connection between streamflow and underground water, you need to keep reading.

Water in streams during storms does come from the sky, but often it’s not the water droplets falling in a particular rain storm that are going rushing down the stream during that storm. Very little precipitation falls directly on the stream channel, because streams occupy very little of the landscape. So most water in a stream has to travel over or under the ground to get there. Traveling from some random point in a catchment to a stream takes time, and there are usually other water molecules between the freshly fallen raindrop and the channel.

Water molecules that can’t infiltrate into the ground become surface runoff. Surface runoff tends to reach the stream channel fairly quickly, because the water molecules encounter much less flow resistance than water moving through soil or bedrock and because all of the other water molecules between them and the stream are also on the same downhill express lane to the stream. So a water molecule that becomes surface runoff can reach a stream minutes to hours after the raindrop first hit the land surface.

On the other hand, raindrops that infiltrate into the ground take a much more leisurely approach to reaching the stream. Underground, flow resistance is really high, relative to what surface runoff encounters, because the water molecules have to squeeze through tiny and tortuous open spaces between soil particles, roots, and rock. They may even be trapped by capillary forces or stick to mineral or organic surfaces. Plus, underground, there are lots of other water droplets also slowly making their way to the stream. Being a water molecule that goes underground to reach a stream is not so much taking an express lane, as joining the back of a barely moving traffic jam that stretches as far as the eye can see. In the minutes, hours, and days during which a stream runs high following a rainstorm, that poor underground water molecule may only have moved a few meters to a few hundred meters toward the channel. Indeed, its main function in joining the back of the traffic jam was to give a pressure wave nudge to the water molecules closer to the channel, urge them to get a move on, and increase the rate they discharge into the stream.

With those general concepts in mind, let’s turn our attention to humid, forested landscapes. Most rain will infiltrate into the soil, disappear underground, and join the back of the traffic jam. As a consequence, when we look at the water rushing along in a stream channel, during or shortly after a storm, mostly we are not seeing water that fell from the sky in the storm. We’re seeing the ghosts of storms past. Catchment hydrologists call this “old” water. To put some numbers on it, 60-80% of the volume of streamflow during and immediately following a storm is typically old water. Even at the peak of the streamflow, ~50% of the water in the stream is old water.

The Cuyahoga River in Kent, Ohio under low flow conditions, October 2017.

The Cuyahoga River in Kent, Ohio, at high flow, March 2014.

How did hydrologists figure out that the water in streams during storms is old water (at least in forested landscapes)? It would be virtually impossible to go out to a catchment and measure the water flowing across all possible surface runoff, soil water, and groundwater paths.

Wouldn’t it be convenient if there was some way to label the water molecules as new or old and then just count the ratio of new to old water molecules in the stream at a given time? Fortunately for hydrology, variations in the isotopes of hydrogen and oxygen in the water molecules provide just such a tracer. Beginning in the late 1960s, hydrologists realized that they could use the storm-to-storm differences in the isotopic ratios of rainfall to identify water that came from the most recent storm versus water that didn’t. Thus the technique of isotope hydrograph separation was born. The popularity of the method grew rapidly, hydrologists began to try it out in catchments all over the world. This led to more recent work carefully laying out the assumptions and limitations associated with the technique and developing ever more sophisticated methods of analysis. Even more important than the method itself was that hydrologists, confronted with the reality that most of the water in the stream during a storm was old, had to then come up with mechanistic explanations for how that was possible. I don’t think it’s hyperbolic to say that isotope hydrograph separation really helped revolutionize the field of catchment hydrology.

When I teach hydrology, I teach students that in our forested corners of Ohio the water in the stream during storms is old and I explain the mechanisms. But I also think it’s important for them to understand the technique that helped generate those insights, and so I make sure to teach them about isotope hydrograph separation. With the support of an NSF grant, I developed a teaching module that gives students a chance to work with real data and do their own hydrograph separation. My hope is that the exercise will give them a deeper appreciation of the technique, the assumptions and uncertainties it contains, and the insights it is able to provide. This teaching module is available on the SERC website for anyone to use in classes or just for fun. There are data to download, step-by-step directions, and links to related readings. If this post has spurred your interest in streamflow generation or isotope hydrograph separation, I encourage you to check it out. Other good places to learn more about applications of isotopes in hydrology at the SAHRA website or in this book chapter by Kevin McGuire and Jeff McDonnell.

Kent State students measuring discharge in the stream where we conducted the hydrograph separation.

__________________________________________________

Anne Jefferson is an associate professor in the Department of Geography at Kent State University. Anne‘s research focuses on watershed hydrology, groundwater-surface water interactions, and landscape evolution in human-altered and volcanic landscapes. Current projects of her’s focus on green infrastructure, stormwater management, and stream restoration. Keep up to date with Anne by clicking on any of the links below:

Research profile | Twitter | Personal Website

Groundwater organic matter: carbon source or sink?

Groundwater organic matter: carbon source or sink?

Post by Andy Baker, Professor researching groundwater, caves, past climate, organic carbon and more at the University of New South Wales, in Australia.

__________________________________________________

We know a lot about the carbon cycle, right? Increased carbon dioxide emissions since the Industrial Revolution have perturbed the carbon cycle. This has led to rising atmospheric carbon dioxide levels and climate change.

Not all this extra carbon accumulates in the atmosphere as carbon dioxide. Carbon sequestration is also occurring, for example in the oceans and terrestrial biosphere. All the carbon fluxes and stores on the planet must balance. In recent years there has been a hunt within the terrestrial system to quantify some missing carbon, such as the particulate organic carbon in river systems and dissolved organic carbon in glaciers.

So, what about groundwater? Could this be a previously unrecognised source or sink of carbon? We already know that the global volume of groundwater of 1.05 x 1019 litres is the world’s biggest source of freshwater. But groundwater natural organic carbon concentrations are low: typically, 1 part per million (ppm). This means that the global groundwater organic carbon store is just 10.5 x1015 g. For comparison, rivers are estimated to sequester this amount in just four years. Basically, there’s no significant store of organic carbon in groundwater.

But hold, on, this raises another puzzle, which is: where has all the organic carbon gone? Groundwater is recharged from rivers and from rainfall. Rivers have much more dissolved organic carbon than the 1 ppm found in groundwater. And the recharge from rainfall passes through the soil. And soil leachates also have much higher dissolved organic carbon concentrations than groundwater. So, despite the high concentrations of organic matter in the soil and rivers, most of this organic matter is ‘lost’ before reaching the groundwater. Is it biologically processed (and therefore a potential source of carbon dioxide)? Or is it sorbed to mineral surfaces (and therefore a potential sink of carbon)?  Most likely, both processes occur in competition.

Groundwater organic matter: a carbon source or sink? We don’t know. But a few groups are working on the puzzle. For example, our group at UNSW Sydney is collecting groundwater samples and measuring organic carbon sorption to minerals, and microbial use. In the USA, groundwater data has been mined to understand the rate of loss of organic carbon in groundwater. This December, river and groundwater experts come together at the AGU Fall Meeting to share our understanding. Not least because surface and groundwater are interconnected systems.

Collecting groundwater samples to understand whether organic matter is a carbon source or sink. Long field days at the UNSW Wellington Research Station mean the final sample is often collected at dusk.

__________________________________________________

 

Andy Baker is the Director of Research and UNSW’s School of Biological, Earth and Environmental Sciences. His research interests include hydrology, hydrogeology, cave and karst research, paleoclimatology, and isotope and organic and inorganic geochemistry. You can find out more information about Andy at any of the links below:

Research profile | Twitter | Facebook

Western water wells are going dry

Western water wells are going dry

Post by Scott Jasechko, Assistant Professor of Water Resources at the University of Calgary, in Canada, and by Debra PerronePostdoctoral Research Scholar at Stanford University, in the United States of America.

__________________________________________________

Wells are excavated structures, dug, drilled or driven into the ground to access groundwater for drinking, cleaning, irrigating, and cooling. We recently mapped groundwater wells across the 17 western states [1], where half of US groundwater pumping takes place. The western states contain aquifers key to United States food production, including the Central Valley of California and the central High Plains.

Millions of water wells exist in the western US, alone. About three-quarters of these wells have been constructed to supply water for household uses. Nearly one-quarter are used to irrigate crops or support livestock. A smaller fraction (<5 %) supports industry [1].

Western US water well depths vary widely (Fig. 1). The great majority (90%) of western US well depths range between 12m and 186m. The median western US well depth is 55m. Wells with depths exceeding 200m tap deep aquifers bearing fresh groundwater, such as the basal formations in the Denver Basin aquifer system, and the deeper alluvium in the California Central Valley. Shallow wells are common along perennial rivers, such as the Yellowstone, Platte, and Willamette Rivers.

Fig. 1. Western USA wells depths. Each point represents the location of a domestic, industrial or agricultural well. Blue colors indicate well depths of less than the median (55m), and red-black colors indicate well depths exceeding the median.

The wide variability of well depths across the west (Fig. 1) emphasizes the value of incorporating well depth data when assessing the likelihood that a groundwater well may go dry.

We know wells are going dry in the western US: journalists have identified numerous communities whose well-water supplies have been impacted by declining water tables [2-4]. While several studies have assessed adverse impacts of groundwater storage declines—such as streamflow depletion [5], coastal aquifer salinization [6], eustatic sea level rise [7], land subsidence [8]—few studies address the question: where have wells have gone dry?

Here we put forth a first estimate of the number of western US wells that have dried up (Fig. 2). We compared well depths to nearby well water level measurements made in recent years (2013-2015). We define wells that have likely gone dry as those with depths shallower than nearby measured well water levels (i.e., our estimate of the depth to groundwater).

Fig. 2. Schematic of a well that has gone dry (left) and a well with a bottom beneath the water table (blue) that may still produce groundwater (right). Even wells with submerged bottoms may be impacted by declines in groundwater storage because (i) pumps are situated above the well bottom, (ii) pumping induces a localized drawdown of the water table in unconfined portions of aquifer systems, (iii) well yields may decline if the hydrostatic pressure above the well base declines.

We estimate that between 0.5% and 6 % of western US wells have gone dry [1]. Dry wells are common in some areas where groundwater storage has declined, such as the California Central Valley [9] and parts of the central and southern High Plains aquifer [10,11]. We also identify lesser-studied regions where dry wells are abundant, such as regions surrounding the towns of Moriarty and Portales in central and eastern New Mexico.

Dry wells threaten the convenience of western US drinking water supplies and irrigated agriculture. Our findings emphasize that dry wells constitute yet another adverse impact of groundwater storage losses, in addition to streamflow depletion [5], seawater intrusion [6], sea level rise [7], and land subsidence [8].

Some wells are more resilient to drying (i.e., deeper) and others more vulnerable (i.e., shallower). We show that typical agricultural wells are deeper than typical domestic water wells in California’s Central Valley and Kansas’ west-central High Plains [1]. Our finding implies that reductions to groundwater storage will disproportionately dry domestic water wells compared to agricultural water wells, because domestic wells tend to be shallower in these areas. However, in other areas, such as the Denver Basin, typical domestic wells are deeper than typical agricultural wells. This comparison of different groundwater users’ well depths may help to identify water wells most vulnerable to groundwater depletion, should it occur.

So, what option does one have when a well goes dry?

Groundwater users whose wells have gone dry may consider a number of potential, short-term remedies, some of which may include (i) drilling a new well or deepening an existing well, (ii) connecting to alternative water sources (e.g., water conveyed by centralized infrastructure; water flowing in nearby streams), or (iii) receiving water delivered by truck.

Drilling new wells, deepening existing wells or connecting to alternate water supplies is often costly or unavailable, raising issues of inequality [12]. Receiving water deliveries via truck [13] is but a stopgap, one that may exist in parts of the western United States but not elsewhere, especially if high-use activities (e.g., irrigated agriculture) are intended [14]. In places where water table declines are caused primarily by unsustainable groundwater use, a long-term solution to drying wells may be managing groundwater to stabilize storage or create storage surpluses.

Realizing such sustainable groundwater futures where wells are drying up is a critical challenge. Doing so will be key to meeting household water needs and conserving irrigated agriculture practices for future generations [15]. We conclude that groundwater wells are going dry, highlighting that declining groundwater resources are impacting the usefulness of existing groundwater infrastructure (i.e., wells). The drying of groundwater wells could be considered more frequently when measuring the impacts of groundwater storage declines.

__________________________________________________

Scott Jasechko is an assistant professor of water resources at the University of Calgary. In November 2017, Scott joins the faculty of the Bren School of Environmental Science & Management at the University of California, Santa Barbara.

Find out more about Scott’s research at : http://www.isohydro.ca

 

 

 

Debra Perrone is a postdoctoral research scholar at Stanford University with a duel appointment in the Department of Civil and Environmental Engineering and the Woods Institute for the Environment. In November 2017, Debra will join the Environmental Studies Program at the University of California, Santa Barbara as an assistant professor.

Find out more about Debra at: http://debraperrone.weebly.com

 

__________________________________________________

References

[1] Perrone D and Jasechko S 2017 Dry groundwater wells in the western United States. Environmental Research Letters 12, 104002 doi: 10.1088/1748-9326/aa8ac0. http://iopscience.iop.org/article/10.1088/1748-9326/aa8ac0

[2] James I, Elfers S, Reilly S et al 2015 The global crisis of vanishing groundwaters. in: USA Today https://www.usatoday.com/pages/interactives/groundwater/

[3] Walton B 2015 In California’s Central Valley, Dry wells multiply in the summer heat. in: Circle of Blue http://www.circleofblue.org/2015/world/in-californias-central-valley-dry-wells-multiply-in-the-summer-heat/

[4] Fleck J 2013 When the well runs dry. in: Albuquerque Journal https://www.abqjournal.com/216274/when-the-well-runs-dry.html

[5] Barlow P M and Leake S A 2012 Streamflow depletion by wells—understanding and managing the effects of groundwater pumping on streamflow. US Geological Survey Circular 1376 (Reston, VA: United States Geological Survey)

[6] Barlow P M, Reichard E G 2010 Saltwater intrusion in coastal regions of North America. Hydrogeol. J. 18 247-260.

[7] Konikow L F 2011 Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. 38 L17401

[8] Galloway D, Jones D R and Ingebritsen S E 1999 Land subsidence in the United States. US Geological Survey Circular 1182 (Reston, VA: United States Geological Survey)

[9] Famiglietti J S, Lo M, Ho S L, Bethune J, Anderson K J, Syed T H, Swenson S C, Linage C R D and Rodell M 2011 Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 38 L03403

[10] McGuire V L 2014 Water-level Changes and Change in Water in Storage in the High Plains Aquifer, Predevelopment to 2013 and 2011–13  (Reston, VA: United States Geological Survey)

[11] Scanlon B R, Faunt C C, Longuevergne L, Reedy R C, Alley W M, Mcguire V L and McMahon P B 2012 Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. 109 9320–5

[12] Famiglietti J S 2014 The global groundwater crisis. Nature Climate Change 4 945-948.

[13] The Times Editorial Board 2016 When it comes to water, do not keep on trucking. in: LA Times http://www.latimes.com/opinion/editorials/la-ed-water-hauling-20160729-snap-story.html

[14] James I 2015 Dry springs and dead orchards. in: Desert Sun http://www.desertsun.com/story/news/environment/2015/12/10/morocco-groundwater-depletion-africa/76788024/

[15] Bedford L 2017 Irrigation, innovation saving water in Kansas. in: agriculture.com http://www.agriculture.com/machinery/irrigation-equipment/irrigation-innovation-saving-water-in-kansas

Everything is connected

Everything is connected

Post by Anne Van Loon, Lecturer in Physical Geography (Water sciences) at the University of Birmingham, in the United Kingdom.

__________________________________________________

In recent years the human dimension of hydrology has become increasingly important. Major flood and drought events have shown how strongly water and society are intertwined (see here and here). The hydro(geo)logical research community is increasingly including this human dimension, for example within the IAHS Panta Rhei decade (link), which focuses on the interface between environment and society and aims to “make predictions of water resources dynamics to support sustainable societal development”. Previous Water Underground blog posts have shown the importance of this topic and highlighted opportunities and methodologies for scientists to engage with socio-hydro(geo)logy and humanitarian projects. Viviana Re, for example, introduces the term socio-hydrogeology and promotes sustainable groundwater management in alliance with groundwater users (link). And Margaret Shanafield argues that humanitarian groundwater projects are “an opportunity for scientists to have an impact on the world by contributing to the collective understanding of water resources and hydrologic systems” (link).

In our interdisciplinary project CreativeDrought (link), which uses local knowledge and natural and social science methods to increase local preparedness for uncertain future drought, we are applying these ideas and we realise how important different types of connections are in our two-way learning process. We just completed our second fieldwork phase of the project that consisted of workshops in which groups of people from a rural community in South Africa experimented with potential future drought scenarios and created stories about how they would be impacted by the drought and what they could do to prepare for and adapt to it. Our scientific team consisted of hydrologists and social scientists from local and UK-based institutes and the groups in the community who participated were the village leaders, livestock farmers, irrigation farmers, young mothers, and elderly people.

Young women collecting water from communal standpipe (photo: Sally Rangecroft).

Both the scientific team and the community groups were interested to learn from each other’s knowledge and experience (or just curious, see photo below of our Zimbabwean colleague Eugine measuring irrigation canal discharge with an apple). During the time we spent in the community (four weeks in March/April and two weeks in July) we both learned about important connections. As hydrologists and hydrogeologists we know that different parts of the hydrological system are connected and that these connections are extremely important if you want to understand, predict, and manage the system. Knowledge about the connection between groundwater and surface water is what we as hydrologists could bring to the community. The community was getting their water from different sources: drinking water from a groundwater well, irrigation water from a reservoir that releases water into the river, and water for bathing, washing, brick making, and cleaning cars from the river. By showing how a drought would affect each of these water supplies and discussing amongst groups that would be affected differently by a drought, they learned about the connection between the water bodies and how abstraction in one would affect the other.

Researchers measuring discharge with help of schoolchildren and collecting stories about previous droughts and floods (photos: Anne Van Loon and Sally Rangecroft).

We scientists also learned some important connections from the community. For example, our project focuses on drought but when we asked the community to tell us about droughts they had experienced in the past, many also told us about flood events. For the community, both are water-related extreme events that often even impact them similarly, with crop loss, drinking water problems, diseases, etc. Even though floods and droughts are governed by different processes (floods by fast, mostly near-surface pathways and droughts by slower, sub-surface storage related pathways) and different tools and indices are used to characterise both extremes, people at local scale have to deal with both floods and droughts when the hydrological system goes from one into the other or when both occur simultaneously in different parts of the hydrological system. We realised that our academic world is so fragmented that we often forget about connecting floods and droughts in our scientific work. Furthermore, we forget that we may affect one hydrological extreme when trying to manage our resources for the opposite hydrological extreme.

The most important, but unintended connections we discovered, however, were the connections between people. During our stays in South Africa, we connected as hydrologists and social scientists and between the UK-based and local researchers, learning to communicate across different disciplines, languages and audiences. The project also helped the community rediscover some connections between generations (young mothers and elderly ladies) and between different sectors (livestock farmers and irrigation farmers). And finally, we as a scientific team connected with the community. As a token for our newly established connection, the children’s dance group performed traditional dances during our final visit with the chief and the village leaders (see below), only bestowed on very special guests. That is the best confirmation we could get that personal connections are important and that our water management and our science depend on them!

Everyone connected: researchers, village leaders, dancers (photo: Khathutshelo Muthala).

__________________________________________________

Anne Van Loon is a catchment hydrologist and hydrogeologist working on drought. She studies the relationship between climate, landscape/ geology, and hydrological extremes and its variation around the world. She is especially interested in the influence of storage in groundwater, human activities, and cold conditions (snow and glaciers) on the development of drought.

Bio taken from Anne’s University of Birmingham page.

Crowdfunding Science: A personal journey toward a public campaign

Crowdfunding Science: A personal journey toward a public campaign

Post by Jared van Rooyen, MSc candidate in Earth Science at Stellenbosch University, in South Africa.

Part one of three in a Crowdfunding Science series by Jared.

___________________________________________________________

When my supervisor, Dr Jodie Miller, suggested to me last year that we should look at crowdfunding as a way to potentially to fund my master’s project, I had no idea of what I was about to get myself into. All through my honours year I was not really interested in doing further postgraduate study. She kept warning me that I might change my mind and that I should apply for funding “just in case”. But I was sure of my position.  And then, as I started the final five weeks of my honours year, I finally got to focus 100% on my research project. Suddenly, as I focused in on my data, all the possibilities started to leap out at me. I went from a BSc (Hons) student, who was not considering continuing my postgraduate studies at all, to someone who is passionate about water resource research and continuing my postgraduate career. This is apparently common amongst postgraduate students in science, who become exponentially more immersed in their field of study as they realise that their work isn’t just numbers and experiments, but has significant real world applications.

Once I had committed – there was no turning back. The learning curve for mounting a successful crowdfunding campaign is steep and slippery. As much as it is hard, stressful work it is also fulfilling, fun, and full of surprises. The biggest obstacle is one that most modern day scientists are confronted with already: How do I make my research attractive to people who don’t have years of passion invested in my work?

Well, the answer is not simple.

I have completed a wide variety of modules in my tertiary studies but none in any forms of multi-media marketing skills. So naturally, when I had this crowdfunding campaign in front of me, I was so far out of my comfort zone that I felt like a geologist at a slam poetry evening. After numerous conversations with my peers who had experiences in marketing and graphic design, I had gathered a basic understanding of the inner workings of the unfathomably enormous media machine.

From the very first day I arrived back at the University in Stellenbosch I was drowning in ideas and administration. Setting up the social media accounts alone was a mission. Little did I know that running a social media campaign takes days and even weeks of preparation and planning each public post, including the post’s time, target market, outcome goals, and context. Each post on each platform had to be vetted and boosted appropriately. I was genuinely missing the late nights combing through complicated scientific articles and pounding through textbooks.

Making the campaign video was by far the hardest but definitely the most fun part of the process. The hours and hours of footage I have of retakes and drone videos culminated in, what I believe, is the pinnacle of my creative career (which is minuscule).

About a week before the initial launch date, we ran into some red tape within the University. Naturally, as someone who has never done anything more than post a couple photos of rocks on Instagram, I had no idea that a project like this needed to go through a number of stages before being approved by the university (which included: legal, ethics, corporate, marketing, and the faculty itself). A couple of panic-ridden meetings and documents later, we were ready for lift off, although a week later than originally planned.

As a geologist, I am not afraid of hard work, so engulfing myself in learning as much as I could in the little time I had came more naturally. What was most intimidating though, was the thought of putting myself and what I am passionate about out there. Publicly declaring the fact that what I wanted to achieve was not funded was daunting at first, but in time became a revelation in self-awareness and that asking for help is more constructive than admitting defeat.

I believe that postgraduate crowdfunding may prove to be invaluable in the future of students that have all the potential but their projects remain unfunded. Not only does it allow for the financial security of your project, but it attracts people that are interested in your field to you and to your work. The most significant consequence of this crowdfunding approach is that when you graduate, you already have a network of people in the industry that know who you are and know of your potential.

The crowdfunding campaign was completed in early April of 2017. In the next blog I will talk about what worked and what didn’t work, who pledged funding and how did we reach them.

___________________________________________________________

Jared van Rooyen is an MSc student at the University of Stellenbosch in South Africa. His primary field of interest is in isotope hydrology with major applications in groundwater vulnerability and sustainability. Other research interests include postgraduate research funding solutions and outreach as well as scientific engagement with the use of modern media techniques.

 

Check out Jared’s (and research group’s) thundafund  page here.

Humanitarian groundwater projects; notes on motivations from the academic world

Humanitarian groundwater projects; notes on motivations from the academic world

Post by Margaret Shanafield, ARC DECRA Senior Hydrogeology/Hydrology Researcher at Flinders University, in Australia. You can follow Margaret on Twitter at @shanagland.

___________________________________________________________

What led me down the slippery slope into a career in hydrology and then hydrogeology, was a desire to combine my love of traveling with a desire to have a deeper relationship with the places I was going, and be able to contribute something positive while there. I figured everyone needs water, and almost everyone has either too much (flooding) or too little of it.

But, from an academic point of view, aid/humanitarian/philanthropic projects can be frustrating and offer few of the traditional paybacks that universities and academia reward.  Last week, for example, I spent much of my time working on the annual report for an unpaid project, and I am soft money funded. And what’s worse, I couldn’t even get the report finished, because most of the project partners hadn’t given me their updates on time. When I went across the hall to complain to my colleague, he admitted that he, too, was in a similar situation.

So what is the incentive?

Globally, the need for regional hydrologic humanitarian efforts is obvious. Even today, 1,000 children die due to diarrhoeal diseases on a daily basis. Water scarcity affects 40% of global population, with 1.7 billion people dependent on groundwater basins where the water extraction is higher than the recharge.  And, the lack of water availability is only going to get worse into the future.

But being a researcher with pressure to “publish or perish” and find ways to fund myself and my research, what was/is my incentive to address these problems? From an academic point of view, water aid projects are often time-consuming, with expected timelines delayed by language and cultural barriers, difficulties in obtaining background data, expectations on each side of the project not matching up, and activities and communication not happening on the timescales academics are used to. And the results are typically hard to publish.

An online search revealed numerous articles discussing the pros and cons of pursuing a career in development work, including: having a job aligned with one’s morals and values, an exciting lifestyle full of change, motivated co-workers, the opportunity to see the world and different cultures, the opportunity to make a difference, and last but not least, because it is a challenge (in a good way).

As a scientist, I get elements of all these pros in my daily work. But, while much of what academics do fits under the umbrella of “intellectually challenging”, aid projects provide applied problems with real-world implications that can sometimes be lacking in the heavily research-focused academic realm, except for the creative “broader impacts” and outreach sections of grant proposals. They are therefore an opportunity for scientists to have an impact on the world by contributing to the collective understanding of water resources and hydrologic systems. And hey, many of us enjoy travelling and get to visit interesting places for work, too.

Pulling myself out of my philosophical waxings, I focused on these highlights and the benefits of working in an interdisciplinary project to address some of those global problems I mentioned earlier – and got back to report writing.

Training project partners in Vietnam to take shallow geophysical measurements (left). Sweaty days in the field are rewarded by cheap beers, magnificent sunrises, and relaxing evenings at the coast where the river meets the sea (right). Photos by M Shanafield.

___________________________________________________________

Margaret Shanafield‘s research is at the nexus between hydrology and hydrogeology. Her current research interests still focus on surface water-groundwater actions, although she work’s on a diverse set of projects from international development projects to ecohydrology. The use of multiple tracers to understand groundwater recharge patterns in streambeds and understanding the dynamics of intermittent and ephemeral streamflow are her main passions. Since 2015, she has been an ARC DECRA fellow, measuring and modelling what hydrologic factors lead to streamflow in arid regions. You can find out more about Margaret on her website.