Geology for Global Development

Geology for Global Development

Planning for future cyclone Idais; Cloud seeding in the Philippines; Climate Change Getting you Down? This and more in Jesse Zondervan’s March 2019 #GfGDpicks #SciComm

rain drops on leaf

Each month, Jesse Zondervan picks his favourite posts from geoscience and development blogs/news which cover the geology for global development interest. Here’s a round-up of Jesse’s selections for the last month:

The UN World Meteorological Organization called cyclone Idai, which hit Mozambique this month, “possibly the worst weather-related disaster to hit the southern hemisphere”. Civil Engineering professor Ryan P. Mulligan discusses what climate science tells us about the future of storms like this.

Cyclone Idai paralysed the city of Beira and is a reminder that communities can really benefit from more investment in disaster risk reduction and climate change adaptation.

On that note, the UN Office for Disaster Risk Reduction announced that experts and representatives from 33 countries agreed to establish a Coalition for Disaster Resilient Infrastructure (CDRI). The coalition targets the challenge of safeguarding infrastructure against climate change enhanced disaster risks, as our dependency on infrastructure increases in the 21st century.

Cloud Seeding

As Dr. Michael A. Bengwayan discusses whether cloud seeding is a viable solution for drought, the Filipino Department of Agriculture announces it will start using the geoengineering technique in areas hit by El Niño.

Rather than geoengineering the climate, cloud seeding is a softer approach to force water out of clouds, which need to be present before cloud seeding can work. The Philippines might offer an insightful example.

Further topics include the exciting climate solutions pioneered by African leaders, laid bare by an expedition on Mount Kenya; and coping strategies for climate change anxieties.

Cyclone Idai

Coalition for Resilient Infrastructure takes off by Denis McClean at UNISDR

Hurricanes to deliver a bigger punch to coasts by Ryan P. Mulligan at The Conversation

Cyclone Idai: why disaster awareness and preparedness matters at the United Nations Environment

Climate Adaptation

Mount Kenya: A View of Climate Impacts and Opportunities at The World Bank

Cloud Seeding, Will It Save Us From Drought? – OpEd by Dr. Michael A. Bengwayan at Eurasia Review

Filipino Department of Agriculture to start cloud seeding by Eireene Jairee Gomez at Manila Times

Climate Change Getting You Down? Here Are Some Coping Strategies by Sarah Fecht at State of the Planet

How to make effective climate policies? Make citizens lead by Kiara Worth at the Tyndall Centre

Novel tool unveiled for climate risk profiling and adaptation at the Climate and Development Knowledge Network

Climate change

Mapped: How climate change affects extreme weather around the world at Carbon Brief

Disaster Risk

78% of older teenagers in Japan anxious about natural disasters, survey says by Magdalena Osumi at the Japan Times

Himalayan hydro developers wilfully ignore climate risks by Beth Walker at India Climate Dialogue

The Dangers of Glacial Lake Floods: Pioneering and Capitulation by Jane Palmer at American Geophysical Union’s Eos

External Opportunities

Deadline for Submitting Voluntary Commitments approaching at UNISDR

Summer 2019 Internship Opportunities at the Columbia Center on Sustainable Investment

Summer 2019 Earth Institute Internship Opportunities

African Climate Risks Conference 2019

Vacant PhD positions in Sustainability Science at Lund University Centre for Sustainability Studies

 

Check back next month for more picks!

Follow Jesse Zondervan @JesseZondervan. Follow us @Geo_Dev & Facebook.

Water and Sustainable Development – 6th GfGD Annual Conference Event Report

Water and Sustainable Development – 6th GfGD Annual Conference Event Report

Understanding, managing and protecting water resources is critical to the delivery of the UN Sustainable Development Goals (e.g., education, water and sanitation, healthy oceans, zero hunger, good health, gender equality, energy, industry, and biodiversity). Increasing urbanisation, industrialisation, and climate change, however, are increasing pressure on water supplies and reducing water quality. Our 6th Annual Conference explored the role of geoscientists in managing conflicting demands for water, ensuring that the needs of the poorest are met while enhancing the health of ecosystems. We recently published a full event report online, and here we share some of the highlights.

Our Annual Conference is a highlight for many involved in the work of Geology for Global Development, bringing together people from across the UK and beyond to explore how geoscientists can contribute to sustainable development. This year approximately 120 attendees gathered at the Geological Society of London to talk about all things water, Sustainable Development Goals and geoscience.

The conference was opened by Lord Duncan of Springbank (UK Government Minister for Scotland and Northern Ireland, and a fellow geoscientist). Lord Duncan gave a passionate description of the important links between politics, geology and sustainable development. Another distinguished guest was Benedicto Hosea, visiting the UK from Tanzania and working closely with the Tanzania Development Trust. Benedicto gave us an insight into water resources in Tanzania, and the realities of implementing projects and taking practical action to improve water provision.

Our keynote lecture was delivered by Professor Bob Kalin from the University of Strathclyde, who gave us an overview of the interactions between water, geoscience and human impacts – and why it is important that geoscientists engage in the delivery of the Sustainable Development Goals. You can find a recording of a similar talk Professor Kalin presented at a TedX event.

The first panel discussion of the day focused on management, with insight from industry, academia and the Overseas Development Institute. We discussed the challenges involved in listening to and considering many stakeholders, the management of transnational aquifers and how best to enforce policy – then attempted to come with some solutions to these challenges. Our event report includes links to key reading suggested by our panellists.

Water contamination is a significant environmental issue in many countries at all stages of development.  We heard about research into salinization and arsenic contamination of groundwater in Bangladesh. Mike Webster, head of WasteAid (check them out here) gave a different perspective on water contamination, talking about the work the charity has done in improving solid waste collection, thereby improving drainage and water quality.

Probably the most hectic, yet fun part of the conference was the UN style activity – we split up into groups representing different stakeholders and came up with a research and innovation statement relating to water and the SDGs.

We were also joined by The Eleanor Foundation, a charity working in Tanzania to provide access to safe, clean water provision to communities through pump installation and education programmes. It was so inspiring to hear about a charity that has undertaken effective work in ensuring the sustainable supply of water to communities, and made a real difference in improving lives – it is estimated that the Eleanor Foundation has improved access to water to over 250,000 people. In 2019, GfGD will be supporting the work of The Eleanor Foundation, helping to deliver SDG 6 in Tanzania. We will be using surplus income from our conference, together with other funds, to facilitate an evaluation of The Eleanor Foundation’s water programme. This will generate recommendations for The Eleanor Foundation team to ensure long-term impact and sustainability.

In true GSL conference style, we finished the conference with a reception in the library, giving us all the chance to chat about the conference and meet people sharing an interest in geoscience and development (of course admiring William Smith’s geological map!). I think it would be fair to say that a fun and interesting day was had by all, and I left feeling excited by the number of geoscientists I met that all share enthusiasm for the role that geoscientists have in helping to achieve the SDGs.

The 7th GfGD Annual Conference will be on Friday 15th November 2019, hosted again by the Geological Society of London. Please do save the date, and we hope to see you there!

Laura Hunt is a member of the GfGD Executive Team, and a PhD Student at the University of Nottingham and the British Geological Survey.

Is geological mapping becoming obsolete?

Is Geological Mapping Becoming Obsolete?

Geology students typically experience some form of mapping education as part of their course and attitudes towards this baptism into the geosciences vary from adoration to utter hatred. Whatever the opinions of the students, however, it is widely recognised that performing mapping exercises is an excellent way to learn the basics of structural geology which underpins aspects of both further geological education and the use of geology in industry. Unfortunately, the number of graduates using the mapping skills practiced in their undergraduate years is dwindling. There is an increase in the use of seismic and borehole data alone to generate cross-sections through the earth, where field-collected strike and dip data, used alone or in tandem with other methods, can often provide a far better insight into what really occurs under the ground. As the number of graduates practicing field mapping in their careers continues to decrease, we may be reaching a time when mapping skills are lost to all but a few specialists, and even these may eventually disappear.

 

Is geological mapping obsolete?

Drone technology is now used in numerous mapping expeditions. Credit: Chris Sherwood, Woods Hole Coastal and Marine Science Center (distributed via USGS).

Technology and mapping have coevolved over the years, from mapping via horse and cart to the use of drones to pick up larger-scale landscape features that may not be visible at ground level. The question is, as technology develops to simplify many of the physical aspects of mapping will it remove the need for traditional geological mapping altogether? In many ways mapping involves risks that are not encountered in many other professions – trekking off the marked paths abroad can mean coming face-to-face with venomous snakes, bears or wild boar (all of which occurred during my year’s undergraduate mapping projects) and often a quick look at a satellite image of the area can answer questions that days squinting at an outcrop cannot.

Despite these drawbacks, it must be appreciated that there is certain information that can only be obtained by looking at a rock first hand, such as the identities of different minerals and the deformation history of a high grade metamorphic rock. It is for this reason that exploration geologists are becoming increasingly alarmed at the apparent lack of next-generation geoscientists well practiced in the art of mapping.

The potential reasons for this negative trend are numerous – the lower numbers of professional structural geologists teaching next-generation geoscientists, a lack of companies offering mapping placements over the university holidays and fewer students taking up the subject, with the number of schools and colleges offering geology as an A level having dropped substantially over the past few years. At the same time, there has been a noticeable shift towards less fieldwork-focussed university curricula due to the high cost of fieldwork and the liability this presents to institutions,  and a trend toward exploration in regions with more cover, where outcrops can be scarce.Nonetheless, it is very difficult to overestimate the value of mapping – after all, no geological discipline is complete without a map and preventing the decline should become a priority.

Increasing the number of geologists capable of mapping depends on replenishing skills regularly to ensure that techniques developed whilst at university can be maintained until the opportunity becomes available in an industrial setting. Further funding from companies toward the initial university mapping training may also be beneficial, as would the continued emphasis of structural geology in courses that are broadening due to advances in other rapidly growing geoscience fields, e.g. geochemistry. It is also important to appreciate that although mapping may seem old-fashioned it is by no means outdated – maps themselves are today constructed using cutting edge GIS technology, which plays a far greater part in the final product than might be initially assumed from glancing at a student’s notebook.

Is geological mappping obsolete ?

Highly deformed marble and pelite layers. Structures such as this are only visible at hand-specimen scale and it is therefore important that geologists enter the field in order to make these observations. Credit: David Tanner (distributed via imaggeo.egu.eu)

Although geological mapping skills are decreasing, they are far from being lost altogether. As industries appreciate the value of experienced field mapping talent we can hope that the funding will follow, to ensure that this age-old art continues to be practiced for the benefit of not just geological disciplines, but other areas of society too. Geological cartographers may help find mineral veins for mining, or potential aquifers enabling them to provide water to parched communities, helping to achieve SDG 6 (clean water and sanitation). A technique with so much potential should not be allowed to be lost from the world.

 

Rainfall related geohazards: floods, landslides and mudslides in Rio – A dangerous combination of nature and human-related factors

Rainfall related geohazards: floods, landslides and mudslides in Rio – A dangerous combination of nature and human-related factors

Rainfall-related geohazards in Brazil’s poorer, mountainous city margins could be mitigated using better urban planning and communication. Our own Brazilian blogger Bárbara Zambelli Azevedo explores the problem and possible solutions.

I come from Brazil, a country well-known for its beautiful landscapes, football and carnival. Ok, some stereotypes are true, indeed.

Situated in the middle of the South American tectonic plate and away from geohazards such as earthquakes, volcanoes and tsunamis, this tropical country may seem like paradise to some. However, we are not completely safe from geohazards.

Every year during the summer, which is a heavy rain season, many lives are lost, and people are displaced by floods, landslides and mudslides all over the country. I want to give a particular focus on the state of Rio de Janeiro, where a summer storm killed at least 6 people on the 6th of February this year. I should mention that it was not an isolated event at all.

The situation of the state of Rio de Janeiro is complicated, and its analysis should take into consideration the geomorphology of the area, its climate and – importantly – urban planning.

According to the Brazilian Geological Survey, the bedrock in the area is composed mainly of igneous and metamorphic rocks, and the relief is characterised by steep mountain slopes over 2,000 m, alternated with sedimentary basins.

In 2011 floods, landslides and mudlslides resulted in 903 deaths and over 2,900 people had their homes destroyed

These mountains are a part of a major structure named Serra do Mar (Sea Ridge), a 1,500 km long system of mountain ranges and escarpments parallel to the Atlantic Ocean, running from Rio de Janeiro State until Santa Catarina, in the south of Brazil. Geomorphological features seen today started to form during the opening of the Atlantic Ocean during the Cretaceous, were consolidated throughout the Tertiary and still are modified by erosional and sedimentary events.

The climate is described as tropical in coastal areas such as Rio de Janeiro City and Angra dos Reis. It is warm and humid all year round, with a mean temperature around 23°C and an average annual precipitation of 1,300 mm. The rain season occurs in the summer (Dec-Mar) when 45% of precipitation falls.

In mountainous areas such as Nova Friburgo and Teresópolis, the climate is characterised as temperate. Temperatures are milder at an annual mean of 18°C and the average annual rainfall is 1700 mm, with 59% falling in the summer months of December to March. Therefore, extreme rainfall events are not rare, and they are usually associated with floods and landslides.

The worst weather-related natural hazard-induced disaster in Brazil happened in January 2011, when it rained 166 mm in a 24 hour period in the Serra dos Órgãos region, which is a local denomination of Serra do Mar. Six cities were affected by floods, landslides and mudslides: Teresópolis, Petrópolis, Nova Friburgo, Bom Jardim, Sumidouro and São José do Vale do Rio Preto. These flows resulted in 903 deaths and over 2,900 people had their homes destroyed.

A year earlier the state of Rio had been the scene of another tragedy. It was New Year’s Eve and the city of Angra dos Reis was full of tourists. After intense rainfall, many mudslides were triggered and left at least 44 people dead. Such events repeat themselves every year.

Satellite imagery of the 2011 mudslides in Nova Friburgo - before and after. Via Google Earth, collected in 2019.

Satellite imagery of the 2011 mudslides in Nova Friburgo – before and after. Via Google Earth, collected in 2019.

Just like Rio, most Brazilian cities lack urban planning and settlements are segregated socio-economically. Usually an impoverished population is pushed to marginalised areas of cities, which are usually steep and mountainous areas where the risk of landslides is higher.

In this article geologist and former president of the Institute of Technological Research of São Paulo Álvaro Santos states that only few Brazilian geohazards are triggered exclusively by nature.

In fact, most of our geological and hydrological issues are, somehow, led by poor land-use management, both in cities and in the countryside. Santos also explains that tragedies related to rainfall are usually caused by a lack of land-use planning and housing, and inefficient government communication.

We must learn from our own history and examples from other places like Indian Chennai and Tamil Nadu to tackle the challenge elevated hazard risk in city margins. A good starting point is raising the awareness of the population living in high-risk areas by using geoscience education and science communication.

Geoprevention aims to raise the awareness of the local community about geotechnical and environmental risks such as floods, landslides, infiltration, river erosion and sedimentation and waste disposal

We have a good example from the city of Curitiba, where students from the Federal University of Paraná developed a project titled GeoPrevention. This project aims to raise the awareness of the local community about geotechnical and environmental risks such as floods, landslides, infiltration, river erosion and sedimentation and waste disposal. The students use didactic material like folders, manuals, booklets and provide mini-courses and lectures about these topics with a playful character that is easily understood.

This initiative is important because it provides an interdisciplinary dialogue between a university and civil society, in particular, the population affected by those geohazards, to recognise and avoid them at the individual level.

At a higher level, we need governments and policy-makers to take action on effective urban planning and risk management, and invest more in the prevention of rainfall-related geohazards than on their remediation.

In addition, the active participation of civil society and the private sector is crucial to building resilient societies. Technological innovations such as the internet of things and dashboards should also be used to improve disaster prediction and population warning.

The city of Rio de Janeiro has two big data operation centres, the Operation Centre and Integrated Centre of Command and Control, both launched before World Cup which granted Rio the title of “World Smart City” in 2013.

The centres improved disaster management by mapping areas with high risk of flood-related landslides and implementing a critical early warning and evacuation system for Rio’s favelas. However, according to this article, they have failed at “go[ing] beyond high-tech marketing rhetoric and help[ing] real people living in the city”.

Even though it is very complicated and takes time to solve the problem of rainfall-related hazard risk in city margins, it must start sometime: why not now?!