GeoLog

GeoLog

EGU announces 2019 awards and medals

EGU announces 2019 awards and medals

From 14th to the 20th October a number of countries across the globe celebrate Earth Science Week, so it is a fitting time to celebrate the exceptional work of Earth, planetary and space scientist around the world.

This week, the EGU announced the 45 recipients of next year’s Union Medals and Awards, Division Medals, and Division Outstanding Early Career Scientists Awards. The aim of the awards is to recognise the efforts of the awardees in furthering our understanding of the Earth, planetary and space sciences. The prizes will be handed out during the EGU 2019 General Assembly in Vienna on 7-12 April. Head over to the EGU website for the full list of awardees.

Sixteen out of the total 45 awards went to early career scientists who are recognised for the excellence of their work at the beginning of their academic career. Twelve of the awards were given at division level but four early career scientists were recognised at Union level, highlighting the quality of the research being carried out by the early stage researcher community within the EGU.

Sixteen out of the 45 awards conferred this year recognised the work of female scientists. Of those, six were given to researchers in the early stages of their academic career.

As a student (be it at undergraduate, masters, or PhD level), at the EGU 2018 General Assembly, you might have entered the Outstanding Student Poster and PICO (OSPP) Awards. A total of 64 poster contributions by early career researchers were bestowed with a OSPP award this year recognising the valuable and important work carried out by budding geoscientists. Judges took into account not only the quality of the research presented in the posters, but also how the findings were communicated both on paper and by the presenters. Follow this link for a full list of awardees.

Further information regarding how to nominate a candidate for a medal and details on the selection of candidates can be found on the EGU webpages. For details of how to enter the OSPP Award see the procedure for application, all of which takes place during the General Assembly, so it really couldn’t be easier to put yourself forward!

The EGU General Assembly is taking place in Vienna, Austria from 7  to 12 April. The call-for-abstracts will open in mid-October. Submit yours via the General Assembly website.

Educators: apply now to take part in the 2019 GIFT workshop!

Educators: apply now to take part in the 2019 GIFT workshop!

The General Assembly is not only for researchers but for teachers and educators with an interest in the geosciences also. Every year the Geosciences Information For Teachers (GIFT) is organised by the EGU Committee on Education to bring first class science closer to primary and high school teachers.

The topic of the 2019 edition of GIFT is ‘Plate tectonics and Earth’s structure – yesterday, today, tomorrow’. This year’s workshop will be taking place on 8–10 April 2018 at the EGU General Assembly in Vienna, Austria.

Teachers from Europe and around the world can apply to participate in the 2019 edition of GIFT, and to receive a travel and accommodation stipend to attend the workshop, by November 12. Application information is available for download in PDF format, a document which also includes the preliminary programme of the workshop.

Not sure what to expect? More information about GIFT workshops can be found in the GIFT section of the EGU website. You can also take a look at a blog post about the 2015 workshop and also learn what the workshop is like from a teacher’s perspective here. You might also find videos of the 2018 workshop useful too.

Imaggeo on Mondays: Life between the arid mountains of Gansu, China

Imaggeo on Mondays: Life between the arid mountains of Gansu, China

Even within Earth’s more arid environments, you can find life!

This featured photo was taken near the Lanzhou Zhongchuan Airport, about 50 km away from Lanzhou city, the capital of Gansu province in Western China. The area lies in a region between the Qinghai-Tibet Plateau and the Loess Plateau, with an elevation ranging from 1,500 m to 2,200 m. The landscape is dominated by a network of ridges and valleys; the Loess Plateau in particular is known for its highly erodible soil.

The region is a typical temperate or semi-arid area receiving just 260-290 mm of precipitation annually with a potential evapotranspiration of about 1660 mm each year, according to the Gaolan and Yongdeng National Meteorological Stations. However, even in these dry conditions, you can still find pockets of agricultural plots nestled between the winding mountain ridges. Farmers in this region commonly rely on an agricultural method called terrace farming, where crops are grown on graduated platforms, resembling wide steps. Often used in dry mountainous environments, the practice not only creates a flat surface for farming, but also reduces soil erosion and efficiently conserves water. The terraced farms in this area are mainly distributed in the valley where lands are irrigated for wheat and maize production.

By Olivia Trani, Communications Officer, and Xiaoming Wang, State Key Laboratory of Cryospheric Science, Chinese Academy of Science, Lanzhou, China

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Discover geology with Lego!

Discover geology with Lego!

Science communication is becoming a widely recognized skill for both established and budding geoscientists alike. Outreach activities are beneficial in many ways, as they not only showcase science to the general public, but also give scientists the chance to develop transferable skills.

If you’re in the market for a creative geoscience activity, one that especially appeals to a younger audience, look no further! In this guest blog post, Stephanie Zihms, a geomechanics postdoc at Heriot-Watt University and the EGU Union-level ECS representative, details a fun hands-on activity that teaches geoscience with the help of Lego blocks. This post is modified from a version which first appeared on Stephanie Zihms’ blogRead the original post.

I designed this activity for the Explorathon 2015 (a family orientated science event) because I was looking for a way to show how geologists work from observing the surface to gathering information from boreholes and seismic surveys to understand the subsurface. I also wanted participants to experience this process without needing to be in the field or taking rock samples.

Kit and preparation

I used a generic brand of building bricks (because my budget didn’t allow for actual Lego) and bought two boxes of mixed bricks in a bargain store. First you want to sort the bricks by colour (unless you can buy them that way). Then you want to decide what shapes to make – I opted for three simples shapes: Syncline, Anticline and Oil Reservoir with seal.

With the geology built, you then want to select three or four areas to make a ‘borehole’ with – I used single bricks but this could be done with the 2×2 squares as well. If you have enough bricks you can probably incorporate the ‘boreholes’ into the model and reveal them by extracting them – which would be super cool. Once you have the models built and boreholes prepared, you need to make some envelopes to only expose the top layer – I used brown hacking paper and packing tape to make sure they can be reused easily. That’s pretty much it.

Activity: Syncline & Anticline       

Show your participants the covered models and ask if they can tell you what the rest of it looks like. You can explain that geologists use exposures like this for mapping (having maps on hand can be useful). Also ask how sure they are that they are correct based on the information available. You can then offer more information in form of boreholes – either lay or stand them in front of the model in the correct place (you can mark your envelopes) or extract them if you went for the hiding option.

Either ask the participants to show you what they can see – following a colour for example or ask them to copy the boreholes on a bit of paper and connect colours that way (this will depend on how much time you have with each participant; borehole papers can be prepared with the columns printed on so the participants only have to colour them in).

Once that is done reveal the full model. This is normally a big ‘Ahhh’ effect because just by having that little bit of extra information they got it right. This is a great opportunity to talk about information available and how geologists infer maps and what the subsurface looks like based on similar information. (if you have boreholes logs from the local area + the iGeology app from BGS this can really help relate this to the local area). If you make a version where the boreholes can be retrieved this could be standalone activity with instructions to follow as well.

Activity: Oil reservoir with seal         

This activity is very similar to the one above except that we can’t see anything from the top layer. And before we even know where to drill for a borehole we have to do a seismic survey. After guessing what the model looks like and deciding the information is not great. Show a generic seismic line (normally easily found online or in petroleum engineering tutorials). We printed seismic lines on A5 and asked participants to colour them in – following any features or structures they could see (this could also be done with one A3 paper that’s laminated and can be re-used).

After identifying a generic reservoir structure we revealed the model to show the different layers. A set of boreholes could be done based on where participants would ‘drill’. Which would mean having a set of boreholes available or making the middle of the model retrievable.

Summary

I absolutely love this activity because it uses something people are familiar with – independent of age and it mimics a little geological survey taking participants on the journey of gathering information and making an estimation. This activity can also be easily amended for different size audiences (e.g. using DUPLO for a show & tell type event) or adding more information about the process, talking about risk and uncertainty. The response from participants, especially children, when the model is revealed is priceless.

I hope you found this how-to useful and please share how you used it at your events either in the comments or by tagging me (@geomechsteph) on Twitter.

By Stephanie Zihms