GeoLog

GeoLog

GeoTalk: Alena Ebinghaus, Early Career Scientist Representative

GeoTalk: Alena Ebinghaus, Early Career Scientist Representative

In addition to the usual GeoTalk interviews, were we highlight the work and achievements of early career scientists, this month we’ll also introduce one of the (outgoing) Division early career scientist representatives (ECS). The representatives are responsible for ensuring that the voice of EGU ECS membership is heard. From organising short courses during the General Assembly, through to running division blogs and attending regular ECS representative meetings, their tasks in this role are varied. Their work is entirely voluntary and they are all active members of their research community, so we’ll also be touching on their scientific work during the interview.

Today we are talking to Alena Ebinghaus, ECS representative for the Stratigraphy, Sedimentology and Palaeontology (SSP) Division. Alena has been in post for more than 20 months, but her term comes to an end at the 2019 General Assembly. Interested in getting involved with EGU and its activities for early career scientists? Consider applying for one of the vacant representative positions

Before we get stuck in, could you introduce yourself and tell us a little more about yourself and your career?

I was fascinated by geology long before I started studying, and it was volcanoes that got me hooked initially. Being originally from Hagen in Germany, I went to study geology and palaeontology at the Rheinische Friedrich-Wilhelms Universität in Bonn, from which I obtained a Diploma (=MSc) degree in 2010. I continued with a PhD at the University of Aberdeen, in the UK, where I focused my research to inter-lava drainage and plant ecosystems in the Columbia River Flood Basalt Province (USA). I haven’t settled my studies in volcanology after all, but sedimentological and palynological (largely pollen and spores) studies set in a volcanic environment was the perfect balance for me.

I am still based in Aberdeen, and since 2014 employed as a postdoctoral researcher. Now my main research projects are the assessment of sedimentary and plant ecological response patterns to rapid climate change of the past. I look at sedimentary rock records from the Cretaceous–Paleogene  Boltysh meteorite impact crater (Ukraine) and the Palaeocene–Eocene Bighorn Basin (Wyoming). These two locations were witness to rapid warming events and hold geological clues to how the environment responded to these changes.

Alena at the Palouse Falls, Washington State. (Credit: Lucas Rossetti)

Although we touch upon it in the introduction of this post: what does your role as ECS representative involve?

The ECS representative is the anchor point between the early career researchers and later career researchers. Within the SSP community I communicate the matters and interests of the ECS to the SSP division and the wider EGU community, and help to connect the work and engagements of early stage scientists with those of a later career stage. With the help of a small group of other ECS, I coordinate and take care of the SSP social media Facebook and Twitter accounts. I also try to set up social events and help organize short courses during the annual General Assembly (GA). In the particular case of the SSP division, I have coordinated the set-up of the division’s weblog.

Why did you put yourself forward for the role?

I was keen to get involved and integrate with the SSP community and the EGU in order to widen my academic network and to become a more interactive GA participant. The GA is a large conference – I wanted to have the opportunity to meet a lot of people and help organize events rather than being a somewhat passive attendant.

What is your vision for the Stratigraphy, Sedimentology and Palaeontology Division ECS community and what do you hope to achieve in the time you hold the position?

I see the SSP growing further and particularly the ECS community becoming more inter-active with organizing SSP-specific scientific and social events similar to some of the larger divisions within the EGU. The first couple of times I joined the GA I felt rather lost, and was not quite aware of ECS work, nor did I meet other SSP ECS. Bringing the SSP ECS community together and making their engagements more visible so to better approach other ECS is one of main objectives.

What can your ECS Division members expect from the Stratigraphy, Sedimentology and Palaeontology Division in the 2019 General Assembly?

First of all, the SSP division again offers again a great range of scientific sessions, but I am also planning a couple of social get-togethers which shall be particularly interesting for those attending the GA for the first time. As every year, there will be the opportunity to meet the SSP president and to join the division’s meeting which is open to all SSP members. With a group of other academics, I will be convening a short course to discuss the balance of work and personal life in science – a topic addressed to researchers of all career stages within SSP and naturally beyond.

How can those wanting to, get involved with the EGU?

For everyone being interested in SSP work, it would be best to either get in touch with myself, via email or Facebook or the SSP president. We will be more than happy to assist and answer any questions.

Interview by Olivia Trani, EGU Communications Officer

Geosciences Column: Using volcanoes to study carbon emissions’ long-term environmental effect

Geosciences Column: Using volcanoes to study carbon emissions’ long-term environmental effect

In a world where carbon dioxide levels are rapidly rising, how do you study the long-term effect of carbon emissions?

To answer this question, some scientists have turned to Mammoth Mountain, a volcano in California that’s been releasing carbon dioxide for years. Recently, a team of researchers found that this volcanic ecosystem could give clues to how plants respond to elevated levels of carbon dioxide over long periods of time. The scientists suggest that studying carbon-emitting volcanoes could give us a deeper understanding on how climate change will influence terrestrial ecosystems through the decades. The results of their study were published last month in EGU’s open access journal Biogeosciences.

Carbon emissions reached a record high in 2018, as fossil-fuel use contributed roughly 37.1 billion tonnes of carbon dioxide to the atmosphere. Emissions are expected to increase globally if left unabated, and ecologists have been trying to better understand how this trend will impact plant ecology. One popular technique, which involves exposing environments to increased levels of carbon dioxide, has been used since the 1990s to study climate change’s impact.

The method, also known as the Free-Air Carbon dioxide Enrichment (FACE) experiment, has offered valuable insight into this matter, but can only give a short-term perspective. As a result, it’s been more challenging for scientists to study the long-term impact that emissions have on plant communities and ecosystems, according to the new study.

FACE facilities, such as the Nevada Desert FACE Facility, creates 21st century atmospheric conditions in an otherwise natural environment. Credit: National Nuclear Security Administration / Nevada Site Office via Wikimedia Commons

Carbon-emitting volcanoes, on the other hand, are often well-studied systems and have been known to emit carbon dioxide for decades to even centuries. For example, experts have been collecting data on gas emissions from Mammoth Mountain, a lava dome complex in eastern California, for almost twenty years. The volcano releases carbon dioxide at high concentrations through faults and fissures on the mountainside, subsequently leaving its forest environment exposed to the emissions. In short, the volcanic ecosystem essentially acts like a natural FACE experiment site.

“This is where long-term localized emissions from volcanic [carbon dioxide] can play a game-changing role in how to assess the long-term [carbon dioxide] effect on ecosystems,” wrote the authors in their published study. Research with longer study periods would also allow scientists to assess climate change’s effect on long-term ecosystem dynamics, including plant acclimation and species dominance shifts.

Through this exploratory study, the researchers involved sought to better understand whether the long-term ecological response to carbon-emitting volcanoes is actually representative to the ecological impact of increased atmospheric carbon dioxide.

Remotely sensed imagery acquired over Mammoth Mountain, showing (a) maps of soil CO2 flux simulated based on accumulation chamber measurements, shown overlaid on aerial RGB image, (b) above-ground biomass (c) evapotranspiration, and (d) normalized difference vegetation index (NDVI). Credit: K. Cawse-Nicholson et al.

To do so, the scientists analysed characteristics of the forest ecosystem situated on the Mammoth Mountain volcano. With the help of airborne remote-sensing tools, the team measured several ecological variables, including the forest’s canopy greenness, height and nitrogen concentrations, evapotranspiration, and biomass. Additionally they examined the carbon dioxide fluxes within actively degassing areas on Mammoth Mountain.

They used all this data to model the structure, composition, and function of the volcano’s forest, as well as model how the ecosystem changes when exposed to increased carbon emissions. Their results revealed that the carbon dioxide fluxes from Mammoth Mountain’s soil were correlated to many of the ecological variables analysed. Additionally, the researchers discovered that parts of the observed environmental impact of the volcano’s emissions were consistent with outcomes from past FACE experiments.  

Given the results, the study suggests that these kind of volcanic systems could work as natural test environments for long-term climate research. “This methodology can be applied to any site that is exposed to elevated [carbon dioxide],” the researchers wrote. Given that some plant communities have been exposed to volcanic emissions for hundreds of years, this method could help paint a more comprehensive picture of our future environment as Earth’s climate changes.

By Olivia Trani, EGU Communications Officer

References

Cawse-Nicholson, K., Fisher, J. B., Famiglietti, C. A., Braverman, A., Schwandner, F. M., Lewicki, J. L., Townsend, P. A., Schimel, D. S., Pavlick, R., Bormann, K. J., Ferraz, A., Kang, E. L., Ma, P., Bogue, R. R., Youmans, T., and Pieri, D. C.: Ecosystem responses to elevated CO2 using airborne remote sensing at Mammoth Mountain, California, Biogeosciences, 15, 7403-7418, https://doi.org/10.5194/bg-15-7403-2018, 2018.

EGU Photo Competition 2019: Now open for submissions!

EGU Photo Competition 2019: Now open for submissions!

If you are pre-registered for the 2019 General Assembly (Vienna, 7 – 12 April), you can take part in our annual photo competition! Winners receive a free registration to next year’s General Assembly!

The tenth annual EGU photo competition opened on 15 January. Up until 15 February, every participant pre-registered for the General Assembly can submit up to three original photos and one moving image on any broad theme related to the Earth, planetary, and space sciences.

Shortlisted photos will be exhibited at the conference, together with the winning moving image, which will be selected by a panel of judges. General Assembly participants can vote for their favourite photos and the winning images will be announced online on the last day of the meeting. 

If you submit your images to the photo competition, they will also be included in the EGU’s open access photo and video database, Imaggeo. You retain full rights of use for any photos or videos submitted to the database as they are licensed and distributed by EGU under a Creative Commons license.

You will need to register on Imaggeo so that the organisers can appropriately process your photos. For more information, please check the EGU Photo Competition page on Imaggeo.

Previous winning photographs from 2010 to 2018 can be seen on the previous winners’ pages.

In the meantime, get shooting!

EGU 2019 will take place from 07 to 12 April 2019 in Vienna, Austria. For more information on the General Assembly, see the EGU 2019 website and follow us on Twitter (#EGU19 is the official conference hashtag) and Facebook.

Imaggeo on Mondays: Sunset on the Giant’s Causeway

Imaggeo on Mondays: Sunset on the Giant’s Causeway

Pictured here is the Giant’s Causeway – a region of basalt columns, created 50-60 million years ago during the Paleogene. The typical polygonal form of the bedrocks, a product of active volcanic processes from the past, is well underlined by the sunset’s light; that’s why I took the photo in the late evening. The separate cracks are extended by weathering over time and are filled eluvium, geological debris from the erosion.

After the lava cooled, approximately 40,000 columns have since been polished by sea wave action. I decided to show the slow action of the sea with a long exposure, because it’s a continuous process, not obvious at first to an untrained person, but nevertheless very important now. I think in one photo we can find a deep history of Earth’s development, which palaeogeographers are still trying to understand.

by Osip Kokin, Lomonosov Moscow State University, Russia

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licenceSubmit your photos at http://imaggeo.egu.eu/upload/.