GeoLog

GeoLog

GeoPolicy: What does working at the European Environment Agency look like? An interview with Petra Fagerholm

GeoPolicy: What does working at the European Environment Agency look like? An interview with Petra Fagerholm

This blog post features an interview with Petra Fagerholm who is currently leading the team on public relations and outreach in the communications department of the European Environment Agency (EEA). Petra gave a presentation about the EEA during the Science for Policy short course at the 2018 EGU General Assembly. In this interview, Petra describes her career path, what it is like to work at the EEA and provides some tips to scientists who are interested in a career in an EU institution or who would like to share their research with policymakers.

Could you start by introducing yourself and the European Environment Agency (EEA)

My name is Petra Fagerholm, I have worked at the European Environment Agency (EEA) in Copenhagen for 14 years. Currently, I am leading the team on public relations and outreach in the Communications department.

The EEA is an EU agency, which was set up in 1993 to inform the policymakers and the citizens about the status of the environment and to contribute to sustainable development. In addition to the headquarters, a ministerial level expert network across Europe was also established. This network is called “Eionet” and it ensures dataflows for reporting and quality consistency of the assessments we produce.

How does the EEA use science and research?

Experts at the EEA use science and research material when producing reports, briefings and assessments. The EEA translates science into tailor-made knowledge needed for policymaking at a European level.

How did you become the Head of Group for Public Relations and Outreach at the EEA?

I studied Biology at the University of Helsinki, in Finland, where I come from. My University pathway was far away from communication and environment. After a year of exchange at the University of Neuchâtel, Switzerland, I became really interested in human physiology and subsequently I graduated a couple of years later from the University of Strasbourg with a French DEA degree in Neurosciences. I was part of the research group on visual psychophysics when Finland became a member in the EU. Finnish politicians were hiring assistants and out of curiosity (and being young… and fearless…), I applied and got the job. I think the drive for change came from the fact that I felt my research topics and hypothesis were very difficult to solve and funding was hard to get in the area of fundamental life sciences research. I aspired to be part of the new “European Project” for Finland.

After my job at the European Parliament, I was lucky to be recruited on a short-term contract at the European Commission as Scientific Officer in the area of Neurosciences. After a break of 1 year during which I was pregnant with my daughter, I worked for 2 years at Merrill Lynch Investment Bank in London. During that period, I came across the announcement for recruiting new staff at the EEA.

At the EEA, I started at the Executive Director’s office working on strategic coordination and on several short-term projects in the field of sustainability. I have always been keen to lead and support others in their career. I lead the support team in that office for 8 years. After 11 years in total in the director’s office, I was ready to change career and was lucky to be transferred to the communications department. My new tasks were to develop stakeholder approaches to support the communication framework at the EEA and continue to lead the team of outreach.

My career path is far from a straight line. I have more often let my heart lead rather than my head on career decisions. People I have met over the years, or more precisely bosses I have had, have helped by always giving me a sense of freedom in my tasks, trusting and believing in me. I have avoided staying in a job where I did not feel my skills were valued.

What is your average day like in the EEA office?

An average day is when I interact across the organisation with experts seeking their input or advice into a stakeholder project I am doing. It can be either enquiring about stakeholder consultations of a report published or developing a programme for a visiting group coming to the EEA. I catch up with everyone in my team on a daily basis to sense if everything is ok. My boss is easily approachable and I speak to her every day.

Twice a month I organise a strategic communication meeting for the Communication colleagues where we share information on production, launches, press, speeches and project across the EEA. Sometimes I receive a visiting group from a university or a ministry. People from across the world contact us to ask for a visit. Usually I kick off the programme by giving a presentation about the EEA after which I am joined by a couple of experts on a specific topic that the visitors are interested in.

What do you enjoy most about your job?

I like to lead a team and see how the members complement each other’s competences.  Allowing each team member to use their full potential and develop new skills is rewarding to me.

Working in a European body and for the environment feels good. I believe the EU is the biggest peace project in the world.

What do you find most challenging about your job?

I find it challenging when it is difficult to measure the real and tangible impact of outreach or communication. It is also sometimes difficult to prioritise activities and to work within the limited resources we have available.

Sometimes we cannot avoid influences from geopolitical storms – it is hard. Europe is about working together and building bridges for everyone.

What advice would you give to a researcher who is interested in a career with the EEA or the EU more broadly?

  • Firstly, you have to be an EU national to apply to the EU institutions. At the EEA, we have 33-member countries and you have to be citizen of one of these.

    Map of the 33-member countries

  • If you see an interesting job advertised in the EU institutions or EEA, apply as many times as you want.
  • Do not give up.
  • Keep your CV updated.
  • Follow EU politics.
  • Read up on EU affairs – it will make a difference in the interview.
  • Apply for jobs in national ministries or institutions – it can sometimes be a gateway to finding a short-term contract as a seconded national expert in the EU or at EEA. Look for a job in an EU lobby organisation who could benefit from your specific research.
  • Apply for the EU Blue Book traineeships https://ec.europa.eu/stages/
  • Register to EPSO – the EU portal for jobs: https://epso.europa.eu/apply/job-offers_en

Do you have any advice for scientists wanting to communicate their research with policymakers?

Less is more. Policymakers will find your research useful if you have concrete examples on how to contribute or solve some of the challenges a policymaker faces.

Use easily understandable language in your communication material. One A4 page is a good length for anything.

Is there anything else you’d like to say or comment on?

Surround yourself every day with people who are positive and who give you energy and pull you up. Believe in yourself and in your passion for what you do. Be proud of the choices you have made and trust in those you will make. There is a reason for everything.

Editor’s Note: since this interview took place, Petra has changed positions within the European Environment Agency and  is currently working as a stakeholder relations expert 

 

How to forecast the future with climate models

How to forecast the future with climate models

Our climate is constantly changing, and with the help of simulation modelling, scientists are working hard to better understand just how these conditions will change and how it will affect society. Science journalist Conor Paul Purcell has worked on Earth System Models during his time as a PhD student and postdoctoral researcher; today he explains how scientists use these models as tools to forecast the future of our climate.

While we can’t predict everything about our future, climate scientists have a good understanding of how our environment will look and feel like in the coming years. Researchers and climate specialists predict that temperatures will increase dramatically in the 21st century, ranging between 1.5°C and 4°C above pre-industrial levels, depending on your location and the amount of carbon dioxide pumped into the atmosphere in the near future. Forecasts of future drought and flood risk, at both regional and global bases, are also provided by climate experts.

Understanding how such features of Earth’s changing climate may manifest, and ultimately impact on our society, takes considerable international collaboration – a collaboration which is largely based around the results of climate modelling. That’s because climate predictions for the future are made using sophisticated computer models, which are built around mathematical descriptions of the physical and biological processes that govern our planet.

These models have become so complex in recent years that they are now referred to as Earth System Models (ESMs). Using ESMs, climate modellers can create simulations of the planet at different times in the future and the past. ESMs are in fact the only tools we have for simulating the global future in this sense. For instance, if we want to know how our climate may look like one hundred years from now, how ocean acidification levels may change and how this might impact ocean life, or how plants will respond to increasing levels of atmospheric carbon dioxide, ESMs are the only tool available.

The models are built in components, each representing a separate part of the Earth system: the atmosphere, the ocean, the land surface and its vegetation, and the ice-sheets and sea-ice. These are constructed by coding each component with the mathematics that describes the environmental processes at work.

Climate models are systems of differential equations based on the basic laws of physics, fluid motion, chemistry, and biology. Pictured here is a schematic of a global atmospheric model. (Credit: NOAA, via Wikimedia Commons)

For example, the winds in the atmosphere are described by the mathematics of fluid motion. Model developers translate these mathematical equations into code that computers can understand, like giving them a set of instructions to follow. Supercomputers can then interpret the code to simulate how winds, for example, are expected to develop at each global location through time. The results are usually plotted on world maps.

As scientists have learned more about our Earth’s systems over time, the complexity of these individual models has been ramped up dramatically. For example, the land surface and vegetation model components become more sophisticated as plant biologists understand more and more about how plants transfer water and carbon between the land and atmosphere.

And it’s not just one giant solo project either: there are tens of ESMs and hundreds of subcomponent models developed and used at research centres around the globe. Collaboration between these facilities is a necessary part of progress, and information is shared at international conferences ever year, like the American Geophysical Union’s Fall Meeting in the United States and the European Geosciences Union’s General Assembly in Europe.

This means that developments are always been made towards increasing the realism of ESMs. On the horizon such developments will include increasing the resolution of the global models for improving accuracy at regional locations, and also incorporating the results from the latest research in atmospherics, oceanography and ice sheet dynamics. One example is research into plants, specifically how they interact with carbon dioxide and water in the atmosphere. Further understanding of this biological process is expected to increase the realism of models over the coming years and decades. In general, improvements to the accuracy of model simulations can help to help society in the future. For example, models will be able to help predict how climate change may impact, say, water scarcity in South Africa, wildfire risk in the western United States, or crop yields in Asia. Indeed, the ESMs of the future should boast incredibly accurate simulations and prediction capabilities unheard of today.

By Conor Purcell, a Science & Nature Writer with a PhD in Earth Science

Conor Purcell is a science journalist with a PhD in Earth Science. He is also founding-editor of www.wideorbits.com and is on twitter @ConorPPurcell and some of his other articles at cppurcell.tumblr.com.

Imaggeo on Mondays: Cumulonimbus, king of clouds

Imaggeo on Mondays: Cumulonimbus, king of clouds

This wonderful mature thunderstorm cell was observed near the German Aerospace Center (DLR) Oberpfaffenhofen. A distinct anvil can be seen in the background meanwhile a new storm cell is growing in the foreground of the cumulonimbus structure. Mature storm cells like this are common in Southern Germany during the summer season. Strong heat, enough moisture, and a labile stratification of the atmosphere enables the development of this exciting weather phenomenon.

Description by Martin Köhler, as it first appeared on imaggeo.egu.eu.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Living in a new Age

Living in a new Age

If you were suddenly told you were living in a different time period, what would your immediate reaction be? Changes in the calendar – even if it’s just terminology – have proven emotive in the past. In 1752, when England shifted from the Julian to Gregorian calendars, and 11 days were cut from 1752 to catch up, there are suggestions that civil unrest ensued.

Once again, the name of the period in which we live has recently changed; the Holocene is now subdivided into three parts, and we’re now living in the Meghalayan age, according to the International Commission on Stratigraphy (ICS). While there weren’t riots in the streets this time, it has proved controversial for some researchers.

The division of time into different epochs and eras is an important part of stratigraphy. While time marches on, ignorant of the names humans give to its divisions, defining periods like the Cretaceous and Jurassic helps scientists compare results from around the world, even where the fossil and sedimentary records differ. It also draws into sharp focus the globally significant differences between each period, often including the devastating mass-extinctions that mark the boundaries of a handful of these periods.

The Holocene has been for at least a century the term favoured to describe the period in which we live, with its beginning marked by the end of the last ice age. The date at which the Holocene began has been more and more closely defined by experts over time, to the now accepted value of approximately 11,650 calendar years before present. The Holocene period encompasses the emergence of human civilisation, and represents a period of relatively warmer, somewhat stable climate in comparison with the prior ice age.

After considerable debate, however, the ICS has decided that the Holocene should be further subdivided; now, the period from 11,650 and 8,200 years before present is the Greenlandian; the Northgrippian stretches from 8,200 to 4,200 years before present, and the Meghalayan defines the time between then and the present. Why did the Holocene need to be divided up as such? If it wasn’t broken, why fix it?

The International Commission on Stratigraphy (ICS) has updated the timeline for the earth’s full geologic history, dividing the Holocene into three distinct periods. What does that mean for the Anthropocene? (Credit: International Commission on Stratigraphy)

The distinctions between an ice age and a warmer period, also known as an interglacial period, are globally significant, and a good place to start when describing how Earth’s climate has changed over the past few hundred thousand years. The swings in global temperature and ice extent are large enough that we often ignore the subtler climate changes that occur within an interglacial or glacial period. However, sediment and fossil records from more recent eras are relatively well preserved (simply because those records have had less chance to be destroyed by other geological processes), and this enables us to explore more recent periods in finer detail. Looking within the Holocene, the transition between the Greenlandian and Northgrippian is marked by a dramatic cooling of the climate, while the Northgrippian – Meghalayan by an abrupt ‘mega-drought’ and cooling that affected the nascent agricultural societies developing at that time.

By dividing the Holocene into these bite-sized chunks, the ICS has drawn attention to these changes in the earth’s geological system and provided a global context to the climatic shifts of the last ten thousand years. It also helps emphasise that climate can and does change on timescales more abrupt that glacial-interglacial periods – something we need to remember when considering the likely effects of anthropogenic climate change.

So far, so scientific. So why have the changes upset some people? Well, there’s an elephant in the stratigraphic room that looms larger now that these changes have been officially ratified. If there’s anything that has marked out the Holocene as fundamentally different from other historical ages, it’s the growth of human society. In particular, we are now at a point in history where the actions of a specific species – humans – can have global effects on the stratigraphic record.

Humans have added large quantities of carbon dioxide to the atmosphere, sown radioactive isotopes across the oceans from nuclear bomb testing, and left waste deposits in environments from the top of Mt Everest to the middle of the Pacific Ocean. Many of these impacts could leave lasting traces in the sedimentary and fossil records, leading to some scientists calling for a new period of time – the Anthropocene. And this may not fit well with the ICS changes.

I spoke with Helmut Weissert, President of the EGU Stratigraphy, Sedimentology and Palaeontology Division about these changes, and he suggested that the new changes devised by the ICS might shift the debate over the Anthropocene, at least in the short term:

I am quite worried. After the introduction of the new subdivisions I cannot see how the Holocene working group soon will vote for a further subdivision of the Holocene. The Anthropocene working group is confronted with a difficult task. I can envisage that the Anthropocene will be used as an informal term, not officially defined and introduced into the Stratigraphic Chart. I use the term regularly in my writing and in talks, everybody understands the term, I can explain how man is a geological agent. So, we may have to continue using an excellent term which is not yet properly defined, but most people do not care about the definition.

The Anthropocene is certainly an effective term to draw the attention of the wider public to the impact of society on global geological cycles. But from a stratigraphic perspective, it offers a number of challenges. Where and when, for example, should the beginning of the period be set? Changes in geological periods require specific chemical changes that can be identified globally and an internationally agreed upon reference point – a physical location – that defines the base of the section. There are many potential examples that could be chosen to define the beginning of human interference in the natural system; ice cores showing the uptick in carbon dioxide at the industrial revolution, or ocean sediments attesting to nuclear bomb tests in the 1950s. But the choice of which section to pick is fraught.

Each stratigraphic division needs a reference point that defines the split between the prior time period and the one in question. Here, a ‘golden spike’ defines the base of the Ediacaran period (635 million years ago) in the Flinders Ranges of South Australia. (Credit: Bahudhara via Wikimedia Commons)

Moreover, preservation is a crucial part of stratigraphy; how much of human impact will in fact be preserved, especially after further anthropogenic changes? What if we clean up the environment? What if we dredge the ocean floor for rare metals, and, in doing so, extirpate the signal of the 1950s nuclear bomb tests? What if we melt the ice caps that record the incipient CO2 increases from the industrial revolution? Sure, these changes may be recorded elsewhere, but how can we be sure a reference stratigraphic section will remain intact?

And this brings us to a perhaps more philosophical point: what if the human impact on the natural system we see today is only a fraction of what is to come? Any Anthropocene we define now would be based only upon the impact to date, but future changes may make these seem small in comparison. What would come after the Anthropocene? The question echoes that of 20th century philosophers, asking what comes after Post-Modernism? Perhaps instead of stratigraphy, we should look to written history and recorded data to better contextualise our impact.

Whether we end up defining our current era as the Meghalayan, the Anthropocene, or something else, it seems clear that the debate has drawn increased attention to the short-term climate changes – and in particular those driven by human intervention. A better public appreciation of our role within the natural system is a vital step in limiting damaging future climate change.

by Robert Emberson

Robert Emberson is a Postdoctoral Fellow at NASA Goddard Space Flight Center, and a science writer when possible. He can be contacted either on Twitter (@RobertEmberson) or via his website (www.robertemberson.com)