GD
Geodynamics

Geodynamics

The art of the 15-minute talk

The art of the 15-minute talk

We’ve all attended conferences with those dreaded 15-minute talks and we have no problem picking out which talks were amazing and which talks were abysmal. However, when it comes to our own talks, it’s hard to judge them, find out how they can be improved or break away from long-established habits (such as our layout or talking pace). This week, Matthew Herman, postdoc at the Tectonophysics research group at Utrecht University in the Netherlands, guides you towards your best 15-minute talk yet!

At some point in your career as an Earth Scientist, you will hopefully have a chance to give a 15-minute talk at a meeting, a colloquium series, or simply in your lab group. This provides a great opportunity to advertise your hard work to your colleagues in an amount of time that is well within a human attention span. Ultimately, your goal in this talk is to effectively communicate your discovery to your audience. In the process, you get to explain the importance of your field, pose a crucial research question in that field, demonstrate cutting-edge analyses and applications, and, finally, provide an answer to that initial research question, sometimes for the very first time.

Despite all the latent potential for a 15-minute talk to captivate and teach the audience, many of these presentations end up being uninformative. I do not intend this as a judgment regarding the significance or quality of the science. I have seen incomprehensible talks from people whose research is crucial to our understanding of the Earth system. Alternatively, I have seen talks presenting incremental scientific advancements that were truly enlightening. But from all the diverse presentations I have seen, there are common elements that either dramatically improved or reduced my understanding of the subject matter. My aim here is to provide what I think are some of these key characteristics that make up a really excellent talk, so that next time you have the opportunity to present, you will inspire your audience.

I think there are two general things to keep in mind for your 15-minute talk: (a) you have limited time with your audience, and (b) the expertise of your audience can vary a lot. This means that you should design a presentation that fits your extensive understanding into a brief window and tailor the details for the particular audience that will be attending. If this makes it seem like it will take time and effort to construct an effective talk, that is because it is true! Even if you have a well-received publication, simply transferring figures, analyses, and interpretations from the paper into your talk is almost guaranteed to lead to an ineffective presentation – it will probably be too long, too technical, and too difficult to see from the back of the room. If you really want your audience to concentrate on your work for the full 15 minutes, take the time (potentially up to a few weeks) to craft a great talk. And one more thing: you really should practice your talk ahead of time. Actually, I cannot emphasize this point enough: PRACTICE.

Note: If you are short on time right now, I have included a checklist at the end to summarize the main points.

How long?

Imagine: you are in the audience and the end of the talk is not in sight. You shift in your seat uncomfortably as you glance at your watch. The speaker does not appear to notice the amount of time since they started, but you definitely do: 14:30… 15:00… 15:30. Finally, two full minutes after the end of the scheduled time slot, the speaker asks if there are any questions, but of course there is no time for that. Many otherwise good talks have been ruined for me by the presenters going into overtime. All I can now remember about them is by how much they exceeded the final bell. As a speaker, you have 15 minutes – choose a topic and present it in the allotted time frame. In fact, target your talk for 12-13 minutes so your audience can ask questions at the end.

This, and that, and these…

The detailed structure of the talk is flexible, but should probably contain the following items: background/motivation (Why should we, the audience, care?); a research question or hypothesis (What is being tested?); observations, models, and analysis (How is the research question being answered?); and interpretations and conclusions (GIVE US THE ANSWERS!).

i. Background
Try to avoid dwelling on the background for too long. I know many of us (myself included) enjoy pedantically explaining the rich history of our field leading up to the present day. But you do not have the time in a 15-minute talk. As you are constructing your presentation, you should budget no more than 2-3 minutes at the start to establish the context for your research problem. At that point, your audience should be oriented and ready to be amazed by your results.

Example of an introduction/background slide

ii. Research Question
Do not assume that your research question or hypothesis is obvious to everyone. People come to talks for a lot of different reasons; sometimes they are experts in the field, but other times they saw a keyword in your title or abstract, or maybe there were no other interesting sessions. In any case, it is likely that a good percentage of your audience does not know what specifically you are testing if you do not tell them. After setting up the background, verbally or on the screen state your research question or hypothesis.

iii. Observations, Models, and Analysis
This will be the bulk of your presentation. Tailoring your 15-minute talk for your specific audience means you will want to use just the right amount of technical terminology. You should assume some foundational level of knowledge because there is no way to define every term and present the complete theory for your research. But for the most part, I think you should try to minimize technical jargon (particularly uncommon acronyms) in talks. If and when you need to use a term repeatedly, then take 15-30 of your precious seconds to concisely explain the concept, ideally without patronizing or condescending. [Did I mention this was a difficult balance?] Incidentally, explaining a concept has the added benefit of forcing you to understand the concept sufficiently that you can distill its definition into a compact form for your listeners.

The precise minimum level of knowledge you assume for your audience depends on the setting. In the large lecture hall of an international meeting like the EGU General Assembly, the audience may be weighted towards less experience in your field, whereas a special meeting focused on your subject area will likely have a higher percentage of experts.

A related point is that you should avoid all but the most straightforward equations. The reality is that any audience member who does not already understand the equation is not going to understand it from your talk. There is not enough time, and the medium is not amenable to higher level math. Simple equations with a couple variables are okay, but anything with multiple terms, powers, derivatives, etc. are a waste of time.

iv. Interpretations and Conclusions
Honestly, most people are pretty good at this part. This is the most fun and exciting aspect of the talk, plus it means the end is near. A couple minor pieces of advice: (a) make sure you have drawn a clear path from the background through the analyses and into the interpretations, with the common thread being answering your research question; and (b) I think it is best to limit the number of conclusions to 3-4 (consider this in the preliminary design stage of the talk as well!).

Example of a results slide

Good looks matter

I try to follow the advice of the great Jim Henson when it comes to designing the look for my talks: “Simple is good.” I will not harp on making figures, because many other people have discussed how to design good ones. In a nutshell: make them big, use good color schemes and large fonts, and keep them uncluttered. Resist the urge to copy figures straight from papers to your talk. You will probably need to simplify a figure from the published version in order to make it optimal for your talk. Sometimes you just need to design and produce a totally new figure. In fact, making figures is where I spend at least 65% of my time when I am preparing a talk.

In terms of slide layout, use the whole slide. Borders, icons, and backgrounds can be pretty flourishes, but they take up valuable real estate. Every centimeter you use for a border is a centimeter you can no longer use for a making a figure nice and big. And remember there will be people, some with poor eyesight, in the back of the room. As on figures, limit the amount of text. When you do need labels or bullet points, use a classic, simple font (I will scream if I see Comic Sans one more time…) in a large size – I typically use no smaller than 24-point font Helvetica.

Closing remarks

Many of my suggestions are more like guidelines than hard rules. I enjoy seeing creative and innovative presentations. As long as you give yourself enough time to craft an excellent presentation, then take time to practice it in front of friends, it will turn out well. Hopefully we will all see a large collection of great talks in the next few meetings. See you there!


Checklist
Remember: the goal of the talk is for your audience to understand your science!

Preparation
• Take time (up to several weeks) to construct your presentation
• Practice before the date of your talk, if possible in front of a test audience

Structure
• Target talk length for 12-13 minutes (do not go over 14!)
• Limit background or introductory information to 2-3 minutes
• Explicitly state research question
• Link background, analysis, and interpretations to research question
• Limit conclusions to ≤ 4

Scientific Content
• Choose technical jargon at level appropriate for audience
• Define critical terminology in 30 seconds or less
• Limit acronyms
• Avoid complex equations
• Avoid tables

Visual Content
• Fill space on slide, especially with figures
• Make thin frames to not waste precious room
• Choose large font sizes (≥ 24 pt) in a standard font
• Adjust figures from published version
• Check figure color contrasts (avoid blue/black, yellow/white)
• Use perceptually linear color palettes (no rainbow!)
• Avoid cartoons, animations, and sounds

General Life Advice
• Use common sense (e.g., do not include pictures from the bar in your talk)

Postcard from Tokyo: JpGU2018 conference

Postcard from Tokyo: JpGU2018 conference

Konichiwa from Tokyo and JpGU2018!

This week, 20-24 May, the Japanese Geoscience Union (JpGU) is holding its annual union meeting just outside of Tokyo, in Chiba (about 40 minutes by metro). I am fortunate enough to be on a research visit to the Earth-Life Science Institute (ELSI) at Tokyo Tech over on the other side of the city and so attending JpGU was a bonus. It is my first time in attendance and I was very interested to see the program and thematics, and meet some of the wider Japanese geoscience community.

 

JpGU poster and exhibitor hall

 

Being a national body there is naturally a focus on Japanese geoscience specialties and interests. Japanese language also featured heavily – at abstract the author selects which language the presentation will be in, as sessions can be English and/or Japanese – and attendees were notified in advance based on the final program’s language code. Last year there were over 8000 participants and 5,600 presentations, and the meeting is comprised of oral plus poster, and poster-only sessions. The meeting encompasses “all the Earth and Planetary Sciences disciplines and related fields” and would include Geodynamics under the “Solid Earth” section. Within this section there were 15 sessions (all in English), including Planetary cores: Structure, formation, and evolution; Probing the Earth’s interior with geophysical observation and on seafloor; Structure and Dynamics of Earth and Planetary Mantles; and Oceanic and Continental Subduction Processes, to name a few.

As with the EGU General Assembly, it is a five-day conference but notably shifted to run from Sunday to Thursday. While it was at the cost of a Sunday sleep-in, the weekend start meant that high school students were able to attend and even present their own posters. Some of the union sessions were also open to the public free of charge (so no doubt an unexpected windfall for some of the people at what seemed to be a furniture and toy convention next door). The week also included an awards ceremony, including the JpGU Union level “Miyake Prize” which was awarded to Professor Eiji Ohtani from Tohoku University. For the early career attendees, there were 5 minute pop-up bar talks for ECRs under 35 years of age with the lure of a free t-shirt and a beverage, as well as a student lounge.

 

JpGU2018 awardees and new Fellows

 

There were quite a few outreach and skill-building sessions, including “Mental care and Communication Strategies for Researchers”, “Kitchen Earth Science: brain stimulation by hands-on experiments,” “Role of Open Data and Science in the Geosciences,” “Employment and work balance of female geoscientists in Japan”  and an exciting “Collaboration and Co-creation between Geoscience and Art.” There were also a number of exhibitors including our very own Philippe Courtial, Executive Secretary of EGU who was a panel speaker in the AGU/EGU/JpGU joint session “Ethics and the Role of Scientific Societies – Leadership Perspectives”. I also found out there is a relatively new open-access journal for JpGU called Progress in Earth and Planetary Science (PEPS) (note, 1000 EUR APC for non-JpGU members or 200 EUR for members).

 

Left: NASA hyperwall and presentation to high school students. Right: Philippe Courtial at the EGU booth

Science aside, my visit to Japan has been a multi-sensory delight and can only recommend coming back here in a scientific and/or tourist capacity! If you would like to combine your own travels with the next JpGU, the dates are:

  • May 26-30 2019, Chiba
  • May 24-28 2020, Chiba
  • May 30-June 3 2021, Yokohama

ありがとうございます!

Plenty of fabulous sights, sounds and smells!

 

 

 

 

 

EGU 2018: Experience of a first time attendee

EGU 2018: Experience of a first time attendee

Your first time at the General Assembly can be a daunting experience. It’s not easy to navigate the scientific programme and let’s not even mention navigating the building! It becomes even more difficult if you do not know many people in your scientific community yet. Luckily, one of the easiest things to do at EGU is meeting new people. Jyotirmoy Paul, PhD student at the Indian Institute of Science in Bangalore, India, shares his experience of attending the EGU GA for the first time this year.

I am a geologist, but I am (slowly) turning into a geodynamicist. My research area is numerical modelling of geodynamical problems. I simulate 3-dimensional models of the spherical earth by solving thermo-chemical convection equations. My present work aims to understand the long-term stability of cratons. The stability of cratons since the Archaean is a hot topic in the geosciences community as it can potentially throw light on some of the key features of Archaean geodynamics. Several studies have already addressed this problem. I had the great opportunity of presenting parts of my work and discussing science with the international community at a large gathering such as the EGU GA. With a lot of different opinions on craton stability, I was able to add some more confusion into the mix! It was nice that I got helpful suggestions and constructive criticism about my research, which was much needed. Apart from discussing with the established scientists, it was really great to talk to my fellow student researchers and have dinner with them. Unfortunately, I was not aware of this ECS GD community before attending EGU, so I missed some of the important courses. I hope to meet the community again during another conference, maybe at AGU 2018!

Apart from helpful scientific discussions, the whole atmosphere at EGU was new to me. This was my first large-scale international conference, so – naturally – I was overwhelmed to meet the pioneers of geosciences. I interacted with those very people whose ideas had influenced my thought processes throughout my student life. Talking and listening to them was intriguing and I developed many new ideas that I will be able to use throughout my career. Besides that – in the multi-cultural environment of the General Assembly – I was representing a minority community from the largest democracy in the world (as it is called): the community of geodynamics researchers in India! The number of geodynamics researchers in India is tiny and may not even reach two digits. The sudden change from a pond to the ocean was overwhelming, intriguing, and terrifying. Phew!

A blog post about my experience at EGU would be incomplete if I didn’t mention Vienna. The beautiful city has witnessed several turning points in world history. As an art history lover, roaming around the city was bliss. The mosaics of Stephansplatz, the medieval baroque architecture of the Habsburg dynasty and the modern city on the left bank of Danube transported me back in time through Europe’s history. Gustav Klimt, the famous Austrian painter, lived in Vienna exactly 100 years ago. His major works are showcased in the Belvedere museum. Despite the tight schedule of EGU from morning to evening, I managed to find one free slot to visit his gallery at Belvedere. I could not leave Vienna without seeing “The Kiss”!

The Kiss, Gustav Klimt
Credit: Jyotirmoy Paul

To serve Geoscientists

To serve Geoscientists

The Geodynamics 101 series serves to showcase the diversity of research topics and methods in the geodynamics community in an understandable manner. We welcome all researchers – PhD students to professors – to introduce their area of expertise in a lighthearted, entertaining manner and touch upon some of the outstanding questions and problems related to their fields. For our latest ‘Geodynamics 101’ post, Fabio Crameri, postdoctoral researcher at the Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Norway, joins us again. Continuing from his earlier post on the harmful use of the rainbow colour map, Fabio shares his thoughts on some of the expressions and phrases used in the community that propagate confusion, and how the new “Ocean-Plate Tectonics” concept offers relief for at least some on them. 

Blog author Fabio Crameri – in a shirt that translates from Tamasheq as “deserts” or “empty spaces.” You can expect no empty spaces in your lunchtime conversations after reading this post.

Do you, after reading the title, still wonder what this blog post is all about?
I’ll give you a hint, it’s about the Earth. No, wait, it’s about Earth, or perhaps earth, or isn’t it? And maybe it is a little bit about Moon, I mean the Moon. But also, it is about the Venus, I mean Venus.

It is not confusing, it is just well mixing.

You’ve got it; it is about confusion in the Geosciences. Confusion caused by symbols, letters, words and phrases through misuse, ambiguity or over-interpretation. So, after all, this is a blog post about geo-semantics rather than about culinary excursions.

The Geodynamics community is a diverse group of people with different backgrounds, native languages and customs. This is an attractive breeding ground for semantic related problems, particularly when you throw in some inherent peculiarities of the English language in which we largely operate.

Some use the symbol “a” for years, for years and years.

In line with a widely used standard definition (Holden et al., 2011) – but against the common convention of the Geosciences – the author of this blog post was using the unit of time “a”, or arguably just its symbol, for “years” (and I mean calendar years, neither financial years nor dog years), for years and years. A distinction between discrete points in time and the duration of time is at the heart of this confusion, and indeed has plagued a sub-selection of discussions, working groups and interpretations of the International System of Units (SI; e.g., Christie-Blick, 2012).

Figure 1. An ambiguously phrased situation near the recent end of the Cretaceous.

The symbol “a” for “annus” [year] (“Ma” being the symbol for 106 years, or “mega-annus”) in the Geosciences is most commonly used for a specific time or date in the past as measured from now. For example, “At 65 Ma (which is 65 Myr ago), the dinosaur looked up the sky.” (see Figure 1). On the other hand, “yr” for “year(s)” is commonly used for a duration of time, as in “The Cretaceous period ran for 79 Myr (from approximately 145-66 Ma).”. Other mutations within the convention of time in the Geosciences include “My”, “Myrs”, “Mya” or “m.y.” for “Millions of years”. Thus, the time unit and symbols for multiples of a “year” are likely amongst the most ambiguous expressions in the Earth Sciences, likely because, in contrast to the “second”, a universally applied scientific definition for the “annus” still remains elusive (Thompson and Taylor, 2008).

Such quibbling over semantics may seem petty.

Amongst other examples to cause geodynamic misunderstandings (e.g., Figure 2) might be the misuse of the phrase “stagnant slabs”? Are slabs ever really stagnant? Or are they just being deflected, slowing down, interrupting their downward motion, not directly entering the lower mantle at the same speed and trajectory as before?

Figure 2. One ambiguously phrased geodynamic explanation.

From the literature, you might be forgiven for having the false impression that slabs either fully stagnate around the upper-mantle transition zone or directly and effortlessly penetrate it; they likely do neither of the two (as explained in e.g., in an earlier Geodynamics101 post here).

When these slabs sink, and not temporally stagnate, they induce flow in the surrounding mantle. “Slab suction” is the downward suction induced by the nearby mantle that is set in motion through its dynamic coupling with the slab [e.g., Conrad and Lithgow-Bertelloni 2002]. Or isn’t it? “Slab suction” is also contrarily used as an upward directed force on the slab itself that is induced by the upper plate and might foster low-dipping shallow-depth slab portions in the uppermost upper mantle (unambiguously speaking of which: see again Figure 2).

The downward directed version of “slab suction” can induce “dynamic topography”. Estimates of the maximum amplitude of “dynamic topography” on Earth range from only a few hundred meters up to a few kilometres (see e.g., Molnar et al., 2015 and references therein). Such unusually large ranges of estimates are, as a general rule, a quite solid indicator for an underlying ambiguous definition, or in this case, rather a mix-up of multiple different definitions for the term “dynamic topography”. 

If you’re not confused, you did not pay attention.

As I keep talking about geodynamics, I hope we are all on the same page about subduction, one of the key players: Let’s assume planet XY has one single active subduction zone. Another subduction zone initiates on the opposite side of the same planet. Did “subduction” start once or twice on that planet?

It started once on that planet. Because “subduction” describes a process and not a physical feature; it is nonetheless easily mistaken for a physical feature.

And what about “plate tectonics”, the 50 yr old overarching concept that fascinates us, and for so many of us has become the foundation of our professional lives. Let’s approach this by considering the big question: When did “plate tectonics” start? Serious opinions in the plate tectonics community range from around 850 Ma (Hamilton 2011) all the way back to 4.3 Ga (Hopkins et al., 2008). – Remember what unusually large estimate ranges often indicate? – It is not surprising that the only commonly accepted specific answer everyone seems to agree on currently is that it depends on the very definition of plate tectonics.

So, what is the definition of “plate tectonics”? According to its original formulation, “plate tectonics” is the horizontal relative movement of several discrete and mostly-rigid surface-plate segments (Hess, 1962; see the corresponding visual representation in Figure 3). A generous interpretation of the original formulation might additionally define the plate-interface nature, but that is all.

Figure 3. As long as it is not overinterpreted, there is nothing wrong with the original definition of plate tectonics that solely describes the horizontal motion of several discrete surface plates: It does not discriminate the oceanic from the continental plate, does not consider the important framework of mantle convection, and does not specify the underlying key driver of the surface motion.

Considering the knowledge we have gained about the moving surface plates and their underlying causes and consequences during the past 50 yr, this is an extremely broad definition: As of today, we know that (A) the surface plates with their relative motion are an integral part of whole mantle convection (Turcotte and Oxburgh, 1972), that (B) Earth’s surface has a characteristic bimodal nature due to the partitioning into long-lived continental plates and short-lived oceanic plates (e.g., Wilson, 1966), and that (C) the latter are mainly driven by their very own subducted portions (i.e., all or parts of their slabs; Forsyth and Uyeda, 1975; Conrad and Lithgow-Bertelloni, 2002).

A clear, unambiguous and up-to-date definition for such a crucially important, wide-reaching concept is imperative. It is therefore not surprising that less ambiguous re-definitions have been suggested recently. To avoid propagating confusion, the introduction of alternative phases of plate tectonics that describe the various different possible modes of mantle convection during Earth’s evolution have been cast into the arena (e.g., Sobolev 2016). These include “plate-tectonics phase 1”, in short “PT1”, describing regional, plume-induced plate tectonics (e.g., until 3.0 Ga), “PT2” describing episodic, global plate tectonics (e.g., between 2.5-1.0 Ga), and finally “PT3” describing stable, global plate tectonics (e.g., 1.0-0.0 Ga). Other efforts result in different naming conventions, such as “modern plate tectonics”. However, apart from the fact that “modern” is a time dependent term, “modern plate tectonics” might be a somewhat unfortunate expression, as other planets like Venus might have undergone different, modern styles of plate tectonics than present-day Earth.

Stern and Gerya (2017) then actually suggests an entire update to the definition of “plate tectonics”:

“A theory of global tectonics powered by subduction in which the lithosphere is divided into a mosaic of strong lithospheric plates, which move on and sink into weaker ductile asthenosphere. Three types of localised plate boundaries form the interconnected global network: new oceanic plate material is created by seafloor spreading at mid-ocean ridges, old oceanic lithosphere sinks at subduction zones, and two plates slide past each other along transform faults. The negative buoyancy of old dense oceanic lithosphere, which sinks in subduction zones, mostly powers plate movements.”

Unfortunately, such a re-definition of the same old phrase makes it impossible to know which version of the definition (i.e., the original or the updated one) an author of a subsequent study should be applying and referring to.

In an effort to prevent all of the above problems, we recently introduced an entirely new concept; one that can coexist in harmony with the original definition; one that fully captures the dynamics of the oceanic plate according to our current knowledge. The concept is called “Ocean-Plate Tectonics” or, if you really like the term, “OPT”.

“Ocean-Plate Tectonics is a mode of mantle convection characterised by the autonomous relative movement of multiple discrete, mostly rigid, portions of oceanic plates at the surface, driven and maintained principally by subducted parts of these same plates that are sinking gravitationally back into Earth’s interior and deforming the mantle interior in the process.” – Crameri et al. (2018).

“Ocean-Plate Tectonics” captures not only the relative horizontal surface motion of plates, but crucially also accounts for (A) the importance of the whole mantle framework, (B) the bimodal nature of Earth’s surface plates, and (C) the underlying engine of the surface-plate motion (see Figure 4).

Figure 4. “Ocean-Plate Tectonics”, the unambiguous up-to-date definition describing the dynamics of the oceanic plate that crucially incorporates the bimodal nature of Earth’s surface, the convecting-mantle framework, and the key driver of surface-plate motion (after Crameri et al., 2018).

“Ocean-Plate Tectonics” is here to serve Geoscientists.

The concept of “Ocean-Plate Tectonics” is intended to bring together the extremely diverse research communities, but also the general public, to meet on common, fruitful ground in order to discuss and further develop our understanding of the fascinating dynamics involved in Earth’s plate-mantle system; the unambiguous “Ocean-Plate Tectonics” is here to serve us.

 

Christie-Blick, N., (2011), Geological Time Conventions and Symbols, GSA Today, 22(2), 28-29, doi: 10.1130/G132GW.1

Conrad, C. P., and C. Lithgow-Bertelloni (2002), How mantle slabs drive plate tectonics, Science, 298 (5591), 207–209, doi:10.1126/science.1074161.

Crameri, F., C.P. Conrad, L. Montési, and C.R. Lithgow-Bertelloni (2018), The life of an oceanic plate, Tectonophysics, (in press), doi:10.1016/j.tecto.2018.03.016 .

Forsyth, D., and S. Uyeda (1975), On the relative importance of the driving forces of plate motion*, Geophysical Journal of the Royal Astronomical Society, 43(1), 163–200, doi:10.1111/j.1365-246X.1975.tb00631.x.

Hamilton, W.B. (2011), Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated, Lithos, 123, 1–20, doi:10.1016/j.lithos.2010.12.007.

Hess, H.H. (1962), History of ocean basins, Petrologic studies, 4, 599–620.

Holden N.E., M.L. Bonardi, P. De Bièvre, P.R. Renne and I.M. Villa (2011), IUPAC-IUGS common definition and convention on the use of the year as a derived unit of time (IUPAC Recommendations 2011, Pure Appl. Chem., Vol. 83, No. 5, pp. 1159–1162, 2011. doi:10.1351/PAC-REC-09-01-22

Hopkins M., T.M. Harrison, C.E. Manning (2008), Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions, Nature, 456, 493–96, doi:10.1038/nature07465.

Molnar, P., P. C. England, and C. H. Jones (2015), Mantle dynamics, isostasy, and the support of high terrain. J. Geophys. Res. Solid Earth, 120, 1932–1957. doi: 10.1002/2014JB011724.

Sobolev, S.V. (2016), Plate Tectonics Initiation as Running Hurdles, Workshop on the Origin and Evolution of Plate Tectonics abstract, Ascona, Switzerland, http://jupiter.ethz.ch/~plates/.

Stern, R.J. and T.V. Gerya (2017), Subduction initiation in nature and models: A review, Tectonophysics, doi:10.1016/j.tecto.2017.10.014

Thompson, A., and B.N. Taylor (2008), Guide for the Use of the International System of Units (SI) NIST Special Publication 811, 2008 Edition (version 3.2). [Online] Available: http://physics.nist.gov/SP811 [2018, 05 02]. National Institute of Standards and Technology, Gaithersburg, MD.

Turcotte, D. L., and E. Oxburgh (1972), Mantle convection and the new global tectonics, Annual Review of Fluid Mechanics, 4 (1), 33–66.

Wilson, T. (1966), Did the Atlantic close and then re-open?, Nature, 211(5050), 676–681, doi:http://dx.doi.org/10.1038/211676a0