GD
Geodynamics
Iris van Zelst

Iris van Zelst

Iris van Zelst is a PhD student at ETH Zürich in Switzerland. She is working on the modelling of tsunamigenic earthquakes using a range of interdisciplinary modelling approaches, such as geodynamic, dynamic rupture, and tsunami modelling. Current research projects include splay fault propagation in subduction zones and the 2004 Sumatra-Andaman earthquake. Iris is Editor-in-chief of the GD blog team. You can reach Iris via email. For more details, please visit Iris' personal webpage.

CIDER summer school

CIDER summer school

And we’re back! After a refreshing holiday (or was it?), the EGU GD Blog Team is ready to provide you with amazing blog posts once more! Although holidays can be great, one thing that can be even more great is a good summer school. Yep, you heard that correctly! Let me convince you to apply for the CIDER Summer School program next year.

Let’s start with the basics. What the hell is CIDER? Well, CIDER stands for the Cooperative Institute for Dynamic Earth Research. One of it’s main focusses is the interdisciplinary training of early career scientists. To that end, they organise a summer school every year (usually in June/July) that lasts for 4 weeks.

4 weeks?!

Again, you heard that correctly. You are very good at listening!
The first two weeks of the summer school are dedicated to getting up to speed on the topic of the summer school by means of lectures, tutorials, a little field trip, etc. During the last two weeks you will work together in groups on a project of your choosing. The projects are determined during the first two weeks, when you figure out where the knowledge gaps are and you start making teams (no worries, nobody will be left out). You will come up with possible project topics yourself, so you can imagine that there can be quite some lobbying going on to make sure your team gets sufficient members to pursue your favourite project!

Together with your team of students and postdocs, you will confer with established experts in the field to make your project a success. After two weeks, you can probably show some reasonable first results during the final presentation in front of everyone.

If you want to continue working on your project with your team afterwards, you can even write a small proposal to CIDER to request some funding to meet up again and turn your project into a paper. Although they can’t reimburse intercontinental flights, it is still a pretty awesome opportunity!

The topic of the summer school changes every year and alternates between a ‘deep’ topic and a ‘shallow’ topic. I attended the CIDER 2017 summer school with the topic ‘Subduction zone structure and dynamics‘ – a shallow topic. This year (2018), the topic was ‘Relating Geophysical and Geochemical Heterogeneity in the Deep Earth‘ – clearly a deep topic. If you want to know more about this year’s summer school, our Blog Reporter Diogo wrote about it here. Students from all kinds of different disciplines are encouraged to apply: geology, geochemistry, seismology, geodynamics, mineral physics, etc. The more diversity the better, because you need to learn from each other!

More/actual reasons to apply

Now that we have all the details out of the way, I can properly start to convince you to apply! Did I already mention that the summer school is in an exotic place in California, USA? In 2017, the summer school was in Berkeley and this year it was in Santa Barbara. These locations are always fixed, with the ‘shallow’ topics being held in Berkeley, and the deep topics being held in Santa Barbara. Maybe this can act as your guide for finding out which kind of topic to ultimately pursue in your career.

Also, can you imagine? Four weeks, in beautiful, sunny California for ‘work’? Because, yes, it is work, technically, but it won’t feel like it. Actually, it’s kind of like being transported to one of those American high school / college movies. Does anyone else watch those? Nope, just me? Okay then. You will get the full American student experience, as you will sleep in an actual dorm with all your fellow students and go to the dining hall religiously for breakfast, lunch, and dinner each day and every day! Yes, also in the weekends, because it’s free and you’re a poor student! Minor side-effect is that you want be able to look at – let alone stomach – burgers, fries, pizzas, and hotdogs for at least a year, but it’s totally worth it for this all-American movie-like experience. Obviously, sharing a dorm with all your fellow students and complaining about the food will forge bonds that will last far longer than the duration of the summer school and you are guaranteed to have a lot of fun during the summer school also after the lectures.

Although the program is pretty packed, you will have free evenings (during which you might catch up on your actual work) and you will have some days off during the weekends. Of course, you can’t have all weekend days off, because it wouldn’t be a proper summer school experience if you don’t return completely exhausted, right? However, on your precious days off, you can go and explore beyond the campus and do some nice day trips to a nearby city or nature reserve. You can of course also use your free evenings and weekends to sample some of the night life of whatever Californian city you are staying in!

My CIDER 2017 experience

I thoroughly enjoyed my own CIDER experience in Berkeley, 2017. I learned loads of things about subduction zones and a lot of my knowledge was refreshed, specifically on geochemistry, mineral physics and geology. It was great fun to live on an American campus (I mean, I really did feel as if I’d stumbled into an American teen movie) and we did some pretty cool things besides the summer school! There was a lovely field trip to learn a bit more about rocks and it was also a great opportunity to see something of the landscape and enjoy incredible views over San Francisco. Of course, San Francisco itself was also visited during one of our days off and I finally saw the Golden Gate bridge up close and ate crab at Fisherman’s Wharf. Unforgettable experience. Best day of the summer school. I cannot recommend it enough! We also went out for dinner and drinks on occasion in the city centre of Berkeley and we even snuck in a visit to the musical ‘Monsoon Wedding’ at Berkely Rep.

After the summer school, our project group applied for funding to meet up again (I just couldn’t get enough of the American vibe) and lo and behold, we actually got the funding! So this spring, I found myself in Austin, Texas, to work on our project.

Howdy y’all!

It was pretty amazing to have an opportunity like that, and I can assure you that we also had lots of fun in Austin. I mean, it’s Texas, what did you expect? I was already over the moon by the fact that I had the possibility of spotting men wearing cowboy boots for real and not just for carnival!

All in all, I can thoroughly recommend the CIDER summer school as a great learning experience and opportunity for meeting fellow scientists interested in your topic of choice.

Next year, the topic will be ‘Volcanoes‘, so if you have any interest in that, be sure to apply! There is also always a one-day pre-AGU workshop, where you can get a little taste of the summer school, as the progress on the projects of the previous year is reported and lectures anticipating the coming topic are held.

So, are you going to apply to CIDER next year? I mean, who doesn’t lava volcanoes?!

Holiday recommendations – blog break summer 2018

Holiday recommendations – blog break summer 2018

Even dedicated workaholics such as the editors of your EGU GD Blog Team sometimes deserve a break! Let me clarify that by saying ‘an intentional break’ (because uploading every Wednesday is hard!). We will be ‘on holiday’ during August, so there won’t be any new blog posts then. But don’t worry: we will be back stronger than ever in September and we already have a lot of very good blog posts in the pipeline for you. To start the holidays properly and to get you in the holiday spirit as well, the EGU GD Blog Team shares their geodynamical holiday recommendations with you. Enjoy & relax!

Iris van Zelst – Edinburgh

Hutton’s Section with a very young me (in 2012) for scale

Go. To. Edinburgh. Seriously: Edinburgh is the place to be for anyone who has an affinity with the Earth sciences. In this beautiful, historic city, James Hutton – the founder of modern geology, who originated the idea of uniformitarianism – lived and died. Everywhere in the city you can find little reminders indicating this iconic scientist lived there. You could, for example, visit his grave, and hike to his geological section on Edinburgh’s Salisbury Crags. There are also little plaques spread around the city that mark significant James Hutton places and events. The city itself is also steeped in a mix of geology and history: Edinburgh Castle, situated on the impressive volcanic Castle Rock, boasts an 1100-year-old history and towers over the city. Directly across from the castle, connected by the charming Royal Mile is Holyrood Palace, where you can soak up even more history – Mary Queen of Scots lived here for a while. Nearby, there is Holyrood Park where you can find the group of hills that hosts Hutton’s Section and a 350 million year old volcano named Arthur’s Seat. Climb it when the weather is nice and you will have the most amazing view of Edinburgh. The whole park is perfect for day hikes and picknicks.
Even if you (or your travel buddy) are not that into Earth Sciences (or history), Edinburgh has plenty of other attractions. It is the perfect place for book and literature lovers with the large International Book Festival every August and a very rich literary history with iconic writers such as Walter Scott (Ivanhoe), Robert Louis Stevenson (Strange Case of Dr Jekyll and Mr Hyde; Treasure Island), Arthur Conan Doyle (Sherlock Holmes), and – more recently – J. K. Rowling (Harry Potter). Theatre fans will also love Edinburgh, particularly during August when it hosts the Edinburgh Festival Fringe – the largest arts festival in the world.
I totally should’ve booked a trip to Edinburgh this year… Learn from my mistakes and enjoy it in my stead!

The view of Edinburgh when you’re standing on top of Arthur’s Seat: a more than 300 million year old volcano. Pretty epic.
Picture by me in 2012 (also: proof that the weather can be good in Scotland!)

Luca Dal Zilio – Aeolian Islands

My recommendation? I vote for the Aeolian Islands! Smouldering volcanoes, bubbling mud baths and steaming fumaroles make these tiny islands north of Sicily a truly hot destination. This is the best place to practice the joys of “dolce far niente“: eat, sleep, and play. The Aeolian Arc is a volcanic structure, about 200 km long, located on the internal margin of the Calabrian-Peloritan Arc. The arc is formed by seven subaerial volcanic edifices (Alicudi, Filicudi, Salina, Lipari, Vulcano, Panarea, and Stromboli) and by several volcanic seamounts which roughly surround the Marsili Basin. The subduction-related volcanic activity showed the same eastward migration going from the Oligo-Miocene Sardinian Arc to the Pliocene Anchise-Ponza Arc and, at last, to the Pleistocene Aeolian Arc. My favourite island, Stromboli, is one of the few volcanoes on earth displaying continuous eruptive activity over a period longer than a few years or decades. I like Stromboli because it conforms perfectly to one’s childhood idea of a volcano, with its symmetrical, smoking silhouette rising from the sea. Most of this activity is of a very moderate size, consisting of brief and small bursts of glowing lava fragments to heights of rarely more than 150 m above the vents. Occasionally, there are periods of stronger, more continuous activity, with fountaining lasting several hours, violent ejection of blocks and large bombs, and, still more rarely, lava outflow. I can’t quite explain what made it so special to me. It may be because Stromboli itself is an island, and all the time during the hike I enjoyed splendid sea views (with a beer in my hand). It may be the all encompassing experience, where I could see, hear and literally feel the lava explosions. It was simply fantastic.

Credit: Flickr

Anne Glerum – Montenegro

In case you don’t make it to Montenegro/Serbia this summer, it’s fun in winter too. And yes, it’s fun in spring too – there’s snow, mountains and a younger me on a tiny sled. Photo courtesy of Cyriel de Grijs

My geo-holiday-destination: Montenegro!
A summer without beach-time is not a summer to me (already got one beach-day in this year, phew). Being Dutch, a proper holiday also requires some proper mountains – or hills at least. And no trip is complete without cultural and culinary highlights to explore.
Montenegro is a country that ticks all the boxes. Situated along the Adriatic Sea it hosts a score of picture-perfect beaches; quiet or taken over by the jet-set, intimate coves or long stretches of white sand, take your pick.
Further inland, you reach the Dinarides orogenic chain, the product of 150 My of contractional tectonics and later collapse during the Miocene. Traversing the chain into neighboring Serbia will lead you past complete ophiolite sequences, syn-orognic magma intrusions and major detachment zones of the extensional orogenic collapse.
Visit the centuries old fortified coastal cities of Budva or Kotor or one of the many churches and frescoed monasteries spread around the countryside. For more bodily sustenance, enjoy the fresh fish dishes, rich meats or the regional cheeses and yoghurts. Seasonal fruits are eaten for dessert or, even better, turned into wine and rakija. Ehm, why I am not going there again this year – this time in summer?

Not-so-sunny spring view from St. John’s fortress onto Kotor along the Bay of Kotor. Photo courtesy of Cyriel de Grijs

Diogo Lourenço – CIDER Summer School

This year, my favourite geodynamical destination is CIDER 2018! It’s far from holidays… but it’s really cool! For the last three weeks (one week to go), we have been intensely learning about heterogeneity in the Earth, and trying to understand it in an interdisciplinary perspective with contributions from geochemistry, geodynamics, and seismology. Quite an intense schedule and a lot of information to process, but I think we are all learning a lot, and hopefully in the future we will use more constraints coming from other fields into our own work. Oh, and did I mention that it is happening in Santa Barbara? Great Californian weather, beautiful coastal landscapes, barbecues by the beach, and swimming in the ocean, all sprinkled with scientific discussions! Quite the geodynamical destination, no?

Just had to cross the street from the KITP building where the conference is happening to take this photo…

Grace Shephard – Svalbard

Geoscientists are no strangers to travelling to exotic places and many of us take the opportunity to turn a work-related trip into potential holiday scouting. My suggested destination is most probably the northernmost point you can quite easily travel to on this planet – Svalbard.
Svalbard is an Arctic archipelago located around between 74-81°N latitude. It is sometimes confused with Spitsbergen, which is actually the name of the largest island where the main settlements, including Longyearbyen and Barentsburg, are situated. The islands are part of Norwegian sovereignty, though with some interesting taxation and military restrictions (the Svalbard Treaty of 1920 makes for some pretty interesting reading). Svalbard is host to a stream of tourists and scientific researchers year-round, and this week I will travel back to Longyearbyen as a lecturer for an Arctic tectonics, volcanism and geodynamics course at the University Centre in Svalbard (UNIS).
Geologically speaking, Svalbard makes for a very interesting destination. It offers a diverse range of rock ages and types; having experienced orogenic deformation events, widespread magmatism, and extensive sedimentary and glacial processes.
If you’re after a more usual tourist package amongst the draw cards are of course iconic polar bears (though please keep your distance), stumpy reindeer, arctic foxes, whales, birds and special flora. There are many glaciers – in fact around 60% of Svalbard is covered in ice – as well as fjords and mountains, former coal mining settlements… the list goes on. You are even spoilt for choice between midnight sun or midday darkness, depending on the time of year, so prioritise your activities wisely. Plus, did I mention those miles and miles of unvegetated, uninterrupted rock exposures to keep any geology enthusiast happy?… if you’re lucky you might come across some incredible fossil sites.

Itinerary recommendation, tried and tested: Whale watching and fjord cruising to a Russian mining ghost town (Pyramiden) followed by an important sampling of the world’s northernmost brewery.

The rock whisperers…

The rock whisperers…

The Geodynamics 101 series serves to showcase the diversity of research topics and methods in the geodynamics community in an understandable manner. We welcome all researchers – PhD students to professors – to introduce their area of expertise in a lighthearted, entertaining manner and touch upon some of the outstanding questions and problems related to their fields. This month, Manar Alsaif, PhD student at Université Montpellier, discusses actual rocks and field work!

In a discipline increasingly shaped by models, what can the rocks still tell us?

Flicking through your typical geodynamics bodies of work, most of the papers are on some kind of modelling – be it analogue, numerical, or something using seismic data. This is hardly surprising considering that geodynamics is all about the depths of the Earth, where we cannot make direct observations. But at some point, we need to check the results of these models, and checking them means looking for the observables. This is ok for the global scale – we can measure gravity and magnetism and the like, but what about smaller scales? And more detail? And the kind of complexity we cannot yet model? Our observations are restricted to the Earth’s surface – but this is actually not a bad place start. There is still a lot that we can learn from good old fashioned field work. And in fact, a lot of the motivation for models comes from an observation of something not understood, or not previously thought of.
So if you need a little inspiration for your next research project, I implore you to literally take a hike!

Apart from a source of inspiration, where does field work fit into a geodynamics workflow? I’d say it fits on top (no pun intended), since all geodynamic processes have a surface expression (at least to some degree).
Take plate motion, for example. Whether a plate moves laterally or vertically, that motion is recorded in the rocks. Palaeomagnetism will trace lateral motion, while thermochronometry will give you a vertical history of the rocks. More often than not, it will reveal a complex history of the rocks and the plate in which they lie. This complexity includes a myriad of processes e.g. fluid action, metamorphism, deformation, diagnesis, etc. These are all processes that are still not fully understood but which we can address by picking up a rock and looking at its mineralogy, its texture, its veins, its contact with its surrounding rocks, its P-T history, its fractures, their strain patterns, etc.

This is by no means an exhaustive article on field methods, I merely mention some examples of how field methods can be useful. So if field geology can be so useful, why are there fewer and fewer scientists doing it? Well, there’s the popular misconception that field geology is only geological mapping, and that the world’s geological surveys have more or less taken care of that already. In reality, some geological surveys have done a marvellous job at mapping out the rock units, but half of a geological map is actually interpretation. This interpretation will constantly change with new understanding of processes and with new data, especially where rock exposures are few and/or flighty.

Apart from the misconception that all field geology has ‘been done’, there are some practical reasons why geodynamicists veer away from field studies. Firstly, there is a mismatch of scales. Generally, the smallest scale a geodynamicist will deal with is a plate – that is already a scale which is too large for field work in practice. But as we argued above, field studies can tell you so much, so what do you do? Go strategic! Pick a few practical locations on your plate, where you might find the products of the processes you’re looking at. For example, if you are looking at obduction, go look around the high pressure rocks, which have probably already been mapped – thank you, local geo survey. If you’re looking at active faulting, use topography and satellite data to help guide you, and then a little thermochronometry can go a long way. If you’re looking at processes behind magmatism, look around your magmatic rocks, and then let the powers of geochemistry come to your aid. There are so many other examples that field geologists do and new tricks that we could start to do with a little creative thinking.

Drone field geology, bridging geo-scales. Tectonic study of Northern Scandinavia by CEED U. Oslo researchers Hans Jørgen Kjøll and Torgeir Andersen. Picture provided by Hans Jørgen Kjøll.

This is all made much easier by using satellite data as a first line of attack. Never before have we had such fine satellite data to simply strategising as we do now.
So maybe it’s also time to move on from old fashioned geological mapping – especially where pretty good maps already exist- and move on to more comprehensive, strategic field campaigns. And remember, technology can be our friend, we need not shy away from it. The photo here is not merely a gorgeous landscape, it is a drone picture by Hans Jørgen Kjøll and Torgeir Andersen of CEED, U. Oslo (seen as the people-looking lines in the middle of the photo). They are seen here flying a drone to get high resolution field data in rugged, inaccessible northern Scandinavia, while simultaneously bridging the scale of typical field work to large scale tectonics.
Similar advantages can be had by using LIDAR, various GPS methods, shallow logging techniques, etc. Perhaps it’s time to stop thinking of geologists as the hammer-hand lens people, and of geophysicists as the gadget people, and of geodynamicists as the code people. Perhaps it’s time to blur the lines, work together and learn from each other.

All of this might eventually give us more real data to plug into our models, perhaps refine some of the parameterisation, or at the very least, give us something against which to compare our model predictions.

After all, George Michael said it best: “Let’s go outside”!

50 years of plate tectonics: then, now, and beyond

50 years of plate tectonics: then, now, and beyond

Even if we cannot attend all conferences ourselves, your EGU GD Blog Team has reporters that make sure all significant geodynamics events are covered. Today, Marie Bocher, postdoc at the Seismology and Wave Physics group of ETH Zürich, touches upon a recent symposium in Paris that covered one of the most important milestones of geodynamics.

On the 25th and 26th of June, the Parisian Collège de France was celebrating the anniversary of the plate tectonics revolution with a symposium entitled 50 years of plate tectonics: then, now and beyond. For this occasion, the organizers Eric Calais, Anny Cazenave, Claude Jaupart, Serge Lallemand, and Barbara Romanowicz had put together a very impressive list of presenters, starting with Xavier Le Pichon, Jason Morgan, and Dan McKenzie during the first morning!

The very impressive program of the 50 years plate tectonics symposium

Needless to say, it was a blast, and a great occasion to focus on the big picture and reflect on the evolution of Earth sciences within the last 50 years.

Watch it online!

But don’t panic if you missed it: all the presentations are available online now on the Collège de France website. So relax, brew yourself a cup of coffee, and enjoy the symposium from the comfort of your own home 🙂

Xavier Le Pichon
Image courtesy of Martina Ulvrova

Important panel
Image courtesy of Martina Ulvrova

Dietmar Müller
Image courtesy of Marie Bocher