GD
Geodynamics

EGU ECS

Is the scientific community ready for open access publishing?

Is the scientific community ready for open access publishing?

How much we pay, as both scientists and the public, for publishing and accessing papers is a hot topic right across the academic community – and rightly so. Publishing houses, and their fees, are big, big business. To which journal we should submit our work is a regular decision we face. But what are the Green, Golden or Hybrid roads? How do pre- and post-prints fit into the journey? In this week’s GD blog post, Martina Ulvrova (Marie Skłodowska Curie Research Fellow, ETH Zürich) shares some of the background, considerations, and discussions surrounding some of the topics surrounding publishing open access. Which road will you take? 

Imagine that you just uncovered some exciting results and you want to publish them. But where? Which journal should you consider? What are the best peer-reviewed options right now to not only disseminate scientific research to your peers but also disseminate science to a larger audience? How much are you, as a publishing scientist, willing to pay for this, and how much should the community in turn be expected to pay to read your results?

First, let’s take a look at how publishing traditionally works. The standard publishing model could be considered a genius business model. Why ‘genius’? Well, scientists send papers to journals without being rewarded. Forget about any honorarium for your new discovery. In addition, most journals in the arena charge you a publication fee once your paper is accepted. From the other side, members of the scientific community have reviewed the submitted publications and assessed the novelty of the research. This is also being done without any honorarium.

The remaining piece for the publishing houses is to decide to whom should they sell the publications to? Here again, the scientific community enters a game that is controlled by the publishers. In today’s scientific and publishing climate, an individual scientist’s career heavily depends on the number of publications that they produce. And in turn, to undertake and publish a study, you need to have access to existing publications across numerous journals. Scientists are a perfect market to sell the publications, that were produced more-or-less for free and on a voluntary basis, to. Universities and research institutions pay subscriptions to journals. And the subscription fees are anything but low. One of the biggest publishing groups, Elsevier, reported a profit over 1 billion euros in 2017, and thus paying millions of euros in dividends to its shareholders. Something seems wrong here, doesn’t it? Indeed, the scientific community at-large is starting to wake up and demand changes. The big question is how to change the existing embedded system and from where should this change come? In addition to these questions, a critical unknown here is: are we, as a scientific community, ready for that change? 

One of the problematic sides of the whole publishing wheel is that universities pay loads of money to access published papers. This has been controversial for a long time. Indeed, it does not seem right that researchers (and the public) have to buy what they contributed to produce, and furthermore, researcher salaries often come from public money. Instead, research that is a product of public money should be open to everyone since we all pay taxes. Based on similar arguments, huge funding agencies including the European Commission and the European Research Council (ERC) launched Plan S in 2018. Plan S is an initiative with the aim to make publications open access. This means that all publications that are the fruit of public resources should be accessible to anyone without a paywall. This free and open access path will be obligatory for EU funded projects starting as early as 2021. That sounds like a great step that is already happening – but what does it mean exactly to publish open access (OA)? And how can you publish OA?  

There are two main roads that researchers can take that lead them to an OA publication. First one is a so-called Golden Road. On this path, the researchers submit their paper to an Open Access Journal. The paper goes through peer review and once it is accepted, all rights stay with the authors (or their institution). Often, there are Article Processing Charges (APC) on the golden road. A published paper is accessible to everyone immediately, under the CC-license and reuse is possible. For the geodynamics community, an interesting OA journal is Solid Earth that was established in 2010 by the European Geosciences Union and is published by Copernicus Publications. Slowly but surely it is gaining popularity, and this in turn indicates that the scientific community needs and is willing to turn to OA. APC for Solid Earth are around 80 EUR per journal page. Nature Publishing Group started their OA journal, Nature Communications, in 2010 with APC €4,290 per manuscript. Similarly, the AAAS that is behind Science, launched OA journal Science Advances. In this case, be prepared to pay APC of USD 4500, excluding taxes.  

Another path that a scientist can take is called a Green Road. In this case, a manuscript is submitted to a subscription-based journal. It goes through peer review and once it is accepted, all rights are transferred to the publisher. (Side-note: there still might be publication fees, but they are usually much lower than APC OA publishing).  Publication is then accessible to the audience via a paywall. This is problematic especially for small institutions that can only afford to pay subscriptions to a limited number of journals. It is also problematic for universities from developing countries that in general operate with lower budget. However, some publishers, including Elsevier, allow self-archiving post-print. By self-archiving I mean that you publish a post-print on your webpage or blog. Some journals also allow the publication of the post-print in a public repository. By post-print I mean the version of the manuscript that went all the way through the peer review (and it equally includes changes suggested by reviewers), but without any copy-editing or formatting by the journal. This is the Green Road. In addition, some subscription-based journals including, for example, Earth and Planetary Science Letters (EPSL) by Elsevier offer a paid open access option. These are so-called hybrid journals. At EPSL, authors can choose to publish OA for USD 3200, excluding taxes.      

Whatever the road you choose that leads you to a polished peer-reviewed publication, you can always put online pre-print of your manuscript, i.e. a version of your paper that precedes any peer reviewing and typesetting. The best way is to use one of the existing repositories that are out there. Since 1991, ArXiv has existed for the STEM community, and boasts a submission rate that reached more than (an incredible!) 10,000 papers per month. For the geoscience community, we have EarthArXiv devoted to collecting and hosting papers with Earth and planetary related topics. It just celebrated its second birthday in October of this year. It assures rapid communication of your findings and accelerates the research process. And it accepts both pre-and post-prints.  

Why should you care about OA? As I said above, one of the most important aspects of OA publishing is that it is free of charge for readers. This means that you can attract a larger audience; not only is your science read by more people, it may also potentially receive more citations. This increases both your professional and institution’s visibility, and leads to lots of flow-on effects. This is especially important when you are an early career researcher; you want your research to be read and shared as quickly, easily, and as widely as possible. It is also very convenient to be accessing published manuscripts and data without any paywall. A big motivation to publish OA might also be that you do not agree with the current business model of big publishing houses and want to make an affirmative action of change. If you believe that the strategy of publishing houses is outdated and that libraries pay too much, you might want to consider an OA road. 

Reasons for not publishing OA? From the Author Insights Survey in 2015, run by Nature Publishing Group

Of course there are still some cons of OA publishing including that the costs for the authors can be exorbitant, up to more than 4000 EUR. Unfortunately, here again, most disadvantaged institutions are small universities and universities located in countries with lower money at hand. 

Another big issue is how to guarantee the quality of OA publications? Indeed, as shown in a survey of the Nature Publishing Group from 2015 on the attitude of researchers towards OA publishing, a journal’s reputation (specifically its impact factor) is one of the most important factors that influences the choice of where to submit. The most common reason for not publishing in OA journals is that researchers are concerned about perceptions of the quality of the OA publications. However, this is improving and many OA journals are starting to gain a good reputation. This is something that we, as a community, can largely influence. If we send high quality papers to OA journals and cite OA publications, the OA journals will become higher rated and more attractive. Moreover, the publishing houses of the most prestigious journals have finally started to adapt and created the OA journals, e.g. Nature Communications or Science Advances.  

OA publishing has been debated for more than a decade, so where do we stand at the moment? According to the data published by the European Commission, the percentage of OA publications increased from 31% in 2009 to only 36.2% in 2018 (side note: in Earth and related environmental sciences, around 34% of publications were published OA for this period). The United Kingdom, Switzerland and Croatia belong to the countries with the highest proportion of OA publications (slightly higher than 50%). In the meantime, 33% of funding agencies worldwide do not have OA policy, 35% of them encourage OA publishing, while 31% requires OA. These numbers indicate that the system is changing, but it is changing (too) slowly. Current publishing and reading practices are deeply rooted and more action is needed.     

The motivation to change the publishing system and make OA common practice should come from the top, i.e. directed by the funder policy, but also (and more importantly) from the bottom, i.e. from the scientific community. Although the system is complex, the urge to replace the outdated system is present. European agencies have launched a pioneering initiative Plan S to publish OA manuscripts as soon as by 2021 (in Switzerland all scholarly publications funded by public money should be OA by 2024). Although no one knows how we will get there, and which rules should we set, it is worth following the OA road. Let’s explore what works best for the scientific community, that will ultimately result in a sustainable, flourishing, and fair publishing environment. Before that, there is always SciHub to get around the existing paywall if needed. Obviously, a legal road is the preferred one and hopefully it is only a matter of time when we will get on that road. And the sooner the better.    

This is a huge topic of discussion and comments are welcome below. Further thoughts on Plan S in more details, how it evolves, how it is perceived by the community? Parasite journals? How to assess scientific quality based on something else than the number of publications (e.g. Dora)? Or get in touch if you would like to write an entry for us on the GD Blog! 

 

Writing your own press release

Writing your own press release

Do you have an upcoming publication and would like to extend its reach through a press release? Maybe your university doesn’t have a media office able to help, you are short on time, and/or don’t know where to start. Don’t fret, this week Grace Shephard (Researcher at CEED, University of Oslo) shares some tips for writing your own press release and includes a handy template for download. She also spoke to experts from the EGU and AGU press offices on writing a pitch to the media.

A press release is a really easy way to maximise the reach and impact of your latest paper. However, you might think that press releases are only reserved for papers in “high impact” journals or are written by magical gnomes that live in everyone else’s science garden but your own. But I think every research output deserves to be, and can be, shared in a concise, digestible, and fun way. Plus, without an enthusiastic journal handling editor or university media office on hand, it is often up to you – the author or co-author – to write it. Need a few more reasons? Well, the taxpayer likely pays for some of your funding, and science should be accessible for everyone. You’ve spent a long (*cough* sometimes very long) time and expended a lot of effort preparing and publishing that manuscript so spending a little extra effort with outreach won’t hurt. And even if your paper is behind a paywall this is a great way to share the main results and context in a format that isn’t the scientific abstract.

And finally, your own friends and family are much more likely to click on it than that boring looking DOI hyperlink that may have crawled its way onto your social media page. And who knows, they may actually ask you about your research sometime…

This gnome is too busy working on someone else’s press release. Credit: Craig McLauchlan (Unsplash)

What should a press release include?

You’ve all read press releases or science news write-ups before (examples included at bottom) but here are some tips for writing your own. The template is located just below:

    • Catchy headline – We’re not in the business of click-bait, unless it is nerdy scientific click-bait! Think informative but catchy and concise.
    • Cover image – Possibly more important than the headline. Find a fun photo or schematic image that is enticing. You could adapt one from your paper (but please not that snore-fest of an xy plot – keep that in the paper), or why not check out the EGU Imaggeo photos, or other online photo repositories for inspiration? Remember copyright/attribution.
    • Ingress – Ok, so they’ve clicked on your link and then will next read the first ~3-4 sentences. The ingress should summarize the main finding(s), the journal it was published in, and key author info. You can think of this like a tasty hint for the main body of the press release.
    • Jargon – Keep the tricky lingo on the down-low. Remember, you are writing for a diverse audience and should avoid jargon – or when it is unavoidable, define it! This is relevant for both the ingress and the main text. For tips on avoiding jargon see here. Being able to identify jargon is also applicable when writing those Plain Language Summaries that are increasingly featuring alongside published articles. The EGU Communications Officer Olivia Trani also provides some wise advice “When writing blog posts for the general public, science writer Julie Ann Miller says it best: ‘Don’t underestimate your readers’ intelligence, but don’t overestimate their knowledge of a particular field.’ As you discuss certain regions, processes, ideas, and theories, make sure you clearly show why they are important and what implications are present”.
    • Main text – Keep it short-ish – it is much more likely to be read in its entirety at 3-4 short paragraphs, or somewhere between 500-800 words. Writing in the third person and an active voice is probably the easiest and feels less like one is ‘tooting one’s own horn’. Mention the key results, some background and context, how the results were obtained (e.g. methods – keep it in logical order). Finally, the press release could mention what is novel about this work and maybe even what the study doesn’t address and any avenues for future research. Include subheadings to break it up or frame it around questions. Nanci Bompey, Assistant Director for Public Information at AGU suggests: “For scientific studies, the news should tell the reader what the researchers found – their main discovery or conclusions. Don’t let the study itself be the news; the study’s results are the news.
    • Think “big picture” – Remember to place your results in the broader context – why should the reader care? Hot topics like earthquakes, volcanoes, climate, sea-level, or Mars, may seem to quickly attract the readers so your challenge is to be creative and find nerdy analogies and indirect consequences no matter what your topic!
    • Images and video – Include 2-3 images to explain processes and highlight the results. A video or animation will collect bonus points too (check out this amazing video about the Iceland Hotspot). Include a caption and remember attribution. Another tip is if you’re creating original image content, consider adding a little watermark or signature in the image. Also consider putting yourself in the picture too – readers often relate more if they see the human face(s) behind the research (see also ‘Scientists who Selfie Break Down Stereotypes’).
    • Proof read – Ask a colleague or friend, either within or outside of the geosciences, to proof read.
    • Contact author – Include again the reference and link to the article, and who to contact for more info.
*Download the press release template and check-list here as a PDF *
When should it appear online?
    • As soon as possible – It’s up to you, of course, but ideally as close to the online publication date of the article as possible. You might like to wait until the nice proof versions are online, however, that can take weeks to months and you may run out of steam by then. 
Where to post the press release?
  • University webpage – If you have a media/communications office at your institute or university do get in touch with them to ask about options. Your post will likely appear on a university webpage and they will likely have an account that will re-share the press release on the likes of Phys.org and other news websites.
  • Personal website – In the event that a university-hosted platform doesn’t exist you could upload the release to your own personal page or blog. You’ll probably like to re-post it there anyway.

A short clip from – Film about the Creation of Iceland – by Alisha Steinberger and associated with press release for Steinberger et al. (2018; Nat.Geosci).

Maybe you want pitch your press release (or a shorter/alternative version of it) at an even bigger platform – here are some more possibilities.

  • EGU blogs – There are more options here than you can poke a stick at. Along with the other EGU Division Blogs we here on the GD blog welcome content related to your latest paper – just look up an editor’s contact details! You can also approach the EGU Communications and Media team directly:
      • You can send in a pitch for the EGU GeoLog which can include reports from Earth science events, conferences and fieldwork, comments on the latest geoscientific developments and posts on recently published findings in peer-reviewed journals.  For example, I tried my hand at GeoLog with ‘Mapping Ancient Oceans’ and received some really useful feedback from the EGU team!
      • If you are publishing research in one of the EGU journals that you believe to be newsworthy, you can pitch your paper to media@egu.eu . They regularly issue press releases on science published in EGU journals – as EGU’s Media and Communications Manager Bárbara Ferreira notes, “however, that we would prefer to hear about it even before the paper has been accepted: preparing a press release can take some time so it’s useful to know well in advance what papers we should be looking at. Naturally, any press release would be conditional on paper acceptance and would only be published when the final, peer-reviewed paper is published in the journal.”
  • AGU’s Eos Eos is another ‘Earth and Space Science News’ platform to send your pitch for an article.
    Heather Goss, Editor-in-Chief of Eos, suggests that when writing a pitch to the media you “keep your pitch between 200 and 500 words. (You can link to your research, or include more detail at the end of the message.) Begin with a sentence or two that highlights the article’s focus: Do you have an exciting finding? Is it a new method? Did it raise an interesting new question? Explain both the focus and what it is right up front. Then break down your research into 2-3 key points that you want to get across to the journalist. This might be your research method, a challenge that you had to overcome for the result, or it might simply be breaking down your research finding into a few digestible pieces. If there is a fun detail that adds colour, here is the place to add it. Finally, explain in a sentence or two why the publication’s audience should care. It helps the journalist put your work in context, and shows that you understand the outlet you’re pitching to—this is a crucial step if you’re actually writing the piece that would be published, as with Eos.”
  • Other Science news outlets – you could approach freelance journalist, local radio or news station, or those behind the popular sites like ScienceAlert, The Conversation (more in-depth), IFLS, National Geographic, Science Magazine etc. However, they receive a lot of mail and only follow up on selected pitches so just see what happens! 
Some additional tips before we part:
  • You can also use a little glossary or side bar to explain unavoidable technical terms (for example, “subduction” and “plate tectonics”, are terms I find hard to avoid).
  • Writing in English would reach a wide audience but consider including a shorter summary or translation to other languages.
  • Add hyperlinks and references for more info.
  • Include some direct quotes – if you write in third person then it makes it a little less awkward to quote yourself. You could also add a quote from a co-author or someone not-related to the study.
  • Need more inspiration? – head over to your favourite science news website, EGU GeoLog, or check out EGU/AGU’s social media accounts and take a look on how others write-up science news and press releases.

A couple more examples of press releases or similar-style science news articles:

I hope you find some of the tips above of use, and good luck with writing!

 

Thanks very much to Olivia Trani and Bárbara Ferreira (EGU), and Heather Goss and Nanci Bompey (AGU) again for their press release, pitch and outreach tips!

 

 

The past is the key

The past is the key

Lorenzo Colli

“The present is the key to the past” is a oft-used phrase in the context of understanding our planet’s complex evolution. But this perspective can also be flipped, reflected, and reframed. In this Geodynamics 101 post, Lorenzo Colli, Research Assistant Professor at the University of Houston, USA, showcases some of the recent advances in modelling mantle convection.  

 

Mantle convection is the fundamental process that drives a large part of the geologic activity at the Earth’s surface. Indeed, mantle convection can be framed as a dynamical theory that complements and expands the kinematic theory of plate tectonics: on the one hand it aims to describe and quantify the forces that cause tectonic processes; on the other, it provides an explanation for features – such as hotspot volcanism, chains of seamounts, large igneous provinces and anomalous non-isostatic topography – that aren’t accounted for by plate tectonics.

Mantle convection is both very simple and very complicated. In its essence, it is simply thermal convection: hot (and lighter) material goes up, cold (and denser) material goes down. We can describe thermal convection using classical equations of fluid dynamics, which are based on well-founded physical principles: the continuity equation enforces conservation of mass; the Navier-Stokes equation deals with conservation of momentum; and the heat equation embodies conservation of energy. Moreover, given the extremely large viscosity of the Earth’s mantle and the low rates of deformation, inertia and turbulence are utterly negligible and the Navier-Stokes equation can be simplified accordingly. One incredible consequence is that the flow field only depends on an instantaneous force balance, not on its past states, and it is thus time reversible. And when I say incredible, I really mean it: it looks like a magic trick. Check it out yourself.

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk

This is as simple as it gets, in the sense that from here onward every additional aspect of mantle convection results in a more complex system: 3D variations in rheology and composition; phase transitions, melting and, more generally, the thermodynamics of mantle minerals; the feedbacks between deep Earth dynamics and surface processes. Each of these additional aspects results in a system that is harder and costlier to solve numerically, so much so that numerical models need to compromise, including some but excluding others, or giving up dimensionality, domain size or the ability to advance in time. More importantly, most of these aspects are so-called subgrid-scale processes: they deal with the macroscopic effect of some microscopic process that cannot be modelled at the same scale as the macroscopic flow and is too costly to model at the appropriate scale. Consequently, it needs to be parametrized. To make matters worse, some of these microscopic processes are not understood sufficiently well to begin with: the parametrizations are not formally derived from first-principle physics but are long-range extrapolations of semi-empirical laws. The end result is that it is possible to generate more complex – thus, in this regard, more Earth-like – models of mantle convection at the cost of an increase in tunable parameters. But what parameters give a truly better model? How can we test it?

Figure 1: The mantle convection model on the left runs in ten minutes on your laptop. It is not the Earth. The one on the right takes two days on a supercomputer. It is fancier, but it is still not the real Earth.

Meteorologists face similar issues with their models of atmospheric circulation. For example, processes related to turbulence, clouds and rainfall need to be parametrized. Early weather forecast models were… less than ideal. But meteorologists can compare every day their model predictions with what actually occurs, thus objectively and quantitatively assessing what works and what doesn’t. As a result, during the last 40 years weather predictions have improved steadily (Bauer et al., 2015). Current models are better at using available information (what is technically called data assimilation; more on this later) and have parametrizations that better represent the physics of the underlying processes.

If time travel is possible, where are the geophysicists from the future?

We could do the same, in theory. We can initialize a mantle convection model with some best estimate for the present-day state of the Earth’s mantle and let it run forward into the future, with the explicit aim of forecasting its future evolution. But mantle convection evolves over millions of years instead of days, thus making future predictions impractical. Another option would be to initialize a mantle convection model in the distant past and run it forward, thus making predictions-in-the-past. But in this case we really don’t know the state of the mantle in the past. And as mantle convection is a chaotic process, even a small error in the initial condition quickly grows into a completely different model trajectory (Bello et al., 2014). One can mitigate this chaotic divergence by using data assimilation and imposing surface velocities as reconstructed by a kinematic model of past plate motions (Bunge et al., 1998), which indeed tends to bring the modelled evolution closer to the true one (Colli et al., 2015). But it would take hundreds of millions of years of error-free plate motions to eliminate the influence of the unknown initial condition.

As I mentioned before, the flow field is time reversible, so one can try to start from the present-day state and integrate the governing equations backward in time. But while the flow field is time reversible, the temperature field is not. Heat diffusion is physically irreversible and mathematically unstable when solved back in time. Plainly said, the temperature field blows up. Heat diffusion needs to be turned off [1], thus keeping only heat advection. This approach, aptly called backward advection (Steinberger and O’Connell, 1997), is limited to only a few tens of millions of years in the past (Conrad and Gurnis, 2003; Moucha and Forte, 2011): the errors induced by neglecting heat diffusion add up and the recovered “initial condition”, when integrated forward in time (or should I say, back to the future), doesn’t land back at the desired present-day state, following instead a divergent trajectory.

Per aspera ad astra

As all the simple approaches turn out to be either unfeasible or unsatisfactory, we need to turn our attention to more sophisticated ones. One option is to be more clever about data assimilation, for example using a Kalman filter (Bocher et al., 2016; 2018). This methodology allow for the combining of the physics of the system, as embodied by the numerical model, with observational data, while at the same time taking into account their relative uncertainties. A different approach is given by posing a formal inverse problem aimed at finding the “optimal” initial condition that evolves into the known (best-estimate) present-day state of the mantle. This inverse problem can be solved using the adjoint method (Bunge et al., 2003; Liu and Gurnis, 2008), a rather elegant mathematical technique that exploits the physics of the system to compute the sensitivity of the final condition to variations in the initial condition. Both methodologies are computationally very expensive. Like, many millions of CPU-hours expensive. But they allow for explicit predictions of the past history of mantle flow (Spasojevic & Gurnis, 2012; Colli et al., 2018), which can then be compared with evidence of past flow states as preserved by the geologic record, for example in the form of regional- and continental-scale unconformities (Friedrich et al., 2018) and planation surfaces (Guillocheau et al., 2018). The past history of the Earth thus holds the key to significantly advance our understanding of mantle dynamics by allowing us to test and improve our models of mantle convection.

Figure 2: A schematic illustration of a reconstruction of past mantle flow obtained via the adjoint method. Symbols represent model states at discrete times. They are connected by lines representing model evolution over time. The procedure starts from a first guess of the state of the mantle in the distant past (orange circle). When evolved in time (red triangles) it will not reproduce the present-day state of the real Earth (purple cross). The adjoint method tells you in which direction the initial condition needs to be shifted in order to move the modeled present-day state closer to the real Earth. By iteratively correcting the first guess an optimized evolution (green stars) can be obtained, which matches the present-day state of the Earth.

1.Or even to be reversed in sign, to make the time-reversed heat equation unconditionally stable.

Introducing the blog team!

Introducing the blog team!

It’s time for another proper introduction of the blog team! As you will probably know, things have been a bit silent on the blog front lately. This is because all the blog editors were very busy and also: it’s hard to upload 52 times a year. You come up with some great blog ideas! (if you do: e-mail us, please!). Luckily, we used the EGU General Assembly to find some fresh blood for the blog team. Together with the seasoned blog team members and a new blog strategy, we are buzzing to give you regular content once again. Expect the usual blog posts on Wednesday at 9:00 am and in the future, maybe expect a little extra on Fridays… But who are these great people providing you with your weekly dose of geodynamics news?

The Blog Team

Iris van Zelst
I am a PhD student in the Seismology and Wave Physics group at ETH Zürich, Switzerland. I am right at the seismology border of geodynamic research, as I am combining geodynamic modelling with dynamic rupture modelling to look at earthquakes in subduction zones on the entire timescale relevant to the process. I also occasionally look at some data, because you should always keep it real. I am in the final year of my PhD (oh help!), so my aim as Editor-in-Chief is to make sure everyone else is organised and uploading regularly, while I will be mostly pulling the strings behind the scenes and writing an occasional blog post. Such as this one! In my spare time, I love to read lots of books in all kinds of genres, go to the theatre, and play a little bit of theatre myself. I recently enrolled in an improv class and it is so much fun! All the world’s a stage. You can reach my via e-mail.

Luca Dal Zilio
I am a postdoctoral researcher in Mechanical Engineering and Geophysics at the California Institute of Technology (Caltech). My research is primarily aimed at understanding the relationship between crustal deformation and earthquakes in mountain belts, such as the Alps and Himalaya. By combining theoretical, computational, and observational approaches, I attempt to understand the interplay between geodynamic space–time scales of millions of years of slow and broadly distributed regional deformation with seismic space–time scales of rapid and localised earthquake processes. My passion lies in democratising science communication via innovative and accessible tools in order to spread scientific research and discovery. And yes, I like coffee. Espresso. You can reach me via e-mail.

Anne Glerum
I am a postdoctoral researcher at GFZ Potsdam, Germany. With numerical models, I investigate the link between local stress and strain observations and far-field forcing in the East African Rift System. Other modelling interests include magma-tectonic feedback and surface evolution during continental extension. Outside of research, I love to go on walks with my dog, to explore my new home Berlin and to read books on all possible topics. I’m excited to show you the variety of geodynamics and its overlap with other disciplines as an editor of the GD blog team. You can reach me via e-mail.

Anna Gülcher
I am a PhD student at the Geophysical Fluid Dynamics group at ETH Zürich, Switzerland. With the use of numerical modelling, I study the interior dynamics of the Earth and other planets. For my research, I am trying the put geophysical, geological, and geochemical observations in a geodynamically coherent framework (with an emphasis on trying). I found a passion for windsurfing early on while still living in my flat home country (the Netherlands). Yet, since moving to mountainous Switzerland, I have traded in my windsurfing equipment for hiking boots or snowboarding gear and try to spend my free time in the Alps to seek some adrenaline. I’ve very recently started to learn how to play the guitar, and am very proud to say that I can now play my very first complete song. I am excited to be part of the GD team as an Editor! You can reach me via e-mail.

Diogo Lourenço
I am a postdoctoral researcher at the Department of Earth and Planetary Sciences at the University of California Davis, USA. My research aims at understanding the evolution and interior dynamics of the Earth and other rocky planets, primarily through the use of numerical models. When I am not working on theoretical geodynamics, I like to keep things theoretical. I like reading and playing music. Sometimes I also exercise by walking around museums and looking at things. With my work as an editor in this blog, I hope to bring geodynamics to the reader in a friendly and exciting way. I also hope to help building a more involved and integrative geodynamics community. You can reach me via e-mail.

Tobias Meier
I am currently a PhD student at the Center for Space and Habitability (CSH) at the University of Bern. My research focuses on understanding the interior dynamics of rocky exoplanets, particularly planets that are partly molten. At the CSH, Earth and planetary scientists and astrophysicists work side-by-side to understand the formation and evolution of solar system bodies and exoplanets. As an editor of the GD blog I will nurture the link between geodynamics and terrestrial planet evolution and foster interactions between related disciplines.
As an undergraduate I worked in the field of cosmology, so it was necessary for me to downsize from thinking about the vast scales of the universe to zooming in on individual planets when I transitioned to my PhD work. At the time of writing, there has not been a confirmation of an inhabited exoplanet where we could possibly travel to. So, on our own wonderful planet, I enjoy hiking in the beautiful Swiss mountains and I also (almost) never say no to a game of table tennis. You can reach me (also for table tennis!) via e-mail.

Antoine Rozel
I am a senior researcher in ETH Zürich. After studying physics (nobody is perfect), I have been working on numerical simulations of mantle convection involving absurd rheologies for quite a while now, I am getting old. I am also interested in crust and craton production in all solar system planets. To make life even more beautiful, I have also finished the conservatory in classical piano and I organised some painting exhibitions in the last years (you can find my gallery here). I have also found recently that -when I do not play pinball or videogames- I can save time by doing both music and sport at the same time by playing Japanese drums (taiko)! You can reach me via e-mail.

Grace Shephard
I am a Researcher at the Centre for Earth Evolution and Dynamics (CEED) at the University of Oslo, Norway. My research links plate tectonics,​ palaeogeography, and deep mantle structure and dynamics. I spend much of my time hunting for evidence to constrain the opening and closure of ocean basins, particularly around the Arctic, Atlantic and the Pacific. I think GPlates is an excellent Tardis with which to time travel. Geodynamics offers a lot of interdisciplinary and creative avenues to explore – and why not follow up your idea with a blog post! You can reach me via e-mail or find a sporadic tweet at @ShepGracie.

The Sassy Scientist
I am currently employed at a first tier research institute where I am continuously working with the greatest minds to further our understanding of the solid Earth system. Whether it is mantle or lithosphere structure and dynamics, solid Earth rheology parameters, earthquake processes, integrating observations with model predictions or inversions: you have read a paper of mine. Even if you are working on a topic I haven’t mentioned here, I still know everything about it. Do you have any problems in your research career? I have already experienced them. Do you struggle with your work-life balance? Been there, done that. Nowadays, I have only one hobby: helping you out by answering the most poignant questions in geodynamics, research, and life. I am waiting for you right here. Get inspired.