Cryospheric Sciences


This guest post was contributed by a scientist, student or a professional in the Earth, planetary or space sciences. The EGU blogs welcome guest contributions, so if you've got a great idea for a post or fancy trying your hand at science communication, please contact the blog editor or the EGU Communications Officer to pitch your idea.

Image of the Week: The Bipolar Seesaw

Image of the Week: The Bipolar Seesaw

The colourful graphs above show how the climate changed in the period from 65 to 25 thousand years ago when Earth was experiencing an ice age. A wealth of information on the dynamics of our climate is embedded in the curves, especially how the northern and southern hemisphere interact, and how fast climate can change.

The figure represents thousands and thousands of hours of work by scientists, technicians and logistics personnel.  It shows the latest results from analyses of an ice core drilled in the middle of the West Antarctic Ice Sheet: The WAIS ice core.


What are we looking at?

In the top part of the figure, the blue curve shows oxygen-isotope values from the North Greenland Ice Core Project. The curve represents temperature in the northern hemisphere where the peaks are high temperatures.

→  First take home message: During the last ice age, the temperatures in Greenland changed very abruptly from cold to warm temperatures. These changes are marked with yellow lines in the figure.

The green curve shows the amount of methane gas in the Antarctic WAIS core. The shape of the methane curve is very similar to the blue temperature (oxygen-isotope) curve from Greenland. The rapid changes in temperatures in Greenland are reflected in the amount of methane in Antarctica.

→ Second take home message: Methane is a “well-mixed” atmospheric gas. This means that if you measure the amount of methane in the air anywhere on Earth, you will get a good indication of the amount of methane on a global level.

The third and fourth curves show the oxygen-isotope values from WAIS (yellow) and the temperatures (purple). In contrast to the Greenland temperatures, the temperatures in Antarctica do not show very fast changes. Instead, we see a slow cycle of rising and falling temperatures.

→ Third take home message: When Greenland experiences a fast warming, Antarctica slowly begins to cool. When Greenland slowly cools, Antarctica begins to warm.


But what does it all mean?

It means that changes in temperature in the northern hemisphere affect the southern hemisphere but with a mechanism that is slightly delayed. This mechanism is of course the ocean. In climate science, this up-and-down pattern is called “the bipolar seesaw” (read more here).


Why is it important?

It is important because it tells us something about how the climate system reacts to abrupt changes. A change in the northern hemisphere is transmitted to the southern hemisphere but not necessarily immediately.


Want to know more?

Read the whole paper here.

Edited by Emma Smith and Sophie Berger

What to do at EGU  — a guide for early-career scientists

What to do at EGU  — a guide for early-career scientists

Are you going to the EGU General Assembly in Vienna next week? Check out these events for early career scientists.

To remind you when and where all these nice events and activities take place, you can directly view and import them in your electronic calendar (Isn’t it wonderful?! :-))

Social event for Early Career Cryosphere Scientists!

If you cannot make it to anything else; make it to our social event, which is organised together with APECS. After the short course on Wednesday evening (see below) we will head to the Wieden Bräu for some food, drinks and networking. We will be there at approximately 20.30. You do not have to sign up in advance, but if you know that you are coming it would be very helpful if you could let us know by filling in this doodle.

Here you can even find the event on facebook.

Meeting about the Cryosphere Blog

If you like this blog, are curious about it and would like to contribute to it  — directly and/or indirectly — please come and meet us on Tuesday the 19th of April at 12.15.

Short courses

The idea behind the short courses is to give an insight into a certain area and/or the applications/uses/pitfalls in and around the topic. There are a lot of very interesting courses at this year’s meeting and below we have highlighted a few of them. Why not drop by and meet the experts who have kindly agreed to participate and share their knowledge?

Cryosphere short courses

Using Ice core chronologies: Dos and don’ts  

Assoc. Prof. Anders M. Svensson from the Centre for Ice and Climate, University of Copenhagen will tell you all you need to know about ice cores. The course is an introduction to ice core science with an emphasis on how ice cores are dated, what the main uncertainties are, and what to be aware of when comparing with other records. The course is especially of interest to researchers who do not work directly in the ice-core community, but who find themselves using ice core data for comparison with other climate data and time-series, and who would like an introduction to what ice core records can and cannot provide.
Time and date: Wednesday the 20th of April, 19:00–20:00
Place: Room 0.31

Remark: This short course takes place just before the social event and it is said that learning heaps of stuff about ice cores is the best way to start your evening 🙂


The Cryosphere — Publishing Your Work: Meet The Editor! [Read More]

Image of The Week – When Glaciers Fertilize Oceans

Image of The Week – When Glaciers Fertilize Oceans

Today’s Image of the Week shows meltwaters originating from Leverett Glacier pouring over a waterfall in southwest Greenland. We have previously reported on how meItwater is of interest to Glaciologist (e.g. here) but today we are going to delve into how and why Biologists also study these meltwaters and how the cryosphere interacts with biogeochemical cycles in our oceans.

Figure 2: Location of Leverett Glacier. The glacier drains an area of 600 km2 of the Greenland Ice Sheet. Adapated from Hawkings et al. (2014) .


Leverett Glacier of the Greenland ice sheet (Fig. 2) discharges around 2 km3 of water a year from its 600 km2 catchment area. This single meltwater river has previously reached 800 m3 sec-1 at peak flow in the summer (in 2012; for contrast the Danube average flow is roughly 2000 m3 sec-1 as it passes through Budapest). These meltwaters are sediment rich and occur not just at Leverett but at hundreds of glaciers across the Greenland ice sheet, dumping a total of more than 400 billion tons of water in the oceans each year; a number than has risen steeply in recent years due to the rapidly warming Arctic climate. Relatively little is known about how this large seasonal input of glacial water may impact ocean life.


Over the past few years fieldwork teams have visited Leverett Glacier each season to give us an insight into the importance of the Greenland ice sheet in supplying ecosystems with nutrients. To address this question they collect lots of water and sediment samples to analyse (using special instrument back in labs at The Universities of Bristol, Southampton and Leeds) and install semi-permanent sensors to see what’s happening to the river in real time (Fig 3).

These sensors record water temperature, depth, sediment concentrations and the amount of dissolved solids. This comprehensive dataset has provided a really nice picture of the system and the changes occurring at a high temporal resolution. They have also been testing cutting edge sensor technologies to measure things like nitrate and methane in the water more recently and, of course, they took some great drone footage of their work.

Figure 3: Semi-permanent sensor monitoring water temperature, depth, sediment concentrations and the amount of dissolved solids in glacial meltwaters from Leverett Glacier, Greenland (credit: Jon Hawkings).

Figure 3: Semi-permanent sensor monitoring water temperature, depth, sediment concentrations and the amount of dissolved solids in glacial meltwaters from Leverett Glacier, Greenland (credit: Jon Hawkings).

What’s Happening?

These studies have found that glaciated regions, such as Greenland, are likely to be dumping large quantities of nutrients such as phosphorus, iron and silica into the polar oceans, feeding life at the bottom of the food chain and contributing to ecosystem health. This challenges the traditional view that ice sheets are relatively unimportant in biogeochemical cycles compared to other terrestrial environments.

Glaciers are like giant bulldozers crushing rock into finely ground rock dust as they move – it is this dust that give glacial meltwaters their milky colour. Water flowing below the ice, dissolves the minerals in the freshly crushed rock and transports them out into the oceans. These minerals provide nutrients that act as a fertilizer for ocean life – phytoplankton, the microscopic plants of the ocean, need rock derived nutrients to grow. These little guys are really important for the health of our planet. They form the base of the ocean food chain, and photosynthesise thus potentially capturing CO2 from the atmosphere. As glaciated regions like Greenland dump more meltwater into the oceans it is possible more nutrients could also be delivered, although more research needs to be conducted to ascertain if this is the case.

Want to find out more?

  • Hawkings et al. (2014) Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans, Nature Communications, 5.
  • Lawson et al. (2014) Greenland Ice Sheet exports labile organic carbon to the Arctic oceans, Biogeosciences, 11(14): 4015-4028.
  • Hawkings et al. (2015) The effect of warming climate on nutrient and solute export from the Greenland Ice Sheet, Geochemical Perspectives Letters, 1: 94-104
  • Hawkings et al. (2016) The Greenland Ice Sheet as a hotspot of phosphorus weathering and export in the Arctic, Global Biogeochemical Cycles, 30: 191-210

Edited by Emma Smith

About Jon Hawkings:

Jon Hawkings is a post-doctoral research associate at the School of Geographical Sciences, in the University of Bristol. His research focuses on the biogeochemistry of the coldest areas of our planet. Specifically he is looking at the impact that melting ice sheets may be having on downstream and marine ecosystems. He enjoys working in some of the most inhospitable and challenging environments – pretty much all of his data stems from samples collected in the field. He tweets as @jonnyhawkings.

Image of Week: Blue Ice in East Antarctica

Image of Week: Blue Ice in East Antarctica

The blue ice areas of Antarctica are one of the most fascinating parts of the ice sheet. In these regions, snowfall is so low that the ice is laid bare by the wind and consequently sublimates. This exposes beautiful, blue ice surfaces, like an ocean frozen in time. This picture was taken at a site named “Windy Corner” by the Kottas Mountains, in the northernmost part of the Heimefrontfjella, Dronning Maud Land, East Antarctica.

Map of Antarctica showing the ice sheet (grey), ice shelves (dark grey) and known blue ice areas in blue. Credit: Quantarctica, Norwegian Polar Institute.

Map of Antarctica showing the ice sheet (grey), ice shelves (dark grey) and known blue ice areas in blue. Credit: Quantarctica Database, Norwegian Polar Institute.

You can also read about an expedition to another blue ice area on our blog.

Edited by Sophie Berger and Emma Smith

Image of the Week: Ice Sheets in the Climate

Image of the Week: Ice Sheets in the Climate

Ice sheets play a central role in the climate system. They store significant amounts of fresh water and are the conveyor belts for transporting snow that accumulates on land back into the oceans. The figure above shows a few of the ice-climate interactions. In the figure below (click on the figure for full resolution) we see the complete picture of the processes taking place between ice sheets, solid earth and the climate system. These interactions have an internal variability but also affect the coupled ice sheet–climate response to external forcings on time scales of months to millions of years. The inlay figure represents a typical height profile of atmospheric temperature and moisture in the troposphere.

If the current warming of the climate continues, the ice sheets will respond at a yet unknown rate, with unknown consequences for the rest of the climate system. Decisions reached at COP21 in Paris this week  may impact the future of our ice sheets and halt the current trend.


The interaction of ice sheets with the climate system. Credit: Figure 1 in Box 5.2, IPCC AR5.

Image of the Week: Atmospheric CO2 from ice cores

Image of the Week: Atmospheric CO2 from ice cores

The measurements of atmospheric CO2 levels at Manu Loa, Hawaii read 401.01ppm on the 7th of December this year. To understand the significance of this number, you just need to look at the figure above from the 4th IPCC report. It shows the changes in CO2 concentrations during the past 800,000 years based on ice core measurements. Values have fluctuated between 190ppm and 280ppm. In other words, both the level of present-day atmospheric CO2 and the rapidity of the increase is unprecedented.

The figure also shows the projections from the IPCC AR4 report for different emission scenarios. Which scenario will turn out to be the most likely might be determined at COP21 in Paris right now.

Read more:

Measurements at Manu Loa, Hawaii

Image of the Week: Changes in Snow Cover

Image of the Week: Changes in Snow Cover

Who is dreaming of a white spring?

In daily life we might be more interested in the chances of a white Christmas, but the amount of snow-covered ground in the spring is a very good indicator of climate change. The figure above shows the projected change in snow cover extent in the Northern hemisphere in March-April according to different future scenarios (i.e. Representative Concentration Pathways or RCPs of the IPCC). All the scenarios predict a decrease in spring snow, and the reduction goes up to 30% by 2100, for the most pessimistic scenario.

Below is shown the changes in snow cover in historical times for the Northern hemisphere, the grey line is the change in snow cover in the spring. The red crosses are based on satellite data and show the snow cover in June. Undoubtedly, we are heading for a warmer climate but it would also seem that springtime skiing holidays could become a thing of the past.

The COP21 meeting will determine what steps will be taken in the future and which scenario path we will follow. Regardless of whether you worry about the future of our planet or the future of your skiing holiday – you should take an interest.

March–April NH snow cover extent (SCE, circles) over the period of available data, filtered with a 13-term smoother and with shading indicating the 95% confidence interval; and June SCE (red crosses, from satellite data alone), also filtered with a 13-term smoother. The width of the smoothed 95% confidence interval is influ- enced by the interannual variability in SCE. Updated from Brown and Robinson (2011). For both time series the anomalies are calculated relative to the 1971–2000 mean.

March–April NH snow cover extent (circles) over the period of available data, filtered with a 13-term smoother and with shading indicating the 95% confidence interval; and June (red crosses, from satellite data alone), also filtered with a 13-term smoother. The width of the smoothed 95% confidence interval is influenced by the interannual variability in SCE. For both time series the anomalies are calculated relative to the 1971–2000 mean.


The figures in this blog post are taken from the IPCC report (Fig. TS-18 and Fig. 4.19 respectively). You can read more here:

Vaughan, D.G., J.C. Comiso, I. Allison, J. Carrasco, G. Kaser, R. Kwok, P. Mote, T. Murray, F. Paul, J. Ren, E. Rignot, O. Solomina, K. Steffen and T. Zhang, 2013: Observations: Cryosphere. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Sunshine, ice cores, buckets and ALE: Antarctic Fieldwork

Sunshine, ice cores, buckets and ALE: Antarctic Fieldwork

My Antarctic adventure started from Punta Arenas at the bottom of Chile, opposite Tierra del Fuego, on New Years Eve 2014 after a long journey from Heathrow via São Paulo and Santiago.

Punta Arenas

Punta Arenas is even quieter than usual on New Year's Day. (Credit: M. Millman)

Punta Arenas is even quieter than usual on New Year’s Day. (Credit: M. Millman)

Punta Arenas is where Shackleton organised the rescue of his men from Elephant Island after his voyage to South Georgia in the James Caird. It is also where I met my PhD supervisors Chris Fogwill and Chris Turney for the first time, along with ancient-DNA expert Alan Cooper. Punta is the base for Antarctic Logistics & Expeditions (ALE), who are part funding my PhD and supporting me and my supervisors in the field.

Off to Antarctica…

Arriving at Union Glacier on the Ilyushin. (Credit: H. Millman)

Arriving at Union Glacier on the Ilyushin. (Credit: H. Millman)

After a couple of days in Punta Arenas, when the weather was right, we boarded an Ilyushin and flew the 4.5 hours to ALE’s base at Union Glacier in the Ellsworth Mountains. The Ilyushin is a big, rough-and-ready Russian transport plane equipped with an emergency rope instead of inflatable slides. We sat in the front half of the cabin and the back was packed with fuel and supplies for the base.

Union Glacier is a hub for an assortment of mountaineers, explorers, tourists and scientists. By Antarctic standards the base is very luxurious, with toilet blocks and even showers. Our bags were taken from the Ilyushin and were waiting for us outside our clamshell tent: “Scott”. All the tents are named after polar explorers and they have proper camp beds and solid floors inside. With regular Ilyushin flights, there is plenty of fresh food and the chefs cook fabulous breakfasts, lunches and suppers. The mix of people coming and going means that there are plenty of interesting stories to hear at mealtimes.

Union Glacier base. (Credit: H. Millman)

Union Glacier base. (Credit: H. Millman)

There was an American military man who had parachuted out of an Ilyushin to the North Pole, a cancer survivor who was trekking to the pole to raise millions of pounds for Cancer Research and lots of people who had climbed six of the seven summits and were in Antarctica to climb Mt Vinson, the last of the seven.

The fieldwork

Map showing the Patriot Hills and Union Glacier. It took about 20 minutes for the Twin Otter to reach the Patriot Hills from Union Glacier base. (Credit: H. Millman)

Map showing the Patriot Hills and Union Glacier. It took about 20 minutes for the Twin Otter to reach the Patriot Hills from Union Glacier base. (Credit: H. Millman)

Good weather meant that we couldn’t enjoy Union Glacier for long and soon the Twin Otter was loaded with all our equipment and the four of us were flown out to our field site: the Patriot Hills in the Horseshoe Valley.

The deep blue colour of the ice is visible looking down the core hole. (Credit: H. Millman)

The deep blue colour of the ice is visible looking down the core hole. (Credit: H. Millman)

The Horseshoe Valley is at the end of the Heritage Range, close to the grounding line in the Weddell Sea. Katabatic winds blowing down the side of the Patriot Hills have caused a blue ice area to form. The chance to sample the old ice, which comes to the surface in these areas, is what brought us to Antarctica. Over the next few weeks we drilled a snow/firn core, and ice cores in the blue ice area. Surface samples were collected by Professor Chris Turney, crawling 1.6 km on his knees as though trying to appease the God of the Glacier, with a cordless drill from a DIY store.

Once we get back to the lab, the samples will be analysed for trace gases, isotopes, tephra and ancient DNA. From this data we are hoping to extract a climate record reaching back to the Last Interglacial (~135 – 116 ka). I will then use this record, along with other proxy records and GCM outputs, to drive the PISM-PIK ice sheet model. This will help to answer the main question of my PhD, which is: What was the Antarctic contribution to sea level rise during the Last Interglacial? Global average temperatures during the Last Interglacial were 1-2°C warmer than pre-industrial times. As we move into a similar climate today, the past can be used as a process analogue for what might happen in the coming decades.

Drilling using a Kovacs corer. Here I'm wearing 3 coats: a light down jacket, a soft windproof shell, and my big down jacket on the top. I'm also wearing down trousers over my salopettes. It's quite windy on the blue ice, so it can feel very cold. (Credit: H. Millman)

Drilling using a Kovacs corer. Here I’m wearing 3 coats: a light down jacket, a soft windproof shell, and my big down jacket on the top. I’m also wearing down trousers over my salopettes. It’s quite windy on the blue ice, so it can feel very cold. (Credit: H. Millman)

A digression on “everyday” life in Antarctica…

Our small camp in the Horseshoe Valley. (Credit: H. Millman)

Our small camp in the Horseshoe Valley. (Credit: H. Millman)

We set up our camp a little way away from the blue ice to avoid the worst of the katabatic winds. Camp consisted of a big mess tent and 3 sleeping tents. Fogwill and me had our own tents, but Turney and Cooper had to share. Turney and Cooper were struck down with colds and we took extra care to disinfect or quarantine anything the infected had touched because having a cold in Antarctica is a thoroughly miserable experience. Fortunately, we had lots of hot, hearty meals because ALE had sent us off with excellent frozen meals cooked by their chefs. We had curries, lasagna, stews, bread rolls and cake, and we only had to eat de-hy for lunch. The only food I missed was raw carrots.

Women - Pee here! (Credit: H. Millman)

Women – Pee here! (Credit: H. Millman)

For obvious reasons, snow for drinking water was collected up-glacier of the camp, and the latrine was located down-glacier. We took it in turns to collect and melt snow for drinking water. Our toilet tent had about 3 or 4 different incarnations as storms buried our previous efforts. By the end, we found the best design was dug down about 1 m, with snow blocks and fuel barrels around it supporting a wooden board and a sheet of tarpaulin. This stopped snow getting in during a storm, but the tarpaulin could also be wrapped around your neck so that one’s body could appreciate the warmth rising up from the latrine, while keeping one’s nose out in the fresh air. All waste is collected in containers so that it can be flown out to Chile on the next Ilyushin- all human waste has to be removed from Antarctica. Since the men have the advantage of being able to wee straight into the pee barrel, ALE kindly supplied me with my very own wee bucket, which I was extremely grateful for, particularly after an unpleasant incident with a SheWee at 3am, during a storm.

The good weather meant that we were able to work most days. We had a couple of stormy days which allowed us to rest, read, listen to music, tidy down the camp, and recharge our batteries (literally). Electrical things aren’t at their happiest in the Antarctic cold. My iPod wiped itself in the last week and we had to hug our laptops inside our jackets to keep them warm enough to hold some charge.

…back to reality

Once we’d collected all of our samples, it was time to leave the Patriot Hills and return to Union Glacier. We started packing things away while we were waiting for the Iridium call from the base, not knowing whether the Twin Otter would arrive that afternoon or tomorrow or the day after, or the day after that. We got the call and the Twin Otter was already on its way. A mad rush followed as we had to quickly but carefully dig out all of our tents from weeks’ worth of icy snow and pack them away. The plane landed less than 30 minutes later with the ALE guides who were going to take our skidoos back. With their help, we soon had everything loaded onto the plane, with just enough room for the four of us to squeeze in like sardines.

Quickly packing up our camp because the Twin Otter has just arrived to take us back to Union Glacier base. (Credit: H. Millman)

Quickly packing up our camp because the Twin Otter has just arrived to take us back to Union Glacier base. (Credit: H. Millman)

Returning to the civilisation of Union Glacier was very exciting, especially seeing other people for the first time. I’m usually quite a shy and quiet person, but all reserve vanished in my first hours back on the base as I enthusiastically bounded up to strangers and asked to hear their life stories. The first wash was also fantastic. My hair had been a solid greasy mass of nastiness for weeks and having it back to its fluffy state was a joy. While we waited for a weather window so that the Ilyushin could come and collect us, we sub-sampled our snow/firm core, mended our tents and organised which equipment would be staying in Antarctica and what we’d be taking back. While we were doing this, ALE were starting to pack away Union Glacier base for the winter.

We flew back to Punta on the penultimate Ilyushin of the season, so most of the other passengers were the staff. Everyone was sad to leave, but looking forward to seeing family and friends at home after months away. On returning from Antarctica, even the quiet town of Punta was an assault on the senses. The only smells in Antarctica are cooking, skidoo fumes and the latrine, so when we arrived back the smell of soil and vegetation seemed really strong. It took a few days to readjust to cars, dark nights, proper beds, baths, flushing toilets, running water, central heating, mobile signal, internet, televisions and unlimited electricity. Leaving civilisation was easier than returning to it.

Ice cores waiting for check-in at Punta Arenas airport. We wouldn't see them again until we landed in Sydney. (Credit: H. Millman)

Ice cores waiting for check-in at Punta Arenas airport. We wouldn’t see them again until we landed in Sydney. (Credit: H. Millman)

Our ice cores were stored in a refrigerated lorry back until our flight to Sydney via Santiago and Auckland. Although the cores were in special insulated boxes, the long flight with connections to the heat of a Sydney summer was very stressful. The previous season a box had been left behind at Auckland airport, resulting in a very expensive puddle. This year we were lucky and all boxes arrived at the other end and the unscathed cores were transferred to the freezers at UNSW. Now the hard work begins!

Chris Turney at the end of the 1.6 km transect. (Credit: H. Millman)

Chris Turney at the end of the 1.6 km transect. (Credit: H. Millman)

More information:

Project website:

Short videos from the field can be viewed on Chris Turney’s Vine page:

Edited by Sophie Berger and Nanna Karlsson

About Helen Millman: 
After completing a BSc in Geography at Swansea University and a Glaciology MSc at Aberystwyth University, Helen moved from her native Devon in south-west England to Australia to start her PhD at the University of New South Wales in Sydney. Her research focuses on modelling Antarctic ice sheet dynamics during the Last Interglacial using data from ice cores, as well as outputs from the CSIRO Mk3L GCM to drive the Potsdam Parallel Ice Sheet Model (PISM-PIK). She is supervised by Chris Fogwill and Chris Turney at UNSW, Steven Phipps at the University of Tasmania and Nick Golledge at Victoria University in Wellington. You can follow Helen on Twitter @helenmillman (

Image of the Week: Greenland Glacier Seen from a Drone

Image of the Week: Greenland Glacier Seen from a Drone

The use of drones or Unmanned Aerial Vehicles (UAVs) is one of the most exciting development in glaciology in recent years. The picture was taken during fieldwork conducted in the summer of 2014 by Johnny Ryan and colleague Nick Toberg. The aim was to survey Store Glacier once a day using a fixed-wing UAV, that was equipped with a digital camera, which took photos every two seconds during its dangerous 40 km sortie over the glacier.

The project was a joint project between Aberystwyth University and the University of Cambridge, and the data provided insights into the process of calving and the interplay between the glacier and sea-ice mélange that forms during the winter and breaks up in late spring.

Read Johnny’s exciting blog post about the whole field season here.

Results from the study has been published in the The Cryosphere earlier this year.

Filling the Gap between Science and Politics

Have you ever wondered how results from scientific studies make their way into policy and influence government decisions? Read about the experiences of Sammie Buzzard, University of Reading, who spent her summer working for a government body in Westminster, London, UK.

This summer I had the opportunity to take some time away from my usual Ph.D. work and spend 3 months working for the Government Office for Science in London, or ‘GO Science’ as it is known. My placement was made possible by a scheme set up by the UK research councils that allows PhD researchers to spend some time in a policy organisation. Through this, researchers can gain an insight into how science fits into policy and pick up new skills in areas such as communication and managing multiple tasks. In return, the policy organisations get some insight into how academics think and some of the cutting edge science that is currently going on.

View from my window: Westminster Abbey. Credit: S. Buzzard.

View from my window: Westminster Abbey. Credit: S. Buzzard.

What is the Government Office for Science?

Based in Westminster in the heart of London’s political centre, GO Science exists to ensure that the UK Government’s policies and decisions are informed by the best scientific evidence. It is headed up by Sir Mark Walport, the Government Chief Scientific Adviser, whose role is to advise the Prime Minister and Cabinet. GO Science works to ensure and improve the quality and use of scientific evidence and advice in government. They also provide scientific advice in the case of emergencies, through the Scientific Advisory Group for Emergencies (SAGE). This includes international emergencies, such as advising the government on their response to the ebola crisis for example.

Becoming a specialist whether you want to or not…

One thing that really surprised me about GO Science was the number of people with a scientific background who work there. There were many people with PhDs and several who had done post-doctoral positions before joining the GO Science. This combination of scientific thinkers and those who had come from many different backgrounds, including career civil servants, means that there are a great range of skills available. If you find that you are not so good at something or are nervous about writing a briefing, there will always be someone who will be willing to go through it with you. It also means that with the number of contacts that the office have, both in academia and industry, expert advice can be found on virtually any area.

It also means though that if you have a scientific specialism then you have to be prepared to be asked all about it. The Chief Scientific Adviser had recently been in Svalbard and this led to me being asked a whole range of questions from whether or not he has to have an armed guard when in the Arctic to the state of the sea ice. The fact I do mainly care (at least for now) about the South Pole did not matter!

Sammie Buzzard in her more usual surroundings as a sea ice scientist. Credit: S. Buzzard.

Sammie Buzzard in her more usual surroundings as a glaciologist. Credit: S. Buzzard.

Fortunately, I was also given the opportunity to present my own work on the surface melt lakes on the Larsen C Ice Shelf to my colleagues. For me, this was a hugely valuable opportunity to communicate my research to a mixed audience and get some unexpected questions from the fresh viewpoints that those from outside of glaciology can provide.

… a specialist in many subjects!

One of the main differences I found from my normal day job as a PhD researcher was the variety of topics and responsibilities. My work covered subjects as diverse as finance, biological materials and technologies of the future. I had the chance to experience several different areas of work, from writing briefing notes for the chief scientist, to helping check facts for a presentation on energy that he was giving to the public. It was very different to PhD life in that I would often have several pieces of work ongoing in completely different areas and often for different people, so it involved a lot more juggling of tasks than my average day buried in Matlab code.

Although it was a challenge to have to learn so much about subjects I knew very little about very quickly but one which I enjoyed and a useful skill that I will take away with me. I particularly enjoyed the chance to work for the Council for Science and Technology, a group of hugely influential people who provide high level advice to the Prime Minister. The group consists of university vice chancellors, business leaders and the heads of learned societies and seeing the ways in which they work and make decisions was fascinating.

An additional thing that I found very different to academia was the level of accountability for my work. If my PhD work goes wrong then ultimately it is my responsibility but at GO Science often more than one person would check a piece I wrote before it was passed on or sent out. This did make me feel much more confident in my work knowing I was not going to put anything completely ridiculous in front of chief scientific adviser, but I did begin to miss being able to choose and have responsibility for the direction of my own work in the way that I have with my PhD.

What is next?

I would highly recommend opportunities like this for other PhD students, or scientists at any stage in their career. Knowing where the work that we do ultimately is going and what policy makers care about is incredibly useful. Researchers can also work in Parliament and non-government organisations such as the British Library and the Royal Society. The scheme has recently recruited for next year’s interns and applications normally open each summer for the next year’s intake.

Although I plan to continue in research after I finish my PhD the skills I gained from my time out will definitely be useful far beyond writing up, which I now really must get back to…

Edited by Nanna Karlsson

Sammie Buzzard is a PhD student in the department of Meteorology at the University of Reading. After completing a Master’s degree in mathematics she is now researching surface melt on the Larsen C Ice Shelf. She blogs about polar science, life as a PhD student and cake (because cake is essential for research) at Ice and Icing and can be found tweeting at @treacherousbuzz.