Cryospheric Sciences


This guest post was contributed by a scientist, student or a professional in the Earth, planetary or space sciences. The EGU blogs welcome guest contributions, so if you've got a great idea for a post or fancy trying your hand at science communication, please contact the blog editor or the EGU Communications Officer to pitch your idea.

My first journey to Antarctica – Brice Van Liefferinge

My first journey to Antarctica – Brice Van Liefferinge
(Credit B. Van Liefferinge)

(Credit B. Van Liefferinge)

19 November 2014, the Iliuchine 76 gently lands on the runway of the Russian Antarctic station, Novolazarevskaya, in Dronning Maud Land. For the first time, I’m in Antarctica! It is 4 o’clock in the morning and we need to hurriedly offload 2 tons of material intended for our field mission near the Belgian Princess Elisabeth Station. I’m deeply impressed by the landscape although it is dotted with containers, people and machines. I am impressed by the fuzz. I am impressed by the novelty. I am impressed by the icescape. It is cold, but I don’t feel it.

(Credit B. Van Liefferinge)

(Credit B. Van Liefferinge)

I take part in an expedition lasting five weeks and led by the Laboratoire de Glaciologie of the Université Libre de Bruxelles (ULB) in the framework of the Icecon project.The project aims at constraining past and current mass changes of the Antarctic ice sheet in the coastal area of Dronning Maud Land (East Antarctica) to better understand past and present ice volumes and the extension of the Antarctic ice sheet across the continental shelf during the last glacial period. This year we are a team of 5 to do the job: GPS measurements, ice-core drilling, high- and low-frequency radar measurements (GSSI and ApRES), televiewer measurements … The ApRES radar is a new phase-sensitive radar developed by British Antarctic Survey (BAS), capable of detecting internal structures in the ice and changes in the position of internal layering over time.

After a couple of hours at the Russian base, it’s time to fly to the Princess Elisabeth Station (the Belgium base, PEA). The arrival in a Bassler (a former DC3 re-equipped with turbo-props) with stunning views of the Sor Rondane Mountains and the Princess Elisabeth station on the Utsteinen rim is simply magnificent. Alain Hubert, the base manager, gives us the first security rules and shows us the different parts of the base.

(Credit B. Van Liefferinge)

(Credit B. Van Liefferinge)


After following the various field training and especially an exercise that aims at pulling yourself out of crevasses, it’s time to inspect, to set up, and to test our equipment. While one part of the team sets up the drill, Frank Pattyn and I test the GPS and radar equipment, mainly the ApRES that is a new “toy” for us. The first results are promising, we can clearly identify the bed topography and internal layers. The two GPS systems sponsored by the “10km of the ULB”, a run organised by the students of our Faculty, are also tested next to the L1L2 GPS systems for precise positioning. As our departure is imminent, I’m excited (even though my level of Coca-cola are getting low – I ‘m an avid consumer of this “evil drink” and Frank was afraid that I wouldn’t survive without sufficient sugar intake).

(Credit B. Van Liefferinge)

(Credit B. Van Liefferinge)

On 27 November, we leave PEA in the evening for one night and one day across the Roi Baudouin Ice Shelf to Derwael ice rise. We are 6 scientists, 2 field guides and 1 technician. After 25 hours of travel, we set up the camp on the top of the divide. We start immediately with the radar measurements to locate potential drill sites. However, we get caught in a storm the following day and as Frank says “not a nice one”.

(Credit F. Pattyn and B. Van Liefferinge)

(Credit F. Pattyn and B. Van Liefferinge)


The snow drift is just amazing and the atmospheric pressure drops frighteningly (“can this still go lower?”). The whiteboard installed in the living container is not wide enough to draw the graph of pressure change, nor is it high enough to accommodate the lowest values. Furthermore, it’s quite warm, meaning that snow melts in contact with persons and goods. Despite efforts of everyone to clear away the snow, we leave our tents and sleep in the containers for 2 days. Not the most comfortable nights, because we share a two-bunk space with three people, and despite a container it remains very shaky! After three days of amazing experience, we clean up the camp and the science restarts. For one week Frank and I perform radar and GPS measurements in a 10km radius around the camp. These measurements will be repeated in 2015-2016 to provide new data on ice compaction, density and flow. While Frank thoroughly checks the collected data, I have some time to get familiar with the drill, which should prove to be very useful thereafter. The “drill part” led by Jean-Louis Tison and Morgane Philippe aims at drilling two 30 m deep ice cores on Derwael Ice Rise, 2 km on each side of the divide. We want to investigate the spatial variability of snow accumulation induced by this ice rise that sticks approximately 300 m above the surrounding flat ice shelf and therefore perturbs the surface mass balance distribution (Lenaerts et al., 2014).

Blog_EGU (12)_mod

(Credit B. Van Liefferinge)

(Credit F. Pattyn and B. Van Liefferinge)

I use this week to improve my knowledge on other scientific techniques, such as the coffee-can method (will complement the results from the ApRES) or geodetic GPS measurements with Nicolas Bergeot. I also learn the basics of snowmobile mechanics (it’s surprising to see the amount of snow that can be put in an engine!). Unfortunately we get stuck for another 2 days by a new storm event. We use this time to have a look on the first radar profiles and to prepare the second part of the expedition.



On 9 December, we leave the camp on Derwael ice rise and move towards the Roi Baudouin Ice Shelf, 40km to the west. We set up the camp in a longitudinal depression (like a trench) on the ice shelf that stretches from the grounding line to the coast.

The purpose of this part of the field work is twofold: first of all, determine the mass budget of ice shelves. To do that, we need to map carefully the flow speed of the ice-shelf. Secondly, understand the formation of the trench in evaluating if under the ice-shelf, the ice is melting or accreting (formation of marine ice) and analyze the surface melt history by investigating near-surface melt layers.

The first three days are devoted to make radar measurements (ApRES) in the center and on the sides of the trench. The thickness of ice and the reflection at the interface with the ocean is different from the one on the ice rise; we take some time to develop a robust method and determine the best settings of the radar. Together with Frank Pattyn and Jan Lenaerts (InBev Baillet Latour fellowship, I perform a 120km transect with a high-frequency radar towed by a snowmobile to map the near-surface internal structure along the ice shelf and link the drill site with the grounding zone. Driving at 8 km per hour for 8 hours a day, it’s an opportunity for me to think about how lucky I am to be here. Alone in the vastness of the Roi Baudouin ice-shelf, I feel very small. Back in camp, we find out that the drill got stuck at a depth of 54m in the borehole and preparations to free the drill are on their way. During this time I carry out a number of high-frequency radar measurements with Alain Hubert (the base manager) to fine-tune the equipment to potentially detect crevasses near the surface. To our surprise, we stumble upon a crevasse more than 500m long, 10m wide and 20m high. Moreover, we can safely descend through the apex of the crevasse to discover its vastness. Truly a magic moment!

(Credit A. Hubert)

(Credit A. Hubert)


Thirty-six hours later, and thanks to antifreeze, the drill restarts. This small technical incident pushes us to work the next couple of days through the day and the night (under the sun at 3am is rather special) and we take turns in operating the drill. We reach a depth of 107m, not far from the 155 meters needed to reach the bottom of the ice shelf, but the brittle ice makes progress very difficult. Nevertheless, this is the third core of the (short) season, and as valuable as the previous ones. We can clearly identify every single ice layer over 200 years as well as the surface melting history.

(Credit A. Hubert)

(Credit A. Hubert)

Before leaving back to the base, we finish the installation of the famous Tweetin’IceShelf project (; a project also presented at the EGU General Assembly in 2015. We deploy two GPSes on the flanks of the trench and one in the center. These are simple GPS systems that record their position every hour. They are named GPS CGEO (from Cercle de Géographie et de Géologie de l’ULB) and GPS CdS (from Cercle des Sciences). In the center of the trench, the ApRES is installed which measures once a day the radar signal through the ice. All systems will be effective throughout the Antarctic winter. Data are sent via Twitter to be followed by a larger community. Just follow the @TweetinIceShelf on Twitter. You will not be disappointed.

(Credit F. Pattyn)

(Credit F. Pattyn)

It’s time to go back to the station, which is reached after 20 hours of travel across the ice shelf and the coastal ice sheet. Over 2 days we will be at Cape Town and we have to clean up everything for the next field season.

(Credit N. Bergeot)

(Credit N. Bergeot)


I know it is my first time to Antarctica, and as most first-timers, an unforgettable experience of vastness, whiteness, silence, laughter, hard work and fun. When I board the plane I feel delighted and fulfilled and ready to find back green landscapes and city soundscapes in less than ten hours.

The text is based on the blog that was held during the mission:

Edited by Sophie Berger

Brice Van Liefferinge is a PhD student and a teaching assistant at the Laboratoire de Glaciology, Universite Libre de Bruxelles, Belgium. His research focuses on the basal conditions of the ice sheets.

Young Scientist Events at the EGU General Assembly

Are you going to the EGU General Assembly in Vienna next week? Check out these events for young scientists (YS).

Short courses

The idea behind the young scientist short courses is to give an insight into a certain area and/or the applications/uses/pitfalls in and around the topic. There are a lot of very interesting courses at this year’s meeting. I would like to highlight two short courses in particular since I will be chairing them! Please consider dropping by and meet the experts who have kindly agreed to participate and share their knowledge.

Meet the editors
An open discussion with the chief editor of the EGU journals Climate of the Past, Professor Carlo Barbante, and Earth System Dynamics, Professor Axel Kleidon. This workshop will discuss topics including: open access publishing; the review process, from submission to publication; how to review a paper; top tips for paper writing and submission, as well as an open question and answer session. Scientists from all divisions and at all stages of their career are encouraged to attend.
Time and date: Tuesday the 14th of April, 15:30 – 17:00
Place: Room B7

Introduction to climate modelling
Climate modelling is an extremely powerful tool for the quantification of earth system dynamics, allowing the reconstruction of past environments and projections of future change. In this workshop, an introduction to and discussion of the development and application of models at different spatial and temporal scales will be discussed and illustrated. Christoph Raible is a senior scientist of Climate and Environmental Physics at the University of Bern. In this workshop, he will share his broad experience of the field of climate modelling and its application to climates of the past, present and future.
Time and date: Wednesday the 15th of April, 19:00 – 20:00
Place: Room B12

After the short course we will head to Café Einstein to join the Ice Core Young Scientists social event.

Young Scientists Lounge

This year the young scientist lounge is located on the red level of the conference centre. The lounge has free tea and coffee and is a place to hang out and refuel before emerging yourself in the hectic experience that is the EGU General Assembly. It is also a good place for networking and meeting other young scientists in your field (or indeed in another field). Throughout the week, YS representatives from the different divisions will be present in the lounge. Do approach them with your ideas, concerns and questions, or just for a friendly chat! I will be there Wednesday and Thursday during the late afternoon session. Please drop by and say hello!


Young Scientists Forum

The YS forum is to place to meet your young scientist representatives, find out what the EGU does for young scientists and take the chance to become more involved in the Union. This forum is a great opportunity to let us know what you would like from the EGU, find out how you can get involved in the Assembly and meet other scientists in the EGU young scientist community.

Time and date: Tuesday 14th of April 12:15 – 13:15

Place: Room G8


Am I a young scientist?

If you have made it this far into my post, you probably are. Officially the EGU defines a Young Scientist as (1) age 35* or younger and (2) be an undergraduate or postgraduate (Masters/PhD) student or have received her/his highest degree qualification (e.g., BSc, MSc, PhD) within the last seven years (where appropriate, up to one year of parental leave time may be added per child).

However, everyone is of course more than welcome to attend the short courses and contribute to the discussion!


What else?

The General Assembly can be an overwhelming experience. Here are my tips for surviving a week of full on science

  • Take advantage of the lunch breaks and go for a walk! When you exit the main conference building turn left and head for the river, or turn right and you will find that behind the concrete buildings there is a very nice park.
  • Go to a session outside your field or area of interest. Even in completely different research topics, I often find similarities in methods or applications that inspire me to think differently about my own research.
  • Explore Vienna. Treat yourself to a bit of time off to recover during the week. If your programme is completely packed, then hurry to the U-Bahn in a lunch break (the ticket is after all included in the registration fee) and go to the centre of town. Half an hour’s stroll will give you at least an impression of the city and you will not leave Vienna with the feeling that you have really only seen the conference centre.

If you want to know more, you can also check out this link.
I hope to see you there!

Glaciers on Mars

Glaciers on Mars

“I did not know that there is water on Mars!” This a sentence I hear surprisingly often when I talk about glaciers on Mars. In fact, it has been known for some time that water exists in the form of ice and water vapour on the planet. For example, water ice layers several kilometres thick cover the Martian poles, and the ground close to the Polar Regions has permafrost patterns very similar to what we see on Earth.

The glaciers on Mars were discovered in the 1970s on images from the Viking missions. From the images it was evident that features made up of a soft, deforming material existed in some parts of the planet. At the time, it was suggested that the features might consist of a mixture of water ice, CO2 ice or perhaps mud.

More than 10,000 water ice bodies (blue dots) have been found between 30 and 50 degrees (blue lines). Credit: Mars Digital Image Model, NASA/J. Levy/Nanna Karlsson

More than 10,000 water ice bodies (blue dots) have been found between 30 and 50 degrees (blue lines). Credit: Mars Digital Image Model, NASA/J. Levy/Nanna B. Karlsson

In 2005, NASA launched the satellite Mars Reconnaissance Orbiter that carried amongst other instruments the SHARAD (SHAllow RADar) sounder. The instrument emitted radar waves that could penetrate the surface of the planet, and return information on what was below the dusty surface. The mission proved successful and – amongst many other discoveries – the SHARAD measurements showed that the glaciers consist of more than 90% water ice .

We now know the composition of the glaciers but many questions remain. One extremely interesting observation is the fact that the glaciers are only found in particular latitude bands: between 30 and 50 degrees on both hemispheres. A recent study has mapped more than 10,000 features in these latitudes. In other words, the glaciers are much more abundant than initially thought, but why are they there in the first place? The answer is probably to be found somewhere in Mars’s past. More than 5 million years ago, the amount of solar insolation at the poles of Mars was dramatically different compared to today. Models have shown that during this time water ice at the poles would have been unstable and possibly migrated to the midlatitudes. When the climate changed, again the water migrated back to the poles. The glaciers could therefore be remnants of a past, large ice sheet.

CTX imagery of a glacier surrounding a central massif. Credit: CTX/JMars.

CTX imagery of a glacier surrounding a central massif. Credit: CTX/JMars.

How much water do the glaciers contain then? To answer this question, we can use knowledge of glaciers on Earth. A glacier is essentially a big chunk of ice, and when it flows, it obtains a shape that tells us something about how soft the ice is. Water ice moves and deforms in a certain way, and the slope of the surface of a glacier therefore reveals information about the bed under the glacier. Looking at images of the Martian surface, we can see where the glaciers are, and from the Mars Orbiter Laser Altimeter we know the surface elevation. This allows us to setup models for how the ice behaves on Mars.

Combining the models with the radar measurements and maps of the glaciers, it turned out that the glaciers contain more than 150 thousand cubic kilometres of ice. This amount of ice may cover the surface of the planet in a 1.1 metres thick ice layer.

Dust covered water ice close to the south pole and white CO2-ice.

Dust covered water ice close to the south pole and white CO2-ice. Credit: ESA/DLR/FU Berlin.

If you want to know more about glaciers on Mars check out my recent paper published in Geophysical Research Letters. You can also meet me at the EGU General Assembly next week and listen to my talk at 8:30am, Wednesday the 15th of April in Room R13 (Session CR6.1Modelling ice sheets and glaciers).

High-tech science, old-school ship – Anne-Katrine Faber and Malte Winther

High-tech science, old-school ship – Anne-Katrine Faber and Malte Winther

Last summer we got the chance to participate in an incredible Arctic expedition. The mission was clear and yet unclear at the same time: Bring your fanciest laser technology on a wooden schooner. Then cross the Atlantic and sail to the fjords of southern Green

land and conduct science throughout the journey. During most of our expedition, our “scientific lab” contained icebergs, glaciers and beautiful fjords or open waters; And we even got the chance to experience northern lights and a visit from a polar bear.  But unavoidably also the not so pleasant feeling of seasickness….

Sailing into one of many fjords on the south-east coast of Greenland. (Credit A.-K. Faber)

Sailing into one of many fjords on the south-east coast of Greenland. (Credit A.-K. Faber)

The expedition:

On June 24rd 2014 a majestic wooden schooner, set sail and began a fantastic journey across the North Atlantic Ocean. The journey was split up into three legs: 1) from Copenhagen (Denmark) to Reykjavik (Iceland), 2) from Reykjavik to Narsarsuaq (Southern Greenland), 3) from Narsarsuaq to Copenhagen. The first and the third leg of the journey was primarily “transporting” the ship to the remote environment where most of the scientific research projects was scheduled. On two of these legs, we were the only scientists onboard experiencing the amazing feeling of being on an old wooden schooner crossing the North Atlantic Ocean. The second leg of the journey was the part with the most scientific enrolment. On this leg, scientists with different backgrounds and interests were onboard conducting experiments primarily in the remote fjords in the south-eastern part of Greenland.

Some people might recognize the ship as the ship used in the documentary “Expedition to the end of the world” where scientists and artists went on a polar expedition together.  No artist participated this time and the aim of this expedition was purely scientific. The purpose was twofold; to conduct science in the Greenlandic fjords, second to gain experience before the realization of a future circumpolar scientific expedition.

The route of the trip, plotted using linear interpolation of the measured GPS positions. (Credit M. Winther)

The route of the trip, plotted using linear interpolation of the measured GPS positions. (Credit M. Winther)

The vessel was working as a floating field station and we were part of a larger team of scientists from different fields all taking advantage of this unique opportunity.  Using the ship as a base for research had some logistical advantages, as it was easy to move from one location to another and research could be done onboard the ship or on land. On a typical day, some scientists would stay on the ship and others would jump into small zodiacs or use special airborne transportation. Then they would transport themselves to nearby field sites to collect data.

The expedition ended with a beautiful and fairytale-like morning on the 20th of September 2014. Sailing on a calm sea during an early summer dusk, with the first sunshine of the day in our backs, passing the old Kronborg castle (the Northern tip of Sealand, Denmark) and sailing with the sails the last miles back to the harbor across from the Queens palace in the center of Copenhagen.

Left: The view of Kronborg as seen from the Captains view. (Credit M. Winther). Right: Sun rise as sailing in the North-sea. (Credit M. Winther)

Left: The view of Kronborg as seen from the Captains view. (Credit M. Winther). Right: Sun rise as sailing in the North-sea. (Credit M. Winther)

History of Activ

The research vessel used for this incredible expedition was the old ice-class cargo vessel named “Activ”. Activ was built in 1951, and was in the first 27 years used as a cargo vessel for the Royal Greenland Trading Company sailing on the eastern coast of Greenland. In 1978, the ship was re-rigged as a topgallant schooner with room for 16 persons including a Captain and crew members. Even after this update Activ remained as an “old fashioned” sail and motor-driven vessel, which means that it is preferable to sail only with sails, which need to be handled with pure manpower. With a total of 13 sails, everyone onboard was obligated to help when needed.

The majestic arctic schooner "Activ" (Credit: A.-K. Faber)

The majestic arctic schooner “Activ” (Credit: A.-K. Faber)

The Science

But now, let’s talk science. During this arctic shipboard expedition we brought a water vapor Cavity Ring down Spectroscopy (CRDS) isotope analyzer namely the Picarro G2301 analyzer. Using this analyzer we endeavored to perform online continuous measurements of the water vapor isotopes in the lower 25 meter of the marine boundary layer over the entire expedition. In order to measure the water vapor continuously, we made an onboard dual-inlet setup. For the majority of the expedition we measured from an inlet placed at the top (at approximately 25 meters) of the mizzen mast (stern mast). From this inlet the water vapor was drawn down to the instrument using a pump standing next to the Picarro analyzer. To prevent condensation of water vapor between the inlet and the analyzer, the water vapor was transported through an insulated heated (30°C) cobber stainless steel tube. The second inlet was at the end of an “arm” attached to the site of the vessel. This arm had the same kind of insulated heated cobber stainless steel tube for transporting the vapor in. The special thing about the arm is that it gives us the means to draw vapor from different elevations quickly and very easily and quickly.

Using this dual-inlet system we measured almost continuously, from 25meters above sea-level, for the full expedition time over both the ocean and in the fjords. When in the fjords and when we experienced calm weather, we used the “arm” to draw vapor from different heights above the water.

Left: The mizzen mast with the top inlet just above the navigation systems. Center: The "arm" with the second inlet attached. Right: Installation/reparation of the top inlet required harness ect. (Credit A.-K. Faber and M. Winther)

Left: The mizzen mast with the top inlet just above the navigation systems. Center: The “arm” with the second inlet attached. Right: Installation/reparation of the top inlet required harness ect. (Credit A.-K. Faber and M. Winther)

The purpose of our part of the expedition was to gain more knowledge about the physical processes affecting the water vapor in the atmosphere.  This is important because we can use this knowledge to improve the general interpretation of the climate system, the representation of water vapor in climate models, and interpretation of observations on water isotopes in the Greenland ice cores.

The development of laser-based isotope analyzers are relatively new. Therefore only a very limited amount of vapor measurements exist for the Arctic region.  Understandably we found that the unique route of the expedition yielded excellent conditions for monitoring the water isotopes in the vapor throughout the duration of the expedition.

Memorable moments:

Being on an expedition like this gave us a lot of unforgettable moments, of which only a few is written here.

The analyzer and the setup placed in the cabin where we slept. (Credit M. Winther)

The analyzer and the setup placed in the cabin where we slept. (Credit M. Winther)

The instrument we used for this expedition (the Picarro G2301 analyzer) was, together with the rest of the measuring and calibration setup, placed in the same cabin as we were sleeping. This was because of the limited space and the need for a stable “lab”. The cabins onboard were all with 2-3 beds and closets/chests for clothing etc. and therefore relatively large compared to our expectations. Though having a continuously running Picarro analyzer and setup in the closet, the cabin quickly became unwanted by anyone but us (since we had to stay there because of the limited beds onboard). Having the analyzer in the cabin, resulted in both some positive and negative consequences. For example, we never felt cold while sleeping in the cabin and there were more onboard privacy for us (sleeping in the lab-cabin). The downside was that we had to sleep with earplugs, since a constant noise at approximately 90 decibel from the instrument is not pleasant, and we had no closet for our clothes. But despite this we enjoyed being onboard, and we have had a lot of fun of our new meaning of “sleeping with Picarro”.

A wild polar bear as seen from Activ. (Credit A.-K. Faber)

A wild polar bear as seen from Activ. (Credit A.-K. Faber)


Being on a shipboard expedition in the south-eastern part of Greenland, comes with some expectations for spectacular adventures. On this expedition we were not disappointed, since we had a close encounter with a polar bear and multiple nights with the magic of Northern lights. The polar bear encounter was luckily not a threat, it just wanted some chocolate from the zodiac which was on the side of the vessel in the water. The bear was curious but nothing dangerous ever happened.

We both think that we have had an amazing expedition which have given us memories for life. Life as a young scientist in the arctic is not bad at all!!

Left: Iceberg watch from the side of the vessel when entering the fjords. Right: The vessel as seen from the top of the fore mast. (Credit A.-K. Faber)

Left: Iceberg watch from the side of the vessel when entering the fjords. Right: The vessel as seen from the top of the fore mast. (Credit A.-K. Faber)


Anne-Katrine Faber and Malte Winther are Ph.D. students at Centre for Ice and Climate, The Niels Bohr Institute, University of Copenhagen, Denmark. They are working with water isotopes and continuous measurements of N2O isotopomers, respectively. 

Do Beers Go Stale in the Arctic? – Jakob Sievers

Do Beers Go Stale in the Arctic? – Jakob Sievers

A story about CO2 -fluxes between sea-ice and the atmosphere

What’s it all about?

Whenever I have had to describe my PhD research project to people outside of my research community, I have always found it useful to use an analogy most people are familiar with, namely beers. Now that I have the full attention of the entire class, allow me to explain. Say you were to find yourself at an outside café, grabbing a beer in the beautiful weather with your friends. You get caught up in the conversation and soon your beer is lukewarm and stale and you struggle with the last few drops while gesturing somewhat frantically at the waitress to bring you a new beer. What has happened? Well, the partial pressure of CO2 (pCO2) in the beer is much larger, relative to that of the atmosphere. This leads to gradual diffusion (or flux) of CO2 from the surface of the beer into the atmosphere, and eventually the establishment of an equilibrium pCO2 in the beer, similar to that of the atmosphere. Of course, you have probably been waving at the waitress long before the equilibrium is reached. Now imagine that you had performed this experiment in the cold of winter. The waitress brings you a beer and from the moment it reaches your table a thin layer of ice starts forming on the top. What happens with the CO2 levels now?

Though a bar would probably have been a nice place for fieldwork, obviously my fieldwork took place in a much colder environment, namely the arctic sea-ice in northeast Greenland. The kingdom of the sort of curious four-legged fella shown in the photo above. And the answer to the above question might be “nothing” in the case of a beer. I.e., the ice works as a sort of lid on the beer, preventing any fluxes of CO2 from occurring, but what about in a sea-ice environment? Until very recently the beer analogy would have applied equally well here, as most scientists would have told you that no CO2 fluxes could take place in this sort of environment. Accordingly, all climate models currently treat sea-ice covered regions as regions of no exchange in terms of CO2. Lately, however, a number of papers have been published, suggesting that fluxes can occur at different stages of the annual sea-ice cycle. The paradigm shift occurred when it was discovered that CO2 may be transported through brine channels within the sea-ice. Brine channels form within sea-ice because of the salt in the sea-water, and they tend to be larger if the temperature is higher. So, at the bottom of the ice where the ambient temperature is a balmy 0°C, the channels are largest (Fig. 1).

Figure 1: An actual photo of brine channels within sea-ice [Junge et al., 2001, Annals of Glaciology]

Figure 1: An actual photo of brine channels within sea-ice [Junge et al., 2001, Annals of Glaciology]

Processes – scratching the surface

It is thought that the bulk of fluxes occur primarily in the spring during sea-ice melting. To understand why, we have to go back to when the sea-ice is formed during wintertime. As the ice forms, salts and CO2 are concentrated in the brine channels, and are expelled into the ocean through the larger brine channels in the bottom of the ice. The process is called gravity drainage and refers to the sinking of the highly saline and cold brine water which is denser relative to the underlying sea-water. Some of the expelled CO2 will continue to the deeper ocean column and as such lead to a CO2 loss of the original surface system. Hence, upon springtime melting, the upper water column has less CO2 than the atmosphere, which then causes an uptake of CO2 from the atmosphere. I.e.: a re-carbonization of the beer, so to speak. The mechanism has been coined the sea-ice driven carbon pump and has been estimated to drive an annual uptake of 50 million tons of carbon annually in the arctic alone, constituting a significant fraction of the total CO2 uptake of the arctic ocean which is estimated to be 66-199 million tons of carbon annually. Hence, understanding the impact of this carbon pump is important, particularly because the impact of climate change is felt more dramatically in the arctic compared to the rest of the world. Sea-ice cover is becoming increasingly ephemeral and glacial freshwater runoff, which inherently has a low partial pressure of CO2, is becoming increasingly ubiquitous in the fjord systems.

What are the challenges in this field of study?

To incorporate the carbon pump into existing climate models we need first to understand the physical and biogeochemical processes which drive sea-ice carbon fluxes in both coastal and open water conditions as well as during the entire life-cycle of sea-ice. Sounds simple, right? Of course not. Like most experimental investigators in cryospheric sciences we are struggling with considerable logistical challenges in a vast and unforgiving environment, where temperature conditions often have instrument-developers shaking their head in disbelief. “We didn’t test the instrument for that sort of thing”. How reassuring. Secondly, there are substantial risks involved, both for people and instruments, when conducting experiments during periods of thin sea-ice, which also happen to be the periods in which fluxes are most pronounced, and thus all the more important to understand. Fortunately we are equipped with fairly unique vehicles for transportation during these conditions (Fig. 2). Finally, the fluxes that are reported on sea-ice are often significantly smaller than what is typically reported in terrestrial environments, leaving investigators at times struggling to discern actual measurements from artificial noise.

Figure 2: Our polar air-boat for safe and fast transportation on thin sea-ice. During the experiment this bad boy was typically referred to as a gasoline-to-noise converter. In this particular picture the air-boat is pictured on thick sea-ice, hence the use of normal winter clothing instead of marine safety suits. Photo: Jakob Sievers.

Figure 2: Our polar air-boat for safe and fast transportation on thin sea-ice. During the experiment this bad boy was typically referred to as a gasoline-to-noise converter. In this particular picture the air-boat is pictured on thick sea-ice, hence the use of normal winter clothing instead of marine safety suits. Photo: Jakob Sievers.

What did I focus on during my PhD?

A common method for flux-observation is the micrometeorological Eddy Covariance method. It involves setting up a 2-5m high tower on a surface of interest and at the top installing:

(1) A three-dimensional ultrasonic anemometer, which measures 3D wind patterns,

(2) A gas analyzer, which measures the atmospheric concentration of e.g. H2O, CO2 or CH4 depending on which type of flux you are interested in.

Figure 3: Our eddy covariance tower on thin ice (20cm) in the outermost region of Young Sound (NE Greenland). Photo: Jakob Sievers.

Figure 3: Our eddy covariance tower on thin ice (20cm) in the outermost region of Young Sound (NE Greenland). Photo: Jakob Sievers.

Together they allow for calculation of the average flux in an upwind area in front of the tower. This area will vary in size depending on the height of the tower and wind-conditions. One of our instrument towers are shown in Fig. 3. From a mathematical standpoint the method is very simple, but it requires a number of quite complicated assumptions concerning the characteristic wind-patterns of the environment in question. Often these assumptions are not discussed in detail in papers. During my PhD I found that because most fluxes in a sea-ice environment are so small the critical assumptions began breaking down. It seemed that nearly all observations reflected large-scale meteorological patterns and flow-characteristics of the topography instead of fluxes in the local area of interest. Realizing this, I successfully developed and tested a very comprehensive data-analysis method to disentangle contributions of interest and contributions which were not reflective of the local environment of interest. Due to the technical nature of this new method I will not elaborate here, except to say that it was recently published in the Journal of Atmospheric Chemistry and Physics. Subsequently I was able to analyze simultaneous observations of CO2-fluxes and environmental parameters such as site energy balance and wind-speed to achieve a better understanding of some basic causal relationships for CO2 fluxes in a sea-ice environment.

Because this field of study is so new, and in-situ experiments are so challenging, much work is still needed but hopefully we will soon have a sufficiently detailed understanding of the physical and biogeochemical factors driving CO2 fluxes in the sea-ice environment, to be able to develop a model relationship and upscale that to all polar regions in which sea-ice exist.

Figure 4: An unexpected challenge during fieldwork: invasion by sled dog pups. Photo: Karl Attard.

Figure 4: An unexpected challenge during fieldwork: invasion by sled dog pups. Photo: Karl Attard.

I would like to leave you with one final picture illustrating a somewhat unexpected challenge during our experiment: having to reclaim our instruments and tools from the sled dog pups (Fig. 4).

Jakob Sievers ( Arctic Research Centre / Aarhus University) has just completed his PhD at Aarhus University in Denmark as part of the DEFROST project. He is interested in the physical and biogeochemical drivers of CO2 cycling in sea-ice environments and the development of flux models and flux observation methods under these challenging circumstances. He is currently seeking funding for the purpose of continuing his research in northern Norway.

Only extremes – Babis Charalampidis

Only extremes – Babis Charalampidis

– In fieldwork, you have no average. You just have extremes.

When Daniel spoke his mind out loud we were facing a bright sunny day coming in from the opening of our tent. We were very glad to see that and ready to engage with our glaciological tasks. Our camp site was at the immediate fore field of the A. P. Olsen ice cap in Northeast Greenland. We had arrived there the previous evening and had two days left to spend for our science up on the ice. But, on Saturday 30 August, we had to return to Tyrolerfjorden, no-matter-what. It had to happen in one-go, which means a 12-hour hike, 30 kilometers, carrying everything. Our appointment with Kenny was 00:30 hours at its narrow coast, so he can provide us a safe passage with the boat back to the ZERO station. The weather was closing in again on Sunday and with four days of supplies left, we just had to make things happen.

The author posing against a background of mountains (Credit: Daniel Binder)

Arctic fieldwork: Pose and reality. (Credit: Daniel Binder)

Daniel’s statement is very funny because it is actually very much true. Polar scientists always post their greatest photos, where they look like awesome polar explorers, implying that everything was completed like piece-of-cake. I do that too. But, there is always the other side of every story. Any fieldworker in the Arctic can verify that no matter how much experience you have or how hardened you have become through the years, every new mission is absolutely unique and different in many ways from all the previous ones. You have to prepare yourself the best way you can and when the time comes, perform your absolute best. Then, you have to also just hope for the best.

The initial plan was simple really. Two glaciers on the Northeast coast monitored by two institutes, ZAMG and GEUS, to be visited by a two-person mission, one from each institute, right? The team would be an alpine glaciologist with experience in the Austrian glaciers and an ice sheet glaciologist with experience in Greenland, both familiar with Zackenberg. End-of-summer mission implies that there is no sea ice in the fjords, so the team would have to hike everywhere. It also implies that there will be limited if any snow cover on the ice fields. Right…

When we began the first part of the mission on Freya glacier, the reality was quite different from our expectations. The biggest part of the glacier was still covered in snow. We were glad to see that, since it implied a positive mass budget year for Freya. On the other hand, since this was unexpected and we didn’t have our snow shoes with us, every step that we made was a struggle with the snow cover trying to swallow our legs while we are carrying all our equipment. Myself, I am what Daniel calls a “spoiled glaciologist”. Lightweight guy, I am definitely not as strong as he is, always riding on helicopters, twin otters and ski-doos. Seeing this genuine mountaineer also exhausted at the end of that first day on Freya made me feel a bit better about my performance. Of course, he was carrying about 10-20 kilos more on his back. Nevermind that.


Map of the wider region of Zackenberg (Geodætisk Institut).

Sleeping on the side moraine of Freya inside bivouac sacks was also a new experience for me. We were glad not to experience fierce weather, so it was overall not too bad. But the fact is that in a bivouac, you end up quite quickly in a pool of liquefied water vapor that rains down on your face. Remedy is not too easy since as soon as you open the sack, you are exposed to the freezing glacial air. Fever in the morning was guaranteed for me.

Back at the ZERO station and before the hike to A. P. Olsen land, our preparations definitely included snow shoes. The previous days on Freya, we were able to spot the Argo glacier, the East-flowing glacier of the A. P. Olsen ice cap, on the horizon. It seemed to have an extended ablation zone with no snow cover, but since our plans included a visit in the upper GlacioBasis station, we thought that snow shoes would come in handy. As it turned out that was a really wise decision.

On Saturday 23 August we began the second part of our mission. Kenny and Lars dropped us off with the boat at the north coast of Tyrolerfjorden, west of Zackenberg and opposite of Eiger on the Clavering island. The weather was not inviting, cloudy atmosphere with small droplets falling now and then, but nothing too alarming. Our greatest concern at that time was crossing successfully the river at Store Sødal that may or may not be raging and full of water. As it turned out, crossing the river was not too challenging, since the flow at the end of the summer season is significantly reduced. But, the persistent cloud cover had gotten very thick by early evening and resulted in rain and eventually a storm.

Hard tasks and rewarding views (Credit: Babis Charalampidis).

Hard tasks and rewarding views (Credit: Babis Charalampidis).

While being in the proglacial valley of the Argo glacier, we were still closer to Store Sødal than to the ice cap when we decided to set camp and take shelter from the storm. We were definitely glad to get a bit dry, but we knew that this was a far from ideal situation. In this region, a lot of furry animals like to hang out. Snow foxes, arctic hare, but also bigger ones: muskoxen, polar bears… Any close encounter with them was far from our desires and although we were equipped with a flare gun and a rifle, one always prefers to return them unused, when one gets to return. We could only hope that our training and instinct would serve us well, should the circumstances require it.

Sleeping in the tent was frustrating. Every noise from outside – the wind, rock falls, the river – were keeping us from relaxing and enjoying our sleeps. In the morning, the storm was still going on. What we couldn’t have guessed at the time is that it would last for more than three days. Our initial awareness turned into prolonged sleeping sessions. In the interest of carrying less weight, we didn’t have with us any books or card games. Our daily routine included frequent chats during coffee times that intervened between our 2-3 hourly naps. A big moment every day, was 8 pm when we would call Kenny to let him know we’re doing fine and learn the weather forecast. Sadly, we had to hear the words: “Still stormy forecast, boys” quite a bit. The mood would catch up later in the evening when we would have our modest dinner and finish the day with cognac and cigarettes.

Good times, bad times (Credit: Babis Charamlapida).

Good times, bad times (Credit: Babis Charamlapida).

The time came when we heard good news: “Tomorrow, Wednesday 27th at noon sky clears up, boys”! And so it did. But, hiking after such a prolonged period in horizontal position was not something to derive pleasure from. By the end of that day, exhausted as we were, we managed to set camp at the very front of the glacier. Having wasted three days of supplies, we knew that we wouldn’t make it to the upper station. But, also one glimpse at the glacier predetermined that we will be slow again: The rain storm at the bottom of the valley was in fact a snow storm at the ice cap. The snow cover was everywhere at least half a meter and although we would be faster than on Freya with the snow shoes, we wouldn’t be as fast as we had hoped.

We successfully completed most of our tasks on A. P. Olsen and we definitely enjoyed this expedition. The scenery is always breathtaking and after all, this mission was more like an adventure of two friends than conventional glaciological fieldwork. But, it is also a fact that we overworked ourselves.

Last day on A. P Olsen and last hours of hike the next day before our pick-up from Tyrolerfjorden (Credit: Babis Charamlapida).

Last day on A. P Olsen and last hours of hike the next day before our pick-up from Tyrolerfjorden (Credit: Babis Charamlapida).

It is always good to remember that some moments throughout the process can be quite tough. In the end, this is probably the case with everything in life. The journey teaches you a few things. I will never forget the pain all over my body after the last hike from the ice cap to Tyrolerfjorden, racing against the clock on very challenging terrain with full backpacks. I will never forget the sense of trust that was developed between me and Daniel, how well we collaborated, coexisted and in a sense completed each other on this trip. Finally, I will never forget to have always a small book and a deck of cards with me.

Babis Charalampidis (GEUS/Uppsala University) is an Uppsala University PhD student within the SVALI project, based at the Geological Survey of Denmark and Greenland and supervised by Dirk van As. He is interested in the Greenland ice sheet’s mas budget, particularly the link between energy balance and subsurface processes such as percolation and refreezing. He studies the changes of the lower accumulation area of the southwest of the ice sheet in a warming climate, based on in situ observations.

Four years in Tibet – Eva Huintjes

Four years in Tibet – Eva Huintjes

The Tibetan Plateau – area: 2.5 million km2, mean elevation: 4,700 m a.s.l., surrounded by a series of high mountain ranges that are home to some of the world’s highest peaks: Himalayas, Karakoram, Pamir, Kunlun Shan. Considering these characteristics and the unique cultural heritage of Tibet the decision was easy when I was asked if I am interested working in a project on the regional patterns of glacier change on the Tibetan Plateau. And of course, we had to do a lot of field work to collect atmospheric and glaciological data :-). Between 2009 and 2012 we could realise seven field campaigns over three to four weeks to two different glaciers.

The Tibetan Plateau with location of the studied glaciers. The red stars mark the glaciers with in-situ measurements.

The Tibetan Plateau with location of the studied glaciers. The red stars mark the glaciers with in-situ measurements. Map by T. Bolch.

The journey always started at Lhasa airport. When leaving the plane I usually felt a little bit dizzy. Who wonders, air pressure is only 65% of that at sea level. In the following days in Lhasa every single time when walking up to the 3rd floor of our guesthouse at the Institute of Tibetan Plateau Research (ITP) I remembered that I was at 3,700 m a.s.l. By now I was glad that our schedule said that we stay in Lhasa for three nights before heading towards the snow and ice! Enough time to prepare our instruments, food and other equipment and to enjoy the tourist life… including headache and diarrhoea.

Glaciers on the Tibetan Plateau are usually terminating above 5,000 m a.s.l. and are only accessible by foot. Together with Chinese drivers and our colleagues from the ITP we left Lhasa by car, either for a one day ride to the north, to Nam Co Lake, and then another hiking day to Zhadang glacier (5,500 m a.s.l.). Or we went on a three day drive to the west, to the Kailash region, also followed by a one day ascent to Naimona’nyi glacier (5,600 m a.s.l.).

Local Tibetan people at Naimona’nyi glacier. Credit: Benjamin Schröter.

Local Tibetan people at Naimona’nyi glacier. Credit: Benjamin Schröter.

Generally, we spent two to three days in between to adapt to the altitude. With the support of local Tibetan people and yaks or horses we managed to bring all our stuff up to the glacier. I was always thankful only having to carry up myself and a small backpack :-).The torture of the ascent (at least for me) was totally forgotten when the tents were set up and we were rewarded with a great view down to the plateau (see picture at the top; camp at Naimona’nyi glacier. Credit: Benjamin Schröter).

However, we did not walk up to enjoy the landscape but to set up automatic weather stations (AWS) on or near the glacier and to conduct additional glaciological measurements. The AWS measure various atmospheric as well as surface and subsurface parameters. We also set up two time-lapse camera systems that took daily pictures of the glacier over three years. My colleagues at TU Dresden (Germany) geo-referenced and orthorectified these pictures to derive a daily snow line.

AWS at Naimona’nyi glacier in 2011. Credit: Christoph Schneider.

AWS at Naimona’nyi glacier in 2011. Credit: Christoph Schneider.

Usually nights up there were cold and restless and the days were quite exhausting. Air pressure drops to 50% of that at sea level. Thus, most of us were really happy when we successfully finished our measurements and repair work and walked down again after a few days to one week at the glacier side.

AWS at Zhadang glacier; left: 2009; right: after the ablation season in 2010. Credit: Christoph Schneider and Fabien Maussion.

AWS at Zhadang glacier; left: 2009; right: after the ablation season in 2010. Credit: Christoph Schneider and Fabien Maussion.

When returning home in the office the real work was only just beginning. We set up a physically-based ‘COupled Snowpack and Ice surface energy and MAss balance model’ (COSIMA) that accounts for subsurface processes like melt water percolation, retention and refreezing. The collected in-situ measurements are used to calibrate, run and evaluate the model. Forced with atmospheric model data (High Asia Refined analysis; HAR) we then applied the model to five glaciers on the Tibetan Plateau (see map above). From every regional study we obtained a 10-year time series of glacier-wide surface energy and mass balance components. This data set helps us to further understand the role of the different energy and mass balance components for glacier change in the different climate regions of the Tibetan Plateau. We also hope to increase the knowledge on the various driving mechanisms for energy and mass balance on Tibetan glaciers.

Schematic overview of COSIMA by E. Huintjes.

Schematic overview of COSIMA by E. Huintjes.


Illustration of the ‘COupled Snowpack and Ice surface energy and MAss balance model’ (COSIMA). Tair: air temperature; RH: relative humidity; ws: wind speed; N: cloud cover; ρair: air density; SWin: shortwave incoming radiation; SWout: shortwave outgoing radiation; α: albedo; LWin: longwave incoming radiation; LWout: longwave outgoing radiation; Qsens: turbulent sensible heat flux; Qlat: turbulent latent heat flux; Qmelt: energy flux for melting; QC: conductive heat flux; QPS: energy flux from penetrating SW radiation; Ts: surface temperature; Tb: bottom temperature; Ti: temperature of the snow/ice layer i; ρi: density of layer i; wi: liquid water content of layer i.




Follow this link to see the animated time series of the daily snow line evolution at Zhadang glacier, 2010-2012:


Eva Huintjes is PostDoc at RWTH Aachen University, Germany. In December 2014 she finished her PhD on ‘Energy and mass balance modelling for glaciers on the Tibetan Plateau – Extension, validation and application of a coupled snow and energy balance model’ supervised by Prof. Christoph Schneider. She is interested in understanding the different regional patterns of glacier surface energy and mass balance components and their driving mechanisms on the Tibetan Plateau and in other glaciated regions. Currently she is applying the model to glaciers in southeastern Tibet to reconstruct Little Ice Age climate conditions and to glaciers in the Tianshan (northwestern China).

The bi-polar behaviour of surge-type glaciers – Heidi Sevestre

The bi-polar behaviour of surge-type glaciers – Heidi Sevestre

Surge-type glaciers are the bi-polar member of the family of glacier dynamics. Every now and then they go into a complete fury and nobody really understands why.

What are surge-type glaciers?
Surge-type glaciers typically go through what we call the “surge cycle”. It is divided into two phases; a long quiescent phase during which the glacier is more or less dormant, followed by much shorter phase called “the surge”. Glacier velocities during the surge can typically reach 100 to 1000 the quiescence velocities. Velocities of up to 40 m per day were measured in Alaska during the surge of Variegated glacier.
The duration of the surge cycle varies from region to region. It tends to average around 20 years in Alaska, and 100 years or more in the Arctic.

What really triggers the surge of glaciers has always been an enigma in glaciology. Their unpredictable behaviour, and the dramatic and dangerous nature of the surge phase have always prevented extensive fieldwork to collect much needed in-situ data. Only a handful of studies have managed to obtain field data on glaciers before, during and after the surge of a glacier.

Distribution of surge-type glaciers in the world. Normal glaciers are blue, surge-type glaciers are represented by pink dots (credits: Sevestre and Benn, submitted)

Distribution of surge-type glaciers in the world. Normal glaciers are blue, surge-type glaciers are represented by pink dots (credits: Sevestre and Benn, submitted)

Where are they found?
Surge-type glaciers are distributed in a “non-random” fashion, meaning that they do not uniformly pepper all the glacierized regions on Earth, but contrarily gather in narrow clusters only found in some regions. We think that cracking the code of their distribution might lead us to a better understanding of the causes of surging.
A strong concentration of surge-type glaciers can be found in the sub- and high-Arctic, namely Alaska, Arctic Canada, Greenland, Iceland, Svalbard, Novaya Zemlya and Karakoram. Another popular area for these glaciers is western central Asia with the Karakoram, Tian Shan and Pamirs. Sporadic clusters of a few individuals have also been identified in the Andes, Caucasus and Kamchatka (See Fig. 1).

Our contribution to the question:
A large part of our work has consisted in building a global inventory of all observed/identified surge-type glaciers in the world. This has enabled us to perform the first global statistical analyses on these glaciers. Comparing the geometry and climatic distribution between normal and surge-type glaciers has yield very interesting results.

Fieldwork has also been an essential component of our work. As a group fully based in Svalbard, we have no excuses not to do get out in the field and collect top quality data. Svalbard is actually of huge interest for us as the population of identified surge-type glaciers represent 20% of all the glaciers on the archipelago.

By using a Ground Penetrating Radar (GPR) we have been able to look at glacier thickness and ice temperature on 15 different surge-type glaciers. These attributes are essential to map the thermal structure of the glaciers and understand further their potential surge mechanisms. As extensive as this may sounds, GPR-ing glaciers in Svalbard is actually quite an enjoyable task to do as the whole system can be towed by a snow scooter, and hundreds of kilometres of data can be collected in just a couple of days (see figure 2).

An “all seeing eye” is our best ally to observe spatial patterns of surging on the archipelago. Remote sensing data is really the only way we can catch surges in their very early stages. At the end of last year, we acquired pairs of TerraSar-X images covering most of the archipelago, and derived surface velocities from there. We discovered that no less than 17 glaciers are currently actively surging!

Driving in straight lines on a glacier in Svalbard = collecting GPR data (credits: Nick Hulton).

Driving in straight lines on a glacier in Svalbard = collecting GPR data (credits: Nick Hulton).

So… why do they surge?
First, we know how glaciers can surge. They can sustain such high velocities over months or years by having water at their base, lubricating their movement. But as soon as the water escapes, the surge terminates.
Over the past decades, two models of surging have been developed, each trying to understand how glaciers with different thermal structures can surge. Glaciers can either be “warm bedded” meaning that ice at their base is just at the point of melting; or “cold-bedded” if their ice is below the point of melting. Glaciers with a fully warm base have been observed to surge, as well as glaciers with a warm core surrounded by cold ice. The first model suppose that a switch in the configuration of the basal meltwater drainage system could lead to a surge, while the second suggests that surging could be caused by a change in the basal temperature from cold to warm. In both models, water eventually becomes trapped under the glacier, removing any friction at its base, and enabling it so move at high speeds.
There is still a lot to understand about these glaciers, and we hope that our results will cast a new light on the weird and wonderful world of surging glaciers!

Time lapse imagery

Follow this link to see a time lapse of the surge of Paulabreen, Svalbard:

Heidi Sevestre is a PhD student based at the University Centre in Svalbard and supervised by Prof. Doug Benn and Prof. Jon Ove Hagen. Heidi is interested in glacier dynamics, particularly the mechanisms of glacier surges. She studies the global distribution of surging glaciers and their regional specificities, while field data is collected in Svalbard.

Heidi tweets as @HeidiSevestre.

­Around the Poles in approx. 100 minutes: Earth Observation for Climate Science and the Cryosphere – Anna Maria Trofaier and Anne Stefaniak

­Around the Poles in approx. 100 minutes: Earth Observation for Climate Science and the Cryosphere – Anna Maria Trofaier and Anne Stefaniak

Everyday we come into contact with technology that has changed the way we work, live and even think. Yet it is still easy to forget how integral satellite technology is to our daily lives; over two thousand artificial satellites currently orbit our planet – satellites for navigation, for telecommunication, for meteorology, and for environmental and climate monitoring. The latter two categories fall within the field of Earth Observation (EO). These satellites follow either Geostationary Orbits (GEOs) or Low Earth Orbits (LEOs). LEO satellites zoom around the globe, taking just over 1.5 hours to complete a cycle, collecting data crucial to our understanding of the Earth and its climate system. Parameters that represent the characteristics of the climate system are called Essential Climate Variables (ECVs) and in order to be able to monitor a changing climate we need to create long-term, global ECV records. Establishing these archives is our mission! In 2010 the Global Climate Observing System (GCOS), in support of the UN Framework Convention on Climate Change (UNFCCC), identified 50 ECVs. Out of these 50, 13 ECVs – those that currently are technically feasible to observe from space, that were not already covered by existing projects, and for which the European Space Agency (ESA) could provide a unique and significant contribution to the scientific community – have been selected and incorporated in 15 projects; this is the ESA Climate Change Initiative (CCI).

Focus on cryosphere

We all know the cryosphere is strongly linked to climate, contributing to the Earth’s thermal inertia. The cryosphere is a climate driver, and at the same time it is also an indicator of climate change; the cryosphere interacts with the climate system and reacts to changes in climate. Take for instance the populist example of a climate change indicator: Ice melt and associated global sea level rise. The magnitude of global and regional sea level change, and hence their consequences, need to be further explored by research such as glacier and ice sheet mass balance studies. In order to adapt to the effects of a changing cryosphere, we need to monitor the frozen parts of our world closely.

This is where the ESA CCI may provide some valuable data for your own research. Currently, there are four CCI projects specifically dedicated to the cryosphere (although there are others that are linked to cryospheric research such as ‘Sea Level’ and ‘Sea Surface Temperature’). These four cryosphere CCI projects are: ‘Glaciers’ , ‘Ice Sheets Greenland’, ‘Sea Ice’ and the new project ‘Ice Sheets Antarctica’, which will complement the original ‘Ice Sheets Greenland’ project.

View of East Greenland fjord

Photo credit: Nanna B. Karlsson


Developing useful data products, what’s new?

ESA has always tried to engage the scientific community (e.g. through its Data User Element (DUE) and Support To Science Element (STSE) ), encouraging input on identifying essential EO products and organising workshops that further communication amongst the – shall we call them – producers and users. However, this process is not always straightforward. In the past, it has often been the case that EO products do not appeal to potential user communities. Products are developed which are then not exploited because they do not represent the appropriate phenomenon, at the appropriate scale or with only limited consistency (the issue of frequent, consistent, comparable data being ever present). It is as if EO scientists, field scientists and modellers speak fundamentally different languages. The CCI projects have therefore been specifically designed with climate scientists in mind, centrally involving the climate community in each project. Requirements of the user communities were rigorously assessed and incorporated in the products’ development, and in addition a separate CCI project wholly dedicated to climate modelling, the ‘Climate Modelling User Group (CMUG)’, was set up.


Research at the ESA Climate Office

Apart from providing these data products we also do some of our own research. An example of a current study is an analysis of Arctic sea ice in relation to El Niño events. CCI datasets including Arctic sea ice concentration and thickness variables enable research to be carried out into the major influences of climate variability. We know that the Arctic sea ice trend is steadily decreasing annually but the effect of inter-annual climate variability is less well constrained. Using the CCI Sea Surface Temperature (SST) datasets, one of the most direct climate links of El Niño, correlations with sea ice can be investigated. El Niño events originate in the tropical Pacific with warmer temperatures affecting the global climate. These changes can be traced through the ECVs allowing us to determine the time it takes for it to affect global climate and in particular, Arctic sea ice. By establishing how inter-annual global climate variability influences sea ice, we can aid predictions of future events. EO satellites help provide some of the most globally comprehensive climate records, significantly aiding our understanding and adaptation to these climatic changes.

The CCI datasets provide climate records for a range of ECVs. However, cryospheric research is not simply limited to the above-mentioned CCI projects. Further research at the Climate Office focuses on using some of the land-based climate variables (including fire, land cover and soil moisture) as proxies for permafrost monitoring. Permafrost is an aspect of the cryosphere that cannot be directly monitored from space, but the development of proxies will support global scale monitoring, crucial to understanding changes in permafrost conditions.

EO has already, and continues to make significant changes to the way we investigate and gather new information about the planet we live on. However, there is still much that we do not yet know and hope to discover with the on-going monitoring of ECVs. As the products are updated to include more recent data, developing long-term records, our ability to decipher climate patterns and responses will be significantly aided.


Our changing planet

Nature is in a state of flux. We monitor our ever-changing world so we can understand the underlying processes. Our motivations may be economic or altruistic; they may be due to ambition or a thirst for knowledge. However, one thing is certain, the impacts of climate change will affect us all. Satellites help provide us with the bigger picture. Producing the ECV archives is one step towards effective monitoring in support of the international climate change community.

There are many words that describe Earth from space: unique, beautiful, vulnerable, alive – they all fit the bill. A recent ESA mission to the International Space Station was named Blue Dot; a rather fitting description of our place in the universe. In Jules Verne’s classic, the debate about how long it takes to journey around the world starts off with the quote: “The world has grown smaller, since a man can now go round it ten times more quickly than a hundred years ago.” Today LEO satellites orbit the world about 15 times per day with a repeat cycle of 12 days – that’s nearly seven times faster than Phileas Fogg’s record. The world has not grown smaller, but in fact the world that we see is vast and – to a degree – still unknown. Whatever your Weltanschauung, your perceptions of the world, your motivations and reasons for undertaking research, ultimately we monitor our planet for the benefit of society and the environment. Together, let us try to understand our planet and its climate system better!


To access any of the ESA CCI datasets please visit our website at and click on the download link on the individual project sites. Registration is required but all data are free of charge and we welcome any comments with regard to use of the data.


Anna Maria Trofaier is a Postdoctoral Research Fellow and Anne Stefaniak is a Young Graduate Trainee working for the European Space Agency’s Climate Office at the European Centre for Space Applications and Telecommunications (ECSAT) on the Harwell-Oxford Campus in the UK.

You can follow them on Twitter @WhinnyHowe, @AnneStefaniak and @esaclimate.


This approximation is for Copernicus. LEO cycles can be anywhere between 1 – 2 hours depending on altitude.

4 Reasons Why You Should Get Involved as an Early Career Scientist (& a caveat) – Allen Pope

4 Reasons Why You Should Get Involved as an Early Career Scientist (& a caveat) – Allen Pope

You’re an early career scientist (ECS), or maybe you mentor one. So you know that we ECS are busy people, with responsibilities ranging from coursework to teaching, research to outreach, and labwork to fieldwork. And now there is this listicle (no, I’m not embarrassed about choosing this format) telling you to make time in your already packed day to volunteer some of your time to a(n early career) professional organization. Please, take a moment to hear me out.

When I was working on my master’s degree, I saw a workshop that I really wanted to attend, but I knew that similar previous events had been over-subscribed. So, I figured the best way to make sure I had a spot was to help organize the event myself. I enjoyed it and saw how much benefit both the attendees and myself got from the whole process. So, one thing led to another and eventually I became president of the Association of Polar Early Career Scientists, an organization created by ECS for ECS to be able to stimulate interdisciplinary and international research collaborations, and develop effective future leaders in polar research, education and outreach. Involvement with APECS transitioned to being one of the first elected early career members of the Council of the American Geophysical Union. Despite the time investment, these opportunities have been very valuable to me, so let me tell you why I (as an ECS) have gotten and continue to be involved in (early career) professional organizations.


1) Networking & Building Connections

Networking doesn’t have to be a dirty word – really, it’s just meeting new people (choose your favorite way), finding shared interests, and keeping in touch with colleagues. Normally, people think of networking as just for extroverts – but there are ways to make it work for introverts, too.

Getting involved with a professional organization can be the key to making friends in your field and having conference buddies no matter where you go in the world. You can practice your networking skills with other ECS: share stories, grab a drink, find out about training courses or job opportunities, and build a support network. The shared mission of your volunteering will help bring you together.

And, if that weren’t enough, getting involved with a(n early career) professional organization can be the key – or the excuse – to meet that rock star scientist whose papers you’ve read. Except you’re not just a fan – you’re a colleague with a reason to interact. Take advantage of this for all it’s worth!

Taku A & the crew

2) Gaining Skills & Experience

There are so many things that volunteering for a(n early career) professional society can teach you. Leadership, running a meeting, building consensus, motivating a team, facilitating discussion, organizing an event, asking for funding, building a newsletter, communicating to diverse audiences – and the list goes on. Whether you bring it back to your research career (running a lab group takes a lot more skills than MATLAB), or discover that you have a knack and love for research coordination and decide to change career tracks, you come out on top by getting involved.


3) Practice Taking Initiative

Making things happen is satisfying and fun, pIMG_8985articularly when you’re in a field where results take years to come to fruition (if ever). No matter what career path you take, having the ability to be  “do-er” will be helpful. Being on some committees can help you achieve this – and being on others (in a good organization) will give you faith that recommendations put forwards by committees that only seem to provide advice are actually acted on and executed in meaningful ways.

Use your experience and expertise to go from talk to action – following through on meaningful contributions will get you noticed and allow you to continue to build and progress. But make sure that you’re choosing activities that are beneficial to you, too. As an ECS, you owe it to yourself to build skills and connections that you find fulfilling and that will contribute to your future career. Volunteering your time should always be a win-win situation for both you and the team you are working with.

4) Balance and Time Management

While your thesis or pushing out that next paper might seem like the only important thing right now, it won’t be forever. As you continue to grow in your career, multiple projects, proposals, reviews, etc. etc. will begin to pile up – and you’ll wish you had gained more experience handling the workload earlier on.

By getting involved in a professional organization as an ECS, you are getting an early start on training yourself to maintain a work-life balance. You will learn to prioritize what you need to get done and when. You will learn to balance your own time with other peoples’ schedules (both are valuable). You will also learn the importance of everybody knowing what time zone a conference call is on. Getting a thesis puppy might not be right for you, but having something that isn’t just your primary research can be healthy, gratifying, and productive all at the same time.

A Caveat: It’s all about the continuum.

“Getting involved” means different things for different groups – check out your options, put yourself out there, and find out what works for you. Whichever group you choose to get involved with (and I mention a few ideas below), a very important thing to keep in mind is that you want to interact with not only other ECS, but also experienced colleagues who will be able to mentor and guide you. Even ECS organizations should include not-so-early-career-scientists in as many ways as possible, bringing together a continuum and transferring knowledge, rather than reinventing the wheel.

There are many organizations you can get involved with as an ECS, whether it is an early-career specific group (like APECS, PYRN, or ICYS) or a larger international body (like EGU, AGU, IASC, etc.). You could “just” co-convene a session at a conference you are planning on attending (with other ECS or an experienced colleague), organize a discussion group or mentor panel in your department or at a regional meeting, or even set up a pub meet-up sometime. It’s all getting involved in your community: networking, building skills, taking initiative, and balancing your priorities.


Allen Pope is a postdoc working at NSIDC and UW’s PSC, studying snow and ice, mostly from space. He tweets about the cryosphere, remote sensing, and few other things @PopePolar. Find out more about his research and what other projects he’s involved in at The photos accompanying this blog entry are also by Allen.