CR
Cryospheric Sciences

Image of the Week – On thin [Arctic sea] ice

Thin, ponded sea ice floes in Nares Strait [Credit: Christopher Horvat and Enduring Ice]

Perhaps the most enduring and important signal of a warming climate has been that the minimum Arctic sea ice extent, occurring each year in September, has declined precipitously. Over the last 40 years, most of the Arctic sea ice has thus been transformed to first-year ice that freezes in the winter and melts in the summer.           
Concern about sea ice extent and area is valid: since sea ice is a highly reflective surface, a reduction of its area has a significant effect on the energy budget of Earth’s climate. Yet it is well-documented that, in the summertime, when sunlight is strongest, the biggest changes to sea ice volume are coming from effects not associated with changes to ice area, but with changes to sea ice thickness, like increased melt ponding. The change from thick, reflective multi-year summer sea ice to thin, ponded, less-reflective first-year ice are seen throughout the Arctic. In places like Nares Strait, the region of the Canadian Arctic that separates Canada from Greenland (seen above), commonly referred to as the “last ice area”, this is true as well.


The “Enduring Ice” Expedition

In the summer of 2016 and 2017, 4 filmmakers and a scientist (that’s me!) set out to examine Nares Strait, the area that separates Ellesmere Island in Canada from Northern Greenland (see map below). The Strait has been designated the “last ice area” by the World Wildlife Fund, a region which is expected to remain fully covered in thick sea ice even as the rest of the Arctic sea ice cover melts.

Nares Strait [Credit: Enduring Ice, LLC]

Yet when we arrived, what we found was anything but the promised land of thick, multi-year ice. Instead, all of the ice we encountered was thin, heavily ponded, and fragmented. In decades past, the presence of multi-year floes would dam Nares Strait, allowing ice-free passage for kayakers. Instead, the fractured ice poured through the strait, making passage impossible. Faced with an impassable strait, we resorted to pulling the kayaks over the land, moving a total of 100 km in 45 days.

The “Enduring Ice” Expedition [Credit: Christopher Horvat and Enduring Ice]

Most projections have the Arctic totally ice-free in September by 2050, meaning there will truly be no multi-year ice left at all. Yet as the Arctic still cools dramatically in winter, during the summer months (from May to July) when solar radiation is highest, the total area of the Arctic covered in sea ice is still high, but now covered by thin first-year ice. At the same time, the ongoing warming has thinned the Arctic sea ice by more than half (Kwok, 2008).

The albedo of first year ice can be half or less that of multi-year thicker ice (Light, 2008). Since the Arctic has thinned substantially over the last 40 years, the consequences of this thinning on the Arctic and Earth climate system are dramatic.

More and more solar radiation is absorbed by thinner ice. Excess solar absorption leads to ocean and atmospheric warming, and to more sea ice melting, a process known as the ice-albedo feedback. It was previously thought that regions covered by sea ice where inhospitable to photosynthetic life. However, thinning sea ice is likely responsible for the increase in phytoplankton blooms in the Arctic, as more light is transmitted through the thinner ice.

The Arctic sea ice cover is rapidly transitioning from thick, multi-year ice to thin, ponded, first-year sea ice.  As we can see, this thinning is resulting in a totally new Arctic climate system.

Further Reading

Edited by Violaine Coulon and Sophie Berger


Chris Horvat is a NOAA climate and global change postdoctoral fellow at Brown University in Providence, RI.  He tweets as @chhorvat and you can also reach him on his website.

This guest post was contributed by a scientist, student or a professional in the Earth, planetary or space sciences. The EGU blogs welcome guest contributions, so if you've got a great idea for a post or fancy trying your hand at science communication, please contact the blog editor or the EGU Communications Officer to pitch your idea.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

*