CR
Cryospheric Sciences

Image of the Week — ice tsunamis !

Image of the Week — ice tsunamis !

Tsunami is a word that became world famous after the so-called Christmas tsunami in 2004, when enormous waves hit the shores around the Indian Ocean with disastrous consequences for countries such as Sri Lanka, Thailand, Somalia and many others.

But did you know that tsunamis can be icy?

An ice tsunami is one of the many names associated with ice shoves (or ivu, shore ice override, ice pile-up, ice ride-up). This rare but impressing phenomenon happens when strong winds rapidly push slabs of sea/lake ice towards the shore.

  • Once on shore, the ice shoves can ride up and advance up to a few hundreds metres inland as a large but thinner sheet of ice (Mahoney et al, 2004; Whiteman, 2011)

Click here to display content from YouTube.
Learn more in YouTube’s privacy policy.

  • Alternatively, the ice slabs can also pile up, forming a big ridge on the beach that can rise up to 200m high (Mahoney et al, 2004; Whiteman, 2011).

Click here to display content from YouTube.
Learn more in YouTube’s privacy policy.

 

Conditions to get an ice shove

  1. Partial thaw: Ice shoves can only happen when the ice has started to melt but has not completely disappeared yet.  Spring is therefore the best time of the year to observe such a phenomenon.
  2. Strong winds: Only strong winds in the direction of the shore can push piles of ice ashore.
  3. Gentle slope of the beach: The gentler the slope of the shore, the less it prevents the ice pile to advance inland, and the more it can pile up.

This is a common phenomenon in Northern Canada and in Alaska but as these places are sparsely populated, the damages it causes are often limited.

Modis satellite images of Lake Huron, Michigan before (top) and after (bottom) strong winds broke up the ice on the lake and caused an ice shove on Linwood. [Credit: NASA earth observatory]

Modis satellite images of Lake Huron, Michigan, before (top) and after (bottom) a wind storm broke up the ice on the lake and caused an ice shove on Linwood (NOTE: the resolution of the image is too coarse to display the ice piled up on the shore) . [Credit: NASA earth observatory]

Reference/further reading

Edited by N. Karlsson

Sophie Berger is a postdoc at the Alfred Wegener Institut, Germany. She is using various remote sensing data and techniques to investigate the dynamics and stability of the ice shelves in Dronning Maud Land (East Antarctica). She completed her PhD at the Université Libre de Bruxelles (ULB), Brussels, Belgium. She tweets as @SoBrgr.


1 Comment

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

*