CR
Cryospheric Sciences

General Public

Ice-hot news: The cryosphere and the 1.5°C target

Ice-hot news: The cryosphere and the 1.5°C target

Every year again, the Conference of Parties takes place, an event where politicians and activists from all over the world meet for two weeks to discuss further actions concerning climate change. In the context the COP24, which started this Monday in Katowice (Poland), let’s revisit an important decision made three years ago, during the COP21 in Paris, and its consequences for the state of the cryosphere…


1.5°C target – what’s that again?

Last October, the International Panel on Climate Change (IPCC) released a special report (SR15) on the impacts of a 1.5°C global warming above pre-industrial levels. This target of 1.5°C warming was established during the 21st conference of the parties (COP21), in a document known as the Paris Agreement. In this Agreement, most countries in the World acknowledge that limiting global warming to 1.5°C warming rather than 2°C warming would significantly reduce the risks and impacts of climate change.

But wait, even though achieving this target is possible, which is not our subject today, what does it mean for our beloved cryosphere? And how does 1.5°C warming make a difference compared to the 2°C warming initially discussed during the COP21 and previous COPs?

A reason why the cryosphere is so difficult to grasp is the nonlinear behaviour of its components. What does this mean ? A good basic example is the transition between water and ice. At 99.9°C, you have water. Go down to 0.1°C and the water is colder, but this is still water. Then go down to -0.1°C and you end up with ice. The transition is very sharp and the system can be deeply affected even for a small change in temperature.

As a main conclusion, studies conducted in the context of SR15 show that, below 1.5°C of global warming, most components of the cryosphere will be slightly affected, while above that level of warming, there is more chance that the system may respond quickly to small temperature changes. In this Ice Hot News, we review the main conclusions of the SR15 concerning ice sheets, glaciers, sea ice and permafrost, answering among others the question if achieving the 1.5°C target would prevent us to trigger the potential nonlinear effects affecting some of them.

Ice sheets

The two only remaining ice sheets on Earth cover Greenland and Antarctica. If melted, the Greenland ice sheet could make the sea level rise by 7 m, while the Antarctic ice sheet could make it rise by almost 60 m. A recent review paper (Pattyn et al., 2018), not in SR15 because published very recently, shows that keeping the warming at 1.5°C rather than 2°C really makes the differences in terms of sea level rise contribution by the two ice sheets.

Greenland is a cold place, but not that cold. During the Holocene, the surface of the ice sheet always melted in summer but, in the yearly mean, the ice sheet was in equilibrium because summer melt was compensated by winter accumulation. Since the mid-1990s, Greenland’s atmosphere has warmed by about 5°C in winter and 2°C in summer. The ice sheet is thus currently losing mass from above and its surface lowers down. In the future, if the surface lowers too much, this could accelerate the mass loss because the limit altitude between snow and rainfalls may have been crossed, further accelerating the mass loss. The temperature threshold beyond which this process will occur is about 1.8°C, according to the Pattyn et al., 2018 paper.

Antarctica is a very cold continent, much colder than Greenland, but it has been losing mass since the 1990s as well. There, the source of the retreat is the temperature increase of the ocean. The ocean is in contact with the ice shelves, the seaward extensions of the ice sheet in its margins. The warmer ocean has eroded the ice shelves, making them thinner and less resistant to the ice flow coming from the interior. And if you have read the post about the marine ice sheet instability (MISI), you already know that the ice sheet can discharge a lot of ice to the ocean if the bedrock beneath the ice sheet is deeper inland than it is on the margins (called retrograde). MISI is a potential source of nonlinear acceleration of the ice sheet that, along with other nonlinear effects mentioned in the study, could trigger much larger sea level rise contribution from the Antarctic ice sheet above 2 to 2.7°C.

You can find complementary informations to the Pattyn et al., 2018 paper in SR15, sections 3.3.9, 3.5.2.5, 3.6.3.2 and in FAQ 3.1.

Glaciers crossing the transantarctic mountains, one of them ending up to Drygalski ice tongue (left side) in the Ross sea. The ice tongue is an example of those ice shelves that form as grounded ice flows toward the sea from the interior. Ice shelves are weakened by a warmer ocean, which accelerates upstream ice flow [Credit: C. Ritz, PEV/PNRA]

Glaciers

Over the whole globe, the mass of glaciers has decreased since pre-industrial times in 1850, according to Marzeion et al., 2014. At that time, climate change was a mix between human impact and natural variability of climate. Glacier response times to change in climate are typically decades, which means that a change happening, for instance, today, still has consequences on glaciers tens of years after. Today, the retreat of glaciers is thus a mixed response to natural climate variability and current anthropogenic warming. However, since 1850, the anthropogenic warming contribution to the glacier mass loss has increased from a third to more than two third over the last two decades.

Similarly to the Greenland ice sheet, glaciers are prone to undergo an acceleration of ice mass loss wherever the limit altitude where rainfall occurs more often than snowfall is higher and at the same time the glacier surface lowers. However, as opposed to ice sheets, glaciers can be found all over the world under various latitudes, temperature and snow regimes, which makes it difficult to establish a unique temperature above which all the glaciers in the world will shrink faster in a nonlinear way. There are, however, model-based global estimates of ice mass loss over the next century. The paper from Marzeion et al., 2018, shows that under 1.5-2°C of global warming, the glaciers will lose the two thirds of their current mass, and that for a 1°C warming, our current level of warming since pre-industrial times, the glacier are still committed to lose one third of their current mass. This means the actions that we take now to limit climate change won’t be seen for decades.

You can find complementary informations in SR15, sections 3.3.9, 3.6.3.2 and in FAQ 3.1.

Sea ice

As very prominently covered by media and our blog (see this post and this post), the Arctic sea-ice cover has been melting due to the increase in CO2 emissions in past decades. To understand the future evolution of climate, climate models are forced with the expected CO2 emissions for future scenarios. In summer, the results of these climate model simulations show that keeping the warming at 1.5°C instead of 2°C is essential for the Arctic sea-ice cover. While at 1.5°C warming, the Arctic Ocean will be ice-covered most of the time, at 2°C warming, there are much higher chances of a sea-ice free Arctic. In winter, however, the ice cover remains similar in both cases.

In the Antarctic, the situation is less clear. On average, there has been a slight expansion of the sea-ice cover (see this post). This is, however, not a clear trend, but is composed of different trends over the different Antarctic basins. For example, a strong decrease was observed near the Antarctic peninsula and an increase in the Amundsen Sea. The future remains even more uncertain because most climate models do not represent the Antarctic sea-ice cover well. Therefore, no robust prediction could be made for the future.

You can find all references were these results are from and more details in Section 3.3.8 of the SR15. Also, you can find the impact of sea-ice changes on society in Section 3.4.4.7.

Caption: Sea ice in the Arctic Ocean [D. Olonscheck]

Permafrost

Permafrost is ground that is frozen consecutively for two years or more. It covers large areas of the Arctic and the Antarctic and is formed or degraded in response to surface temperatures. Every summer, above-zero temperatures thaw a thin layer at the surface, and below this, we find the boundary to the permafrost. The depth to the permafrost is in semi-equilibrium with the current climate.

The global area underlain by permafrost globally will decrease with warming, and the depth to the permafrost will increase. In a 1.5°C warmer world, permafrost extent is estimated to decrease by 21-37 % compared to today. This would, however, preserve 2 millions km2 more permafrost than in a 2°C warmer world, where 35-47 % of the current permafrost would be lost.

Permafrost stores twice as much carbon (C) as the atmosphere, and permafrost thaw with subsequent release of CO2 and CH4 thus represents a positive feedback mechanism to warming and a potential tipping point. However, according to estimates cited in the special report, the release at 1.5°C warming (0.08-0.16 Gt C per year) and at 2°C warming (0.12-0.25 Gt C per year) does not bring the system at risk of passing this tipping point before 2100. This is partly due to the energy it takes to thaw large amounts of ice and the soil as a medium for heat exchange, which results in a time lag of carbon release.
The response rates of carbon release is, however, a topic for continuous discussion, and the carbon loss to the atmosphere is irreversible, as permafrost carbon storage is a slow process, which has occurred over millennia.

Changes in albedo from increased tree growth in the tundra, which will affect the energy balance at the surface and thus ground temperature, is estimated to be gradual and not be linked to permafrost collapse as long as global warming is held under 2°C.

The above-mentioned estimates and predictions are from the IPCC special report Section 3.5.5.2, 3.5.5.3 and 3.6.3.3.

Slope failure of permafrost soil [Credit: NASA, Wikimedia Commons].

So, in summary…

In summary, what can we say? Although the 1.5°C and 2°C limits were chosen as a consensus between historical claims based on physics and a number that is easy to communicate (see this article), it seems that there are some thresholds for parts of the cryosphere exactly between the two limits. This can have consequences on longer term, e.g. sea-level rise or permanent permafrost loss. Additionally, as the cryosphere experts and lovers that we are here in the blog team, we would mourn the loss of these exceptional landscapes. We therefore strongly hope that the COP24 will bring more solution and cooperation for the future against strengthening of climate change!

Further reading

Edited by Clara Burgard and Violaine Coulon


Lionel Favier is a glaciologist and ice-sheet modeller, currently occupying a post-doctoral position at IGE in Grenoble, France. He’s also on twitter.

 

 

 

Laura Helene Rasmussen is a Danish permafrost scientist working at the Center for Permafrost, University of Copenhagen. She has spent many seasons in Greenland, working with the Greenland Ecosystem Monitoring Programme and is interested in Arctic soils as an ecosystem component, their climate sensitivity, functioning and simply understanding what goes on below.

 

 

Clara Burgard is a PhD student at the Max Planck Institute for Meteorology in Hamburg. She investigates the evolution of sea ice in general circulation models (GCMs). There are still biases in the sea-ice representation in GCMs as they tend to underestimate the observed sea-ice retreat. She tries to understand the reasons for these biases. She tweets as @climate_clara.

 

Image of the Week – Climbing Everest and highlighting science in the mountains

Image of the Week – Climbing Everest and highlighting science in the mountains

Dr Melanie Windridge, a physicist and mountaineer, successfully summited Mount Everest earlier this year and has been working on an outreach programme to encourage young people’s interest in science and technology. Read about her summit climb, extreme temperatures, and the science supporting high-altitude mountaineering in our Image of the Week.


It’s bigger than it looks! Experiencing the majesty of Everest

In April/May this year I climbed Mount Everest. To the top. It was two months of patient toil but in surroundings so majestic, impressive and inspiring. The Western Cwm (an amphitheatre-like valley shaped by glacial erosion) is vast, the summit ridge is steep and Khumbu Glacier was fascinating in itself. Our base camp was on the glacier and it changed daily in subtle ways – the ice melted, the rocks moved, the paths morphed. And the icefall was slightly different each time I passed through – the route changing through a collapsed area, a crevasse widening, or the rope buried by ice-block debris fallen from above. It’s a wonderful, interesting place and I am grateful to have experienced it. You can read more about the climb on my personal blog.

Fig.2: The view up the Western Cwm from Camp 1. Lhotse can be seen in the distance and the summit of Everest mid-left. [Credit: Melanie Windridge].

Everest, of course, is extreme. It is steep almost everywhere, so you barely get a let-up anywhere beyond the Western Cwm. The temperature differences are extreme too – it is extremely hot or extremely cold. I took a couple of temperature loggers with me to the summit (one in a base-layer pocket under my down suit and one in an outer pocket of my rucksack). You can see from the graph of summit night (the climb from Camp 4 to the summit of Everest) (Fig. 3) how the temperature varied by tens of degrees.  Since climbers dress for the coldest temperatures, this can be quite uncomfortable when the sun comes out.  The temperature on summit night got down to about -25°C, but during the day it rose to 10 degrees or more so that we were sweating into our down suits.

 

Fig.3: Graph showing the readings from two separate temperature loggers on summit night – one in a base-layer pocket under the down suit (Down suit temperature) and one in an outer pocket of the rucksack (Air temperature). The temperature rises quickly after sunrise, which was experienced on the summit [Credit: Melanie Windridge and Scott Watson].

Sharing the Science of the Summit

It was science that really got me interested in Everest, when I realised that the main reason the British had succeeded in 1953 but hadn’t in the 1920s and 30s was because of scientific understanding and the state of technology. But so often we don’t talk about the science that supports us in these great endeavours; instead we put it all down to the strength of the human spirit. I think we need to talk about both.

As part of my climb, I have been working on an outreach project to highlight how science and technology have improved safety and performance on Everest. I have made Science of Everest videos for the Institute of Physics YouTube channel and will be giving public talks. I wanted to show how science supports us and what has improved in recent decades to contribute to the falling death rate on Everest.

In the video series I look at changes in weather forecasting, communications, oxygen, medicine and clothing. We also consider risk and preparation – videos that went out before I left for Everest – because, as a scientist, I looked into past data to see how I could give myself the best chance of reaching the summit and returning safely.

 

 

Communication has improved not only because we have a greater variety than was available to the first ascentionists or the early commercial climbers (we have satellite phones, mobile/cell-phones and WiFi now), but also because everything is a lot smaller. Electronic components have greatly reduced in size so that radios used on the mountain now are small and handheld in comparison to the bulky sets of the 1950s (see video above).

 

 

Of course, the implication of the project is wider than just Everest. I am interested in the importance of science and exploration in general. For me, Everest is an icon of exploration – the way that human curiosity, ingenuity, determination and endurance come together to drive us forward. Reaching into the unknown is good for us, on a societal level and on a personal level. I hope to give an appreciation of the value of science in our lives, give students an insight into interesting careers that use science, and show the value of doing things that scare us!

 

Further reading

Edited by Scott Watson and Clara Burgard


Dr Melanie Windridge is a physicist, speaker, writer… with a taste for adventure. She is Communications Consultant for fusion start-up Tokamak Energy, author of “Aurora: In Search of the Northern Lights” and is currently working on a book about Mount Everest.
Website: www.melaniewindridge.co.uk (see the Science & Exploration blog to read about the Everest climb)
Twitter @m_windridge, Facebook /DrMelanieWindridge, Instagram @m_windridge
Science of Everest videos on the Institute of Physics YouTube channel http://bit.ly/EverestVids

Image of the Week – Inspiring Girls!

Image of the Week – Inspiring Girls!

What, you may ask, are this group of 22 women doing standing around a fire-pit and what does this have to do with the EGU Cryosphere blog? This group of scientists, artists, teachers, and coaches gathered 2 weeks ago in Switzerland to learn how to become instructors on an Inspiring Girls Expedition. But what, you may ask again, is an Inspiring Girls Expedition? Well read on to find out more…


What is an Inspiring Girls Expedition?

In 1999 Glaciologist Erin Petit, Geographer Michele Koppes, and 5 high-school girls hiked out onto the South Cascade Glacier in Washington State. For the next week, this motley crew spent their time camped out on a glacier moraine, exploring the landscape and performing scientific experiments by day, and talking and listening to each others thoughts and stories by night – that was the birth of Girls on Ice.

Over the next 13 years, more expeditions took place and more instructors (scientists, artists and mountain guides) started to get involved. In 2012, a second Girls on Ice expedition was born in Alaska and, in the years since, there have been Girls on Ice expeditions in 4 different locations and in 2 different languages! The idea has expanded to other areas of wilderness expedition as well, with new projects starting up: Girls on Rock, Girls in Icy Fjords and Girls on Water – nowadays these expedition are collectively known as Inspiring Girls Expeditions!

But I haven’t really answered the question – what is an Inspiring Girls Expedition? It is a wilderness and science education program for high-school aged girls. Over the course of around 12 days, these girls get the chance to explore a wilderness setting, learn about scientific thinking, increase self-confidence, and push their physical and intellectual boundaries as part of a single-gendered team. And, importantly – it’s FREE – opening it up to girls who might not have the financial means to do something like this otherwise. Everyone who goes on the expedition from scientists to mountain guides and instructors is female, making this expedition pretty unique! I think the philosophy of Inspiring Girls is best described by their mission statement:

Our mission is to bring out your natural curiosity, inspire your interest in science, connect the arts and sciences, free you from gender roles, provide a less competitive atmosphere, and encourage trust in your physical abilities.

The workshop

I’ve been following the work of Girls on Ice for a while, so when I saw a chance to go on an instructor training course, I enthusiastically signed up! Over 4 days in June 2018, a group of women from at least 8 different countries got together in a hiking hut in Switzerland for an Inspiring Girls Instructor Workshop, hosted by Swiss Girls on Ice. We came from a broad range of backgrounds: glaciologists, climate scientists, biologists, artists, architects, professional coaches, teachers (I hope I haven’t forgotten anyone!). We started off by learning more about the Inspiring Girls philosophy, what they expeditions aim to teach, and how they keep the girls safe and deal with any issues that might arise. Then came the thinking part for us…How do you teach in a wilderness setting? How to keep teenage girls engaged in what you are doing? What is a good leader? This gave us a lot of food for thought and we discussed a lot of these issues late into the evenings!

Then the fun part (although we all look rather serious in the pictures – below), working on ideas for new Inspiring Girls Expeditions (the current expeditions are often over-subscribed so there is certainly scope for more expeditions in more places) with the hope of inspiring more girls! So definitely watch this space for more expeditions coming to a mountain, cave or forest near you!

Figure 2: Workshop participants designing new Inspiring Girls Expeditions [Credit: Marijke Habermann]

It was a fantastic few days, with a fantastic bunch of women and I certainly came away feeling inspired myself!

I have to admit, this isn’t your usual Image of the Week blog post, however, I hope the relevance to scientists, science educators, and anyone else that follows the blog is clear! There is a need to show girls and young women that they have the potential to do what they want: be that a glaciologist, a mountain guide (both very much male dominated careers) or something entirely different! This type of expedition, in a single-gendered environment, is a very effective way to help build courage, confidence, and self-reliance!

This sounds cool – how can I get involved?

The team at Inspiring Girls are always looking for new people who are keen and enthusiastic about their project to get involved as volunteers, by donating a bit of cash or simply spreading the word about the expeditions – check their website to see how you can help out!

Edited by Clara Burgard

Image of the Week – Polar Prediction School 2018

Image of the Week – Polar Prediction School 2018

Early career scientists studying polar climate are one lucky group! The 29 young scientists who took part in the 10 day Polar Prediction School this year were no exception. They travelled to Arctic Sweden to learn and discuss the challenges of polar prediction and to gain a better understanding of the physical aspects of polar research.


The Year of Polar Prediction

The Year of Polar Prediction (YOPP) was launched on May 15th 2017; a large 2 year project that ‘aims to close gaps in polar forecasting capacity’ and ’lead to better forecasts of weather and sea-ice conditions to improve future environmental safety at both poles’. With these aims in mind, and with the support of the related APPLICATE project and the Association for Polar Early Career Scientists (APECS), a ten day Polar Prediction School took place in Abisko, Sweden in mid-April.

Abisko is a little town of 85 inhabitants, located north of the Arctic Circle (68°N) next to a National Park and a large lake. Due to the interesting habitats found in the region it is an excellent place to undertake polar research. Consequently, a scientific research station is located in the town, where research mainly focuses on biology, ecology, and meteorology.

Heading back to the research station (seen at the back of the picture) after a long hike [Credit: C. Burgard].

The 29 school participants were made up of Master students, PhD students, and PostDocs, with some studying the Arctic and some the Antarctic. The participants had diverse research backgrounds, with research that focused on atmospheric sciences, oceanic sciences, glaciers, sea ice and hydrology of polar regions, and used a range of techniques, from weather or climate models to in-situ or satellite observations. However, in the end, we were all linked together by our interest in the polar regions. Both this diversity and this link in our research helped us to exchange ideas about the common issues and the differences in all our disciplines.

The school programme

The course aimed to broaden students’ knowledge around their very specific PhD area. Therefore, the school covered a huge range of topics including polar lows, polar ocean-sea ice forecasting, remote sensing of the cryosphere, boundary layers, clouds and much more! Each day was made up of a mixture of lectures and practical sessions, which included:

  • Computer modelling exercises, for example using a simple 1D sea ice model
  • Observations, which included measuring temperature and wind from a weather station on the frozen lake next to the station, and daily radiosonde launches at lunchtime, in sync with radiosonde launches worldwide. These results were compared to model predictions each day.
  • Data assimilation, which focused on understanding the shortcomings in reanalysis products that we all use, including sources of uncertainty and error in the products and how they may impact our own work.

After dinner each evening a different group gave an informal weather briefing for the next day, which was often condensed down to how cloudy it would be, the amount of snow predicted (very little), and temperature (which averaged 2-3°C). Not quite the harsh, sub-zero temperatures that most of us had packed for! Each day was broken up by two coffee breaks (always accompanied by an obligatory cinnamon roll!) and meals which were taken all together in the main research building. This dragged everyone out of the lecture room to chat and refresh before the next session.

As is usual for any worthwhile meteorological fieldwork, we installed a small weather mast on the lake [Credit: C. Burgard].

Living Arctic weather for real

The usual weather in Abisko during April is fairly dry with temperatures ranging from 2°C to -6°C. In preparation for the cold, most of us had brought an abundance of wooly jumpers, thick thermal layers and numerous pairs of socks. However, on arrival in Abisko, the sun was shining and it was a balmy 7°C for the first two days. Whilst erecting the meteorology mast many of us were wearing T-shirts and sunglasses, after abandoning our warmer gear. The warm weather was not to last! Cloudy, relatively mild (2°C to -2°C) conditions persisted throughout most of the week, and it remained dry, which made it easier to forecast the weather but we were all hoping for a little snow! Finally, on the final day of the summer school, large snowflakes fell, although sadly it all melted quite quickly.

When we arrived, the whole area was coated in a thick layer of white snow and the frozen lake was covered. However, by the end of our visit, the bare earth was visible, and the top of the lake was slushy puddles of water. The changes in weather throughout the summer school made for interesting observation records. The albedo (reflectivity) of the lake surface went from approximately 0.8 for the fresh, white snow, but was reduced to 0.4 for the darker, water covered lake surface. It was great to see some theory in action!

Exploring the region

Luckily, we were also given a free day , in which we could explore the region, go skiing or just relax. One large group went off hiking, whilst a smaller group went cross country skiing and a few had a walk to the nearby frozen waterfall. But don’t worry, the science still continued! A group of 3 people stayed close by to release the lunchtime radiosonde.

Abisko children launching a radiosonde! [Credit: J. Turton]

Our visit to the area coincided with the exciting annual ice fishing contest! Whilst cars and small DIY tools are common place in many cities, in Abisko it is a snow mobile (or skidoo) and an ice drill, so they were well versed in the art of ice fishing! The majority of the town’s occupants arrived at the lake and started drilling small holes to catch some fish. After two hours, a number of prizes were awarded (e.g for the longest fish caught). Unfortunately, some of the holes were a little too close to our meteorology mast, and some cables were pulled out, but thankfully we still collected some good data!

An important aspect of any research is engaging with the local communities and communicating effectively with them. So all of the summer school attendees gathered by the lake to watch the ice fishing contest, and a large number of the children from Abisko gathered to watch us release the radiosonde, even helping launch one. They found our activities just as exciting as we found theirs!

And we did some science communication as well!

A crucial aspect of science is how you communicate it to a variety of audiences. The way you might discuss your thesis to your viva panel should be completely different to the way you describe your science to your Great Aunt Linda or to a group of 10-year olds who are attending your outreach event. As part of the summer school, we learnt a range of tips and tricks for communicating science, thanks to Jessica Rohde. Jess is the communications officer for IARPC (Interagency Arctic Research Policy Committee) Collaborations and has years of science communication experience under her belt. Each evening we had a short lecture by Jess, which focused on a specific area of communication including presentation slide design, knowing your audience, listening to the audience and finding the story behind your science. Once we had learnt the theory we then put what we had learnt into practice. We did a bit of  improv’, which included 1-minute elevator pitches and tailoring your science to taxi drivers, the Queen of England and models (no not computer models, the Kate Moss variety). An important take-home message was that there is no such thing as the ‘general public’. When designing your outreach event, the ‘general public’ could involve children of all ages (and therefore all learning levels), parents, teachers, professors and pensioners. Therefore, you should listen to the needs of your audience and understand what their motivation is.

You can check out the final results of these sessions here!

In summary…

In the end, although the school was quite intense, everyone was sad to part. We are sure we will all remember this exciting time, where we learnt about the many aspects of polar prediction, and what to consider when tackling science communication. We hope that this school will be organized again in the next years to provide this amazing and unforgettable experience to all those who could not join this year’s Polar Prediction School!

Further reading

Edited by Morgan Jones


Rebecca Frew is a PhD student at the University of Reading (UK). She investigates the importance of feedbacks between the sea ice, atmosphere and ocean for the Antarctic sea ice cover using a hierarchy of climate models. In particular, she is looking at the how the importance of different feedbacks may vary between different regions of the Southern Ocean.
Contact: r.frew@pgr.reading.ac.uk

 

 

Jenny Turton is a post doc working at the institute for Geography at the University of Erlangen-Nuernberg, in the climate system research group. Her current research focuses on the interactions between the atmosphere and surface ice of the 79N glacier in northeast Greenland, as part of the GROCE project. 

 

 

 

Clara Burgard is a PhD student at the Max Planck Institute for Meteorology in Hamburg. She investigates the evolution of sea ice in general circulation models (GCMs). There are still biases in the sea-ice representation in GCMs as they tend to underestimate the observed sea-ice retreat. She tries to understand the reasons for these biases.

Image of the Week — Biscuits in the Permafrost

Fig. 1: A network of low-centred ice-wedge polygons (5 to 20 m in diameter) in Adventdalen, Svalbard [Credit: Ben Giles/Matobo Ltd]

In Svalbard, the snow melts to reveal a mysterious honeycomb network of irregular shapes (fig. 1). These shapes may look as though they have been created by a rogue baker with an unusual set of biscuit cutters, but they are in fact distinctive permafrost landforms known as ice-wedge polygons, and they play an important role in the global climate.


Ice-wedge polygons: Nature’s biscuit-cutter

In winter, cracks form when plummeting air temperatures cause the ground to cool and contract. O’Neill and Christiansen (2018) used miniature accelerometers to detect this cracking, and found that it causes tiny earthquakes, with large magnitude accelerations (from 5 g to at least 100 g (where g = normal gravity)!). Water fills the cracks when snow melts. When the temperature drops, the water refreezes and expands, widening the cracks. Over successive winters, the low tensile strength of the ice compared to the surrounding sediment means that cracking tends to reoccur in the ice. As the cycle of cracking, infilling, and refreezing continues over centuries to millennia, ice wedges develop.

Subsurface ice wedge growth causes small changes in the ground surface microtopography. There are linear depressions, known as troughs, above the ice wedges (fig. 2). Adjacent to the troughs, the soil is pushed up into raised rims. From these raised rims, the elevation drops off into the polygon centre, forming low-centred polygons (fig. 2a).

Shaping Arctic landscapes

Permafrost in the Northern hemisphere is warming due to increasing air temperatures (Romanovsky et al. (2010). As air temperatures rise, the active layer (the ground that thaws each summer and refreezes in winter) deepens.

As permafrost with a high ice content thaws out, the ice melts and the ground subsides. On the other hand, permafrost containing no ice does not experience subsidence. Consequently, permafrost thaw can cause differential subsidence in ice-wedge polygon networks. This re-arranges the surface microtopography: ice wedges melt, the rims collapse into the troughs, and the polygons become flat-centred and then eventually high-centred (fig. 2b and c; Lara et al. (2015)). Wedge ice is ~20 % of the uppermost permafrost volume, and so this degradation could have a big impact on the shape of Arctic landscapes.

Are ice wedge polygons climate amplifiers?

Fig. 2: Schematic diagrams of polygon types and features [Credit: Wainwright et al. (2015)].

The transition from low-centred to high-centred ice-wedge polygons affects water distribution across the polygonal ground. The rims of low-centred polygons tend to block water drainage, whereas the troughs facilitate relatively fast and effective drainage of water from the polygonal networks (Liljedahl et al., 2012). So, during summer, the centres of low-centred polygons are frequently flooded with stagnant water, whereas the central mounds of high centred polygons are well drained (and good to sit on at lunchtime!). The contrast in hydrology influences vegetation, surface energy transfer, and biogeochemistry, in turn influencing carbon cycling and the release of greenhouse gases into the atmosphere.

High-centred polygons can have increased carbon dioxide emissions compared to low-centred polygons, on account of their lower soil moisture, reduced cover of green vascular vegetation and the well-drained soil (Wainwright et al., 2015). On the other hand, once plant growth during peak growing season is accounted for, this can actually cause a net drawdown of carbon dioxide in high-centred polygons (Lara et al., 2015). In contrast, there is general agreement that low-centred polygons are associated with high summer methane flux (Lara et al., 2015; Sachs et al., 2010; Wainwright et al., 2015). This is due to multiple interacting environmental factors. Firstly, low centred polygons have a higher temperature, which increases methane production rates. Secondly, they also have moister soil, which decreases the consumption of methane, owing to the lower oxygen availability. Thirdly, the low-centred polygons often have more vascular plants that help transport the methane away from its production site and up into the atmosphere. Lastly, the low-centred polygons had higher concentrations of aqueous total organic carbon, which provides a good food source for methanogens.

Outlook

As the climate warms, ice wedge polygons will increasingly degrade. The challenge now is to figure out whether the transition from low-centred to high-centred polygons will enhance or mitigate climate warming. This depends on the balance between the uptake and release of methane and carbon dioxide, as well as the rate of transition from high- to low-centred polygons.

Further Reading

Lara, M.J., et al. (2015), Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula. Global Change Biology, 21(4), 1634-1651

Liljedahl, A.K., et al. (2016), Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nature Geoscience, 9, 312-316.

Wainwright, H.M., et al. (2015), Identifying multiscale zonation and assessing the relative importance of polygons geomorphology on carbon fluxes in an Arctic tundra ecosystem. Journal of Geophysical Research: Biogeosciences, 707-723.

On permafrost instability: Image of the Week – When the dirty cryosphere destabilizes! | EGU Cryosphere Blog

On polygons in wetlands: Polygon ponds at sunset | Geolog

Edited by Joe Cook and Sophie Berger


Eleanor Jones is a NERC PhD student on the EU-JPI LowPerm project based at the University of Sheffield and the University Centre in Svalbard. She is investigating the biogeochemistry of ice-wedge polygon wetlands in Svalbard. She tweets as @ElouJones. Contact Email: eljones3@sheffield.ac.uk

Image of the week — Making pancakes

A drifting SWIFT buoy surrounded by new pancake floes. [Credit: Maddie Smith]

It’s pitch black and twenty degrees below zero; so cold that the hairs in your nose freeze. The Arctic Ocean in autumn and winter is inhospitable for both humans and most scientific equipment. This means there are very few close-up observations of sea ice made during these times.

Recently, rapidly declining coverage of sea ice in the Arctic Ocean due to warming climate and the impending likelihood of an ‘ice-free Arctic’ have increased research and interest in the polar regions. But despite the warming trends, every autumn and winter the polar oceans still get cold, dark, and icy. If we want to truly understand how sea ice cover is evolving now and into the future, we need to better understand how it is growing as well as how it is melting.


Nilas or thin sheets of sea ice [Credit: Brocken Inaglory (distributed via Wikimedia Commons) ]

Sea ice formation

Sea ice formation during the autumn and winter is complex. Interactions between ocean waves and sea ice cover determine how far waves penetrate into the ice, and how the sea ice forms in the first place. If the ocean is still, sea ice forms as large, thin sheets called ‘nilas’. If there are waves on the ocean surface, sea ice forms as ‘pancake’ floes – small circular pieces of ice. As the Arctic transitions to a seasonally ice-free state, there are larger and larger areas of open water (fetch) over which ocean surface waves can travel and gain intensity. Over time, with the continued action of waves in the ice, pancake ice floes develop raised edges —  as seen in our image of the week — from repeatedly bumping into each other. Pancake ice is becoming more common in the Arctic, and it is already very common in the Antarctic, where almost all of the sea ice grows and melts every year.

Nilas vs pancakes

Nilas and pancake sea ice are different at the crystal level (see previous post), and regions of pancake ice and nilas of the same age may have different average ice thickness and ice concentration. As a result, the interaction of the ocean and atmosphere in these two ice types may be very different. Gaps of open water between pancake ice floes allow heat fluxes to be exchanged between the ocean and atmosphere – which can have very different temperatures during winter. Nilas and pancakes also interact with waves differently – nilas might simply flex with a low-intensity wave field, or break into pieces if disturbed by large waves, while pancakes bob around in waves, causing a viscous damping of the wave field. The two ice types have very different floe sizes (see previous posts here and here). Nilas is by definition is a large, uniform sheet of ice; pancake floes are initially very small and grow laterally as more frazil crystals in the ocean adhere to their sides, and multiple floes weld together into sheets of cemented pancakes.

How to make observations?

Sea ice models have only recently begun to be able to separate different sizes of sea ice. This allows more accurate inclusion of growth and melt processes that occur with the different sea ice types. However, observations of how sea ice floe size changes during freeze-up are required to inform these new models, and these observations have never been made before. Pancake sea ice floes are often around only 10 cm in diameter initially, which is far too small to observe by satellite. This means that observations of pancake growth need to be made close-up, but the dynamic ocean conditions in which pancakes are created makes it difficult to deploy instruments in-situ. So how can we observe pancake sea ice in this challenging environment?

In a recent paper (Roach et al, 2018), we used drifting wave buoys, called SWIFTs, to capture the growth of sea ice floes in the Arctic Ocean. SWIFTs are unique platforms (see image of the week) which drift in step with sea ice floes, recording air temperature, water temperature, ocean wave data and – crucially for sea ice – images of the surrounding ice. Analysis of the series of images captured has provided the first-ever measurements of pancake freezing processes in the field, giving unique insight into how pancake floes evolve over time as a result of wave and freezing conditions. This dataset has been compared with theoretical predictions to help inform the next generation of sea ice models. The new models will allow researchers to investigate whether describing physical processes that occur on the scale of centimetres is important for prediction of the polar climate system.

Edited by Sophie Berger


Lettie Roach is a PhD student at Victoria University of Wellington and the National Institute for Water and Atmospheric Research in New Zealand. Her project is on the representation of sea ice in large-scale models, including model development, model-observation comparisons and observation of small-scale sea ice processes.  

 

 

 

Maddie Smith is a PhD student at the Applied Physics Lab at the University of Washington in Seattle, United States. She uses observations to improve understanding of air-sea interactions in polar, ice-covered oceans.

Image of the Week – Super-cool colours of icebergs

Image of the Week – Super-cool colours of icebergs

It is Easter weekend! And as we do not want you to forget about our beloved cryosphere, we provide you with a picture nearly as colourful as the Easter eggs: very blue icebergs! What makes them so special? This is what this Image of the Week is about…


What are icebergs made of?

Fig.2: An iceberg with ‘scallop’ indentations [Credit: Stephen Warren].

Icebergs are chunks of ice which break off from land ice, such as glaciers or ice sheets (as you’ll know if you remember our previous post on icebergs). This means that they are mostly made up of glacial ice, which is frozen freshwater from accumulated snowfall. However, in some places where ice sheets extend to the coastline, making an ice shelf, icebergs can be made up of a different type of ice too.

 

Ice shelves can descend far down into the ocean. Seawater in contact with the ice at depth in the ocean is cooled to the freezing temperature. Because the freezing temperature decreases with decreasing pressure, if the seawater moves upwards in the ocean, it will have a temperature lower than the freezing temperature at that depth. That means it’s super-cooled – the seawater temperature is below the freezing temperature, but it hasn’t become a solid. The seawater cannot last for long in this state and freezes to the base of ice shelves as marine ice, which is seawater frozen at depth. The marine ice can help stabilize the ice shelf as it is less susceptible to fractures than glacial ice. Icebergs that calve from Antarctic ice shelves can sometimes be mixtures of glacial ice (on the top) and marine ice (on the bottom).

 

What can icebergs tell us?

Icebergs which tip over can tell us about processes that happen at the base of ice shelves. For example, scallops on the ice (the small indentations that can be seen in the second picture) can show the size of turbulent ocean eddies in the ocean at the ice shelf base. Basal cavities or channels show where oceanic melt had a large impact. Any colours visible in the iceberg can also give us information.

Fig.3: Marine ice containing organic matter, giving a greenish appearance [Credit: Stephen Warren].

Why are icebergs different colours?

Like snow (see this previous post), different types of ice appear different colours. A typical iceberg is white because it is covered with dense snow, and snowflakes reflect all wavelengths of ice equally. The albedo of snow, which is the proportion of the incident light or radiation that is reflected by a surface, is very high (nearly 1). Glacial ice is compressed snow, meaning it has fewer light-scattering air bubbles, so light can penetrate deeper than in snow, and more yellows and reds from the visible spectrum are absorbed. This results in a bubbly blue colour, with a slightly lower albedo than snow. Marine ice does not have bubbles, but light can be scattered by cracks, resulting in clear blue ice (see our Image of the Week). However, if the seawater from which the marine ice was formed contained organic matter, like algae and plankton, the resulting marine ice can have a yellowish or even green appearance (Fig. 3). If the marine ice formed near the base of an ice shelf where it meets the sea floor, it could contain sediment, giving it a dirty or black appearance.

So the colour of icebergs can tell us something about how ice was formed hundreds of metres below the ocean surface. You could even say that was super-cool…

Further reading

  • Warren, S. G., C. S. Roesler, V. I. Morgan, R. E. Brandt, I. D. Goodwin, and I. Allison (1993), Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves, J. Geophys. Res., 98(C4), 6921–6928, doi:10.1029/92JC02751.
  • Morozov, E.G., Marchenko, A.V. & Fomin, Y.V. Izv. (2015): Supercooled water near the Glacier front in Spitsbergen, Atmos. Ocean. Phys. 51(2), 203-207. https://doi.org/10.1134/S0001433815020115
  • Image of the Week – Ice Ice Bergy
  • Image of the Week – Fifty shades of snow

This post is based on a talk by Stephen Warren presented at AMOS-ICSHMO2018

Edited by Clara Burgard


Lettie Roach is a PhD student at Victoria University of Wellington and the National Institute for Water and Atmospheric Research in New Zealand. Her project is on the representation of sea ice in large-scale models, including model development, model-observation comparisons and observation of small-scale sea ice processes.  

 

Image of the Week – The colors of sea ice

Image of the Week – The colors of sea ice

The Oscars 2018 might be over, but we have something for you that is just as cool or even cooler (often cooler than -20°C)! Our Image of the Week shows thin sections of sea ice photographed under polarized light, highlighting individual ice crystals in different colors, and is taken from a short video that we made. Read more about what this picture shows and watch the movie about how we got these colorful pictures…


Sea ice can vary in salinity

Sea ice forms differently than fresh water ice due to its salt content. When sea water begins to freeze, the ice crystals aren’t able to incorporate salt into their structure and hence reject salt into the surrounding water. This increases the density of the remaining sea water which sinks (see this previous post). Some salty water gets trapped between the crystals though. This water will also slowly freeze, always rejecting the salts into the remaining water. The saltier the water, the lower its freezing point. This means the remnant very salty water, which we call brine, remains liquid even at temperatures below -20oC!

Sea ice crystals can vary in shape

The first layer of sea ice is typically granular – the crystals are small and round, with a diameter around one centimeter. This is because this layer is formed in open seas, where the crystals which go on to form this layer are spun and broken up by surface waves. This granular structure includes lots of ‘pockets’ of trapped brine. Under this surface ice layer, which is typically 10-30 cm thick, ice starts growing in more sheltered conditions. Such sea ice is columnar. The crystals are flat and elongated – like layers in a vertical cake. The brine is trapped between these layers in brine channels. When ice is relatively warm, for example shortly after freezing or before it starts melting, such channels are wide and can be connected. Brine can then escape from them at the lower end into the ocean. The channels also allow small, hardy microscopic plants and animals to travel through the ice. Often air bubbles are trapped in them too.

Sea ice can vary in how it looks too!

The size and form of sea ice crystals – sea ice texture – impacts various properties of the sea ice including its salt content, density and suitability as a habitat. It also influences the optical properties of ice, however. While pure water ice is transparent (see this previous post), sea ice appears milky. That is because of brine channels and bubbles between the crystals.

When looking at large regions of sea ice from space by sensors mounted on satellites, sea ice texture will be important too. Visible light has a short wavelength and this means it only penetrates into the top millimeter of ice. Images collected in the visible light range (see this previous post) will show features dominated by the surface properties of the ice. In comparison, microwaves have a longer wavelength and can penetrate deeper into the ice. Hence imagery of the sea ice cover collected in the microwave spectrum of light (see this previous post) will display features influenced by the internal structure of the sea ice in addition to the surface features.

 

The video below shows how the sea ice samples are analyzed for texture and how we got the colorful pictures for our Image of the Week…

 

Further reading

Edited by Adam Bateson and Clara Burgard


Polona Itkin is a Post-doctoral Researcher at the Norwegian Polar Institute, Tromsø. She investigates the sea ice dynamics of the Arctic Ocean and its connection to the sea ice thickness. In her work she combines the information from in-site observations, remote sensing and numerical modeling. Polona is part of the social media project ‘oceanseaiceNPI’ – a group of scientists that communicates their knowledge through social media channels: Instagram.com/OceanSeaIceNPI, Twitter.com/OceanSeaIceNPI, Facebook.com/OceanSeaIceNPI, contact Email: polona.itkin@npolar.no

Image of the Week – A Hole-y Occurrence, the reappearance of the Weddell Polynya

Image of the Week – A Hole-y Occurrence, the reappearance of the Weddell Polynya

During both the austral winters of 2016 and 2017, a famous feature of the Antarctic sea-ice cover was observed once again, 40 years after its first observed occurrence: the Weddell Polynya! The sea-ice cover exhibited a huge hole (of around 2600 km2 up to 80,000 km2 at its peak!), as shown on our Image of the Week. What makes this event so unique and special?


Why does the Weddell Polynya form?

The Weddell Polynya is an open ocean polynya (a large hole in the sea ice, see this previous post), observed in the Weddell Sea (see Fig.2). It was first observed in the 1970s but then did not form for a very long time, until 2016 and 2017…

 

Fig. 2: Map of the sea ice distribution around Antarctica on 25th of September 2017, derived from satellite data. The red circle marks the actual Weddell Polynya [Credit: Modified from meereisportal.de]

In the Southern Ocean, warm saline water masses underlie cold, fresh surface water masses. The upper cold fresh layer acts like a lid, insulating the warmer deep waters from the cold atmosphere. While coastal polynyas (see this previous post) are caused by coastal winds, open ocean polynyas are more mysteriously formed as it is not as clear what causes the warm deep water to be mixed upwards. In the case of the Weddell polynya, it forms above an underwater mountain range, the Maud Rise. This ridge is an obstacle to the water flow and can therefore enhance vertical mixing of the deeper warm saline water masses. The warm water that reaches the surface melts any overlying sea ice, and large amounts of heat is lost from the ocean surface to the atmosphere (see Fig. 3).

 

Fig. 3: Schematic of polynya formation. The Weddell polynya is an open ocean polynya [Credit: National Snow and Ice Data Center].

 

Why do we care about the Weddell Polynya?

Overturning and mixing of the water column in the Weddell Polynya forms cold, dense Antarctic Bottom Water, releasing heat stored in the ocean to the atmosphere in the process. Antarctic Bottom Water is formed in the Southern Ocean (predominantly in the Ross and Weddell Seas) and flows northwards, forming the lower branch of the overturning circulation which transports heat from the equator to the poles (see Fig. 4). Antarctic Bottom Water also carries oxygen to the rest of the Earth’s deep oceans. The absence of the Weddell polynya could reduce the formation rate of Antarctic Bottom water, which could weaken the lower branch of the overturning circulation.

Fig.4: Schematic of the overturning (thermohaline) circulation. Deep water formation sites are marked by yellow ovals. Modified from: Rahmstorf, 2002 [©Springer Nature. Used with permission.]

How often does the Weddell Polynya form?

The last time the Weddell Polynya was observed was during the austral winters of 1974 to 1976 (see Fig. 5). It was then absent for nearly 40 years (!) up until austral winter 2016. In a modelling study, de Lavergne et al. 2014 suggested that the Weddell Polynya used to be more common before anthropogenic CO2 emissions started rising at a fast pace. The increased surface freshwater input from melting glaciers and ice sheets, and increased precipitation (as climate change increases the hydrological cycle) have freshened the surface ocean. This freshwater acts again as a lid on top of the warm deeper waters, preventing open ocean convection, reducing the production of Antarctic Bottom Water.

Fig. 5: Color-coded sea ice concentration maps derived from passive microwave satellite data in the Weddell Sea region from the 1970s. The Weddell Polynya is the extensive area of open water (in blue) [Credit: Gordon et al., 2007, ©American Meteorological Society. Used with permission.].

The reappearance of the Weddell Polynya over the past two winters despite the increased surface freshwater input suggests that other natural sources of variability may be currently masking this predicted trend towards less open ocean deep convection. Latif et al. 2013 put forward a theory describing centennial scale variability of Weddell Sea open ocean deep convection, as seen in climate models. In this theory, there are two modes of operation, one where there is no open ocean convection and the Weddell Polynya is not present. In this situation, sea surface temperatures are cold and the deep ocean is warm, and there is relatively large amount of sea ice. The heat at depth increases with time, as it is insulated by the sea ice and freshwater lid. Then, eventually, the deep water becomes warm enough that the stratification is decreased sufficiently so that open water convection begins again, forming the Weddell Polynya. This process continues until the heat reservoir depletes and surface freshwater forcing switches off the deep convection. Models show that the timescale of this variability is set by the stratification, and models with stronger stratification tend to vary on longer timescale, as the heat needs to build up more in order to overcome the stratification.

 

In the end, the Weddell Polynya is still surrounded by some mystery… Only the next decades will bring us more insight into the true reasons for the appearance and disappearance of the Weddell Polynya…

 

Further reading

Edited by Clara Burgard


Rebecca Frew is a PhD student at the University of Reading (UK). She investigates the importance of feedbacks between the sea ice, atmosphere and ocean for the Antarctic sea ice cover using a hierarchy of climate models. In particular, she is looking at the how the importance of different feedbacks may vary between different regions of the Southern Ocean.
Contact: r.frew@pgr.reading.ac.uk

Image of the week – Skiing, a myth for our grandchildren?

Image of the week – Skiing, a myth for our grandchildren?

Ski or water ski? Carnival season is typically when many drive straight to the mountains to indulge in their favorite winter sport. However, by the end of the century, models seem to predict a very different future for Carnival, with a drastic reduction in the number of snow days we get per year. This could render winter skiing something of the past, a bedtime story we tell our grandchildren at night…


Christoph Marty and colleagues investigated two Swiss regions reputed for their great skiing resorts and show that the number of snow days (defined as a day with at least 5 cm of snow on the ground) could go down to zero by 2100, if fuel emissions and economic growth continue at present-day levels, and this scenario is less dramatic than the IPCC’s most pessimistic climate change scenario (Marty et al., 2017). They show that temperature change will have the strongest influence on snow cover. Using snow depth as representative for snow volume, they predict that snow depth maxima will all be lower than today’s except for snow at elevations of 3000 m and higher. This implies that even industrially-sized stations like Avoriaz in the French Alps, with a top elevation of 2466 m, will soon suffer from very short ski seasons.

Marty et al. (2017) predict a 70% reduction in total snow volume by 2100 for the two Swiss regions, with no snow left for elevations below 500 m and only 50% snow volume left above 3000 m. Only in an intervention-type scenario where global temperatures are restricted to a warming of 2ºC since the pre-industrial period, can we expect snow reduction to be limited to 30% after the middle of the century.

Recent work by Raftery et al (2017) shows that a 2ºC warming threshold is likely beyond our reach, however limiting global temperature rise, even above the 2ºC target, could help stabilize snow volume loss over the next century. We hold our future in our hands!

Further reading/references

  • Marty, C., Schlögl, S., Bavay, M. and Lehning, M., 2017. How much can we save? Impact of different emission scenarios on future snow cover in the Alps. The Cryosphere, 11(1), p.517.
  • Raftery, A.E., Zimmer, A., Frierson, D.M., Startz, R. and Liu, P., 2017. Less than 2 C warming by 2100 unlikely. Nature Climate Change, 7(9), p.637.
  • Less snow and a shorter ski season in the Alps | EGU Press release

Edited by Sophie Berger


Marie Cavitte just finished her PhD at the University of Texas at Austin, Institute for Geophysics (USA) where she studied the paleo history of East Antarctica’s interior using airborne radar isochrone data. She is involved in the Beyond EPICA Oldest Ice European project to recover 1.5 million-year-old ice. She tweets as @mariecavitte.