CR
Cryospheric Sciences

Fieldwork

Image of the Week – Inspiring Girls!

Image of the Week – Inspiring Girls!

What, you may ask, are this group of 22 women doing standing around a fire-pit and what does this have to do with the EGU Cryosphere blog? This group of scientists, artists, teachers, and coaches gathered 2 weeks ago in Switzerland to learn how to become instructors on an Inspiring Girls Expedition. But what, you may ask again, is an Inspiring Girls Expedition? Well read on to find out more…


What is an Inspiring Girls Expedition?

In 1999 Glaciologist Erin Petit, Geographer Michele Koppes, and 5 high-school girls hiked out onto the South Cascade Glacier in Washington State. For the next week, this motley crew spent their time camped out on a glacier moraine, exploring the landscape and performing scientific experiments by day, and talking and listening to each others thoughts and stories by night – that was the birth of Girls on Ice.

Over the next 13 years, more expeditions took place and more instructors (scientists, artists and mountain guides) started to get involved. In 2012, a second Girls on Ice expedition was born in Alaska and, in the years since, there have been Girls on Ice expeditions in 4 different locations and in 2 different languages! The idea has expanded to other areas of wilderness expedition as well, with new projects starting up: Girls on Rock, Girls in Icy Fjords and Girls on Water – nowadays these expedition are collectively known as Inspiring Girls Expeditions!

But I haven’t really answered the question – what is an Inspiring Girls Expedition? It is a wilderness and science education program for high-school aged girls. Over the course of around 12 days, these girls get the chance to explore a wilderness setting, learn about scientific thinking, increase self-confidence, and push their physical and intellectual boundaries as part of a single-gendered team. And, importantly – it’s FREE – opening it up to girls who might not have the financial means to do something like this otherwise. Everyone who goes on the expedition from scientists to mountain guides and instructors is female, making this expedition pretty unique! I think the philosophy of Inspiring Girls is best described by their mission statement:

Our mission is to bring out your natural curiosity, inspire your interest in science, connect the arts and sciences, free you from gender roles, provide a less competitive atmosphere, and encourage trust in your physical abilities.

The workshop

I’ve been following the work of Girls on Ice for a while, so when I saw a chance to go on an instructor training course, I enthusiastically signed up! Over 4 days in June 2018, a group of women from at least 8 different countries got together in a hiking hut in Switzerland for an Inspiring Girls Instructor Workshop, hosted by Swiss Girls on Ice. We came from a broad range of backgrounds: glaciologists, climate scientists, biologists, artists, architects, professional coaches, teachers (I hope I haven’t forgotten anyone!). We started off by learning more about the Inspiring Girls philosophy, what they expeditions aim to teach, and how they keep the girls safe and deal with any issues that might arise. Then came the thinking part for us…How do you teach in a wilderness setting? How to keep teenage girls engaged in what you are doing? What is a good leader? This gave us a lot of food for thought and we discussed a lot of these issues late into the evenings!

Then the fun part (although we all look rather serious in the pictures – below), working on ideas for new Inspiring Girls Expeditions (the current expeditions are often over-subscribed so there is certainly scope for more expeditions in more places) with the hope of inspiring more girls! So definitely watch this space for more expeditions coming to a mountain, cave or forest near you!

Figure 2: Workshop participants designing new Inspiring Girls Expeditions [Credit: Marijke Habermann]

It was a fantastic few days, with a fantastic bunch of women and I certainly came away feeling inspired myself!

I have to admit, this isn’t your usual Image of the Week blog post, however, I hope the relevance to scientists, science educators, and anyone else that follows the blog is clear! There is a need to show girls and young women that they have the potential to do what they want: be that a glaciologist, a mountain guide (both very much male dominated careers) or something entirely different! This type of expedition, in a single-gendered environment, is a very effective way to help build courage, confidence, and self-reliance!

This sounds cool – how can I get involved?

The team at Inspiring Girls are always looking for new people who are keen and enthusiastic about their project to get involved as volunteers, by donating a bit of cash or simply spreading the word about the expeditions – check their website to see how you can help out!

Edited by Clara Burgard

Image of the Week – Icy expedition in the Far North

Image of the Week – Icy expedition in the Far North

Many polar scientists who have traveled to Svalbard have heard several times how most of the stuff there is the “northernmost” stuff, e.g. the northernmost university, the northernmost brewery, etc. Despite hosting the four northernmost cities and towns, Svalbard is however accessible easily by “usual-sized” planes at least once per day from Oslo and Tromsø. This is not the case for the fifth northernmost town: Qaanaaq (previously called Thule) in Northwest Greenland. Only one small plane per week reaches the very isolated town, and this only if the weather permits it. And, coming from Europe, you have to change plane at least twice within Greenland! It is near Qaanaaq, during a measurement campaign, that our Image of the Week was taken…


Who, When and Where?

In January 2017, a few German and Danish sea-ice scientists traveled to Qaanaaq to set up different measurement instruments on, in and below the sea ice covering the fjord near Qaanaaq. While in town, they stayed in the station ran by the Danish Meteorological Institute. After a few weeks installation they traveled back to Europe, leaving the instruments to measure the sea-ice evolution during end of winter and spring.

 

What and How?

The goal of the measurement campaign was to measure in a novel way the evolution of the vertical salinity and the temperature profiles inside the sea ice, and the evolution of the snow covering the ice. These variables are not measured often in a combined way but are important to understand better how the internal properties of the sea ice evolve and how it affects or is affected by its direct neighbors, the atmosphere and the ocean. The team had to find a place remote enough from human influence, and with good ice conditions. As there are only few paved roads in Qaanaaq, cars are not the best mode of transport. The team therefore traveled a couple of hours on dog sleds (in the dark and at around -30°C!), with the help of local guides and their well-trained dogs (see Fig. 2 and 3).

 

Fig. 2: While the humans were working, the dogs could take a well-deserved break [Credit: Measurement campaign team].

Once on the spot, the sea-ice measurement device was introduced into the ice by digging a hole of 1m x 1m in the ice, placing the measurement device in it, and waiting until the ice refroze around it. Additionally, a meteorological mast and a few moorings were installed nearby (see Image of the Week and Fig. 3) to provide measurements of the atmospheric and oceanic conditions during the measurements. Further, a small mast was installed to enable the data to be transferred through the IRIDIUM satellite network.

 

Fig. 3: Small meteorological mast with dog sleds in the background [Credit: Measurement campaign team].

Finally, the small instrument family was left alone to measure the atmosphere-ice-ocean evolution for around four months. After this monitoring period, in May, the team had to do this trip all over again to get all the measurement devices back. Studying Greenlandic sea ice is quite an adventure!

 

Further reading

Edited by Violaine Coulon

Image of the week — Making pancakes

A drifting SWIFT buoy surrounded by new pancake floes. [Credit: Maddie Smith]

It’s pitch black and twenty degrees below zero; so cold that the hairs in your nose freeze. The Arctic Ocean in autumn and winter is inhospitable for both humans and most scientific equipment. This means there are very few close-up observations of sea ice made during these times.

Recently, rapidly declining coverage of sea ice in the Arctic Ocean due to warming climate and the impending likelihood of an ‘ice-free Arctic’ have increased research and interest in the polar regions. But despite the warming trends, every autumn and winter the polar oceans still get cold, dark, and icy. If we want to truly understand how sea ice cover is evolving now and into the future, we need to better understand how it is growing as well as how it is melting.


Nilas or thin sheets of sea ice [Credit: Brocken Inaglory (distributed via Wikimedia Commons) ]

Sea ice formation

Sea ice formation during the autumn and winter is complex. Interactions between ocean waves and sea ice cover determine how far waves penetrate into the ice, and how the sea ice forms in the first place. If the ocean is still, sea ice forms as large, thin sheets called ‘nilas’. If there are waves on the ocean surface, sea ice forms as ‘pancake’ floes – small circular pieces of ice. As the Arctic transitions to a seasonally ice-free state, there are larger and larger areas of open water (fetch) over which ocean surface waves can travel and gain intensity. Over time, with the continued action of waves in the ice, pancake ice floes develop raised edges —  as seen in our image of the week — from repeatedly bumping into each other. Pancake ice is becoming more common in the Arctic, and it is already very common in the Antarctic, where almost all of the sea ice grows and melts every year.

Nilas vs pancakes

Nilas and pancake sea ice are different at the crystal level (see previous post), and regions of pancake ice and nilas of the same age may have different average ice thickness and ice concentration. As a result, the interaction of the ocean and atmosphere in these two ice types may be very different. Gaps of open water between pancake ice floes allow heat fluxes to be exchanged between the ocean and atmosphere – which can have very different temperatures during winter. Nilas and pancakes also interact with waves differently – nilas might simply flex with a low-intensity wave field, or break into pieces if disturbed by large waves, while pancakes bob around in waves, causing a viscous damping of the wave field. The two ice types have very different floe sizes (see previous posts here and here). Nilas is by definition is a large, uniform sheet of ice; pancake floes are initially very small and grow laterally as more frazil crystals in the ocean adhere to their sides, and multiple floes weld together into sheets of cemented pancakes.

How to make observations?

Sea ice models have only recently begun to be able to separate different sizes of sea ice. This allows more accurate inclusion of growth and melt processes that occur with the different sea ice types. However, observations of how sea ice floe size changes during freeze-up are required to inform these new models, and these observations have never been made before. Pancake sea ice floes are often around only 10 cm in diameter initially, which is far too small to observe by satellite. This means that observations of pancake growth need to be made close-up, but the dynamic ocean conditions in which pancakes are created makes it difficult to deploy instruments in-situ. So how can we observe pancake sea ice in this challenging environment?

In a recent paper (Roach et al, 2018), we used drifting wave buoys, called SWIFTs, to capture the growth of sea ice floes in the Arctic Ocean. SWIFTs are unique platforms (see image of the week) which drift in step with sea ice floes, recording air temperature, water temperature, ocean wave data and – crucially for sea ice – images of the surrounding ice. Analysis of the series of images captured has provided the first-ever measurements of pancake freezing processes in the field, giving unique insight into how pancake floes evolve over time as a result of wave and freezing conditions. This dataset has been compared with theoretical predictions to help inform the next generation of sea ice models. The new models will allow researchers to investigate whether describing physical processes that occur on the scale of centimetres is important for prediction of the polar climate system.

Edited by Sophie Berger


Lettie Roach is a PhD student at Victoria University of Wellington and the National Institute for Water and Atmospheric Research in New Zealand. Her project is on the representation of sea ice in large-scale models, including model development, model-observation comparisons and observation of small-scale sea ice processes.  

 

 

 

Maddie Smith is a PhD student at the Applied Physics Lab at the University of Washington in Seattle, United States. She uses observations to improve understanding of air-sea interactions in polar, ice-covered oceans.

Back to the Front – Larsen C Ice Shelf in the Aftermath of Iceberg A68!

Back to the Front – Larsen C Ice Shelf in the Aftermath of Iceberg A68!

Much of the Antarctic continent is fringed by ice shelves. An ice shelf is the floating extension of a terrestrial ice mass and, as such, is an important ‘middleman’ that regulates the delivery of ice from land into the ocean: for much of Antarctica, ice that passes from land into the sea does so via ice shelves. I’ve been conducting geophysical experiments on ice for over a decade, using mostly seismic and radar methods to determine the physical condition of ice and its wider system, but it’s only in the last couple of years that I’ve been using these methods on ice shelves. The importance of ice shelf processes is becoming more widely recognised in glaciological circles: after hearing one of my seminars last year, a glaciology professor told me that he was revising his previous opinion that ice shelves were largely ‘passengers’ in the grand scheme of things and this recognition is becoming more common. Slowly, we are coming to appreciate that ice shelves have their own specific dynamics and, moreover, that they are the drivers of change on other ice masses.


The MIDAS Project

In 2015, I joined the MIDAS project – led by Swansea and Aberystwyth Universities and funded by the Natural Environment Research Council – dedicated to investigating the effects of a warming climate on the Larsen C ice shelf in West Antarctica (Fig. 1). My role was to to assist with geophysical surveys (Fig. 2) on the ice shelf – but more about that later!

Figure 2: Adam Booth overseeing seismic surveys on the Larsen C ice
shelf in 2015 [Credit: Suzanne Bevan].

Larsen C is located towards the northern tip of the Antarctic Peninsula, and is one of a number of “Larsen neighbours” that fringe its eastern cost. MIDAS turns out to have been an extremely timely study, culminating in 2017 just as Larsen C hit the headlines by calving one of the largest icebergs – termed A68 – ever recorded. On 12th July 2017, 12% of the Larsen C area was sliced away by a sporadically-propagating rift through the eastern edge of the shelf, resulting in an iceberg with 5800 km2 area (two Luxembourgs, one Delaware, one-quarter Wales…). As of 14th October 2017 (Fig. 1), A68 is drifting into the Weddell Sea, with open ocean between it and Larsen C. See our previous post “Ice ice bergy” to find out more about how and why ice berg movement is monitored.

The aftermath of A68

As colossal as A68 (Fig, 1) is, its record-breaking statistics are only (hnnngh…) the tip of the iceberg, and of greater significance is the potential response of what remains of Larsen C. This potential is best appreciated by considering what happened to Larsen B, a northern neighbour of Larsen C. In early 2002, over 3000 km2 of Larsen B Ice Shelf underwent a catastrophic collapse, disintegrating into thousands of smaller icebergs (and immortalised in the music of the band British Sea Power). Rewind seven years further back, to 1995: Larsen B calved an enormous iceberg, exceeding 1700 m2 in area. An ominous extrapolation from this is that large iceberg calving somehow preconditions ice shelves to instability, and several models of Larsen C evolution suggest that it could follow Larsen B’s lead and become more vulnerable to collapse over the coming years.

The enormous mass of the intact ice shelf acts like a dam that blocks the delivery of terrestrial ice into the ocean, and the disappearance of the ice shelf removes so-called ‘backstress’ – essentially ‘breaking the dam’.

Then what? Well, ice shelves are in stress communication with their terrestrial tributaries, therefore processes affecting the shelf can propagate back to the supply glaciers. The enormous mass of the intact ice shelf acts like a dam that blocks the delivery of terrestrial ice into the ocean, and the disappearance of the ice shelf removes so-called ‘backstress’ – essentially ‘breaking the dam’. In the aftermath of Larsen B’s collapse, its tributary glaciers were seen to accelerate, thereby delivering more of their ice into the Weddell Sea. It is this aftermath that we are particularly concerned about, since it’s the accelerated tributaries that promote accelerated sea-level rise. Ice shelf collapse has little immediate impact on sea-level: since it is already floating, the shelf displaces all the water that it ever will. But, in moving more ice from the land to the sea, we risk increased sea levels and, with them, the associated socio-economic consequences.

How can we improve our predictions?

Figure 3: Computational model of the changed stress state, Δτuu, of Larsen C following the calving of A68 (output from BISICLES model, from Stephen Cornford, Swansea University). The stress change is keenly felt at the calving front, but also propagates further upstream [Credit: Stephen Cornford]

A key limitation in our ability to predict the evolution of Larsen C is a lack of observational evidence of how ice shelf stresses evolve in the short-term aftermath of a major calving event. These calving events are rare: we simply haven’t had much opportunity to investigate them, so while our computer predictions are based on valid physics (e.g., Fig. 3) it would be valuable to have actual observations to constrain them. Powerful satellite methods are available for tracking the behaviour of the shelf but these provide only the surface response; Larsen C is around 200 m thick at its calving front so there is plenty of ice that is hidden away from the satellite ‘eye in the sky’, but that is still adapting to the new stress regime. So how can we “see” into the ice?

To address this, we’ve recently been awarded an “Urgency Grant” – Response to the A68 Calving Event (RA68CE) – from NERC to send a fieldcrew to the Larsen C ice shelf, involving researchers from Leeds, Swansea and Aberystwyth, together with the British Geological and British Antarctic Surveys.

Figure 4: Emma Pearce and Dr Jim White preparing seismic equipment – intrepid geophysicists ready to wrap-up warm for field deployment on Larsen C! [Credit: Adam Booth]

The field team – Jim White and Emma Pearce (Fig. 4) – will undertake seismic and radar surveys at two main sites (Fig. 3) to assess the new stress regime around the Larsen C calving front. One of these sites is being reoccupied after seismic surveying in 2008-9, during the Swansea-led SOLIS project, allowing us to make a long-term comparison. These, and two other sites, will also be instrumented with EMLID REACH GPS sensors, to track small-scale ice movements than can’t be captured in the satellite data. The field observations will be supplied to a team of glacial modellers at Swansea University, to allow them to improve future predictions (e.g. Fig. 3), while their remote sensing team continues to monitor the evolving stress state at surface.

It’s truly exciting to be coordinating the first deployment, post A68, on Larsen C. Our data should provide a unique missing piece from the predictive jigsaw of Larsen C’s evolution, ultimately improving our understanding of the causes and effects of large-scale iceberg calving – both for Larsen C and beyond!

 

For ice-hot news from the field, follow Emma Pearce on twitter: @emm_pearce

 

Edited by Emma Smith


Further Reading

  • More information on Larsen C at the project MIDAS website
  • Learn more about ice shelf evolution with the Ice Flows game – eduction by stealth! Also check out the EGU Cryoblog post about it!
  • Borstad et al., 2017; Fracture propagation and stability of ice shelves governed by ice shelf heterogeneity; Geophysical Research Letters, 44, 4186-4194.
  • Wuite et al., 2015; Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013. The Cryosphere, 9, 957-969.
  • Cornford et al., 2013; Adaptive mesh, finite volume modelling of marine ice sheets; Journal of Computational Physics, 232, 1, 529-549.

Adam Booth is a lecturer in Exploration Geophysics at the University of Leeds, UK. He is the PI on the NERC-funded project “Ice shelf response to large iceberg calving” (NE/R012334/1). After obtaining his PhD from the University of Leeds in 2008, he held postdoctoral positions at Swansea University and Imperial College London, in which he worked with diverse research applications of near-surface geophysics. He tweets as: @Geophysics_Adam

Mapping the bottom of the world — an Interview with Brad Herried, Antarctic Cartographer

Mapping the bottom of the world — an Interview with Brad Herried, Antarctic Cartographer

Mapping Earth’s most remote continent presents a number of unique challenges. Antarctic cartographers and scientists are using some of the most advanced mapping technologies available to get a clearer picture of the continent. We asked Brad Herried, a Cartographer and Web Developer at the Polar Geospatial Center at the University of Minnesota, a few questions about what it’s like to do this unique job both on and off the ice.


Before we go too much further… what is the Polar Geospatial Center, and what does it do for polar science and scientists?

The Polar Geospatial Center (PGC), founded in 2007 by Director Paul Morin, is a research group of about 20 staff and students at the University of Minnesota with a simple mission: solve geospatial problems at the poles (Antarctica and the Arctic). Because we are funded (primarily) through the U.S. National Science Foundation (NSF) and NASA Cryospheric Sciences, that is the community we support – other U.S.-funded polar researchers. We provide custom maps, high-resolution commercial satellite imagery, and Geographic Information System (GIS) support for researchers who would like to use the data for their research but may not have the expertise to do so.

Our primary service is providing high-resolution satellite imagery (i.e. from the DigitalGlobe, Inc. constellation) to U.S.-funded polar researchers – at no additional cost to their grants – through licensing agreements with the U.S. Government. It has proven beneficial to researchers to have a service so that we do the hard parts of data management, remote sensing, and automation of satellite imagery processing so that they don’t have to. So, a glaciologist or geomorphologist or wildlife ecologist studying at the poles may come to us and say: I would like to use satellite imagery to study phenomenon x or y. Some groups use it just for logistics (these are some of the least mapped places on Earth after all) to get to their site. Some groups’ entire research is done using remote sensing.

What kinds of data and resources do you use?

The PGC’s polar archive of high-resolution commercial imagery is absolutely astounding (like, in the thousands of terabytes). The imagery, although licensed to us by U.S. Government contracts, is collected by the DigitalGlobe, Inc. constellation of satellites (e.g. WorldView-2), much like the imagery where you can see your house/car in Google Earth. The benefit is that we can provide it at no cost to our users (researchers). That resource, along with the expertise of the staff at PGC, can provide solutions to users, whether it’s making a simple map of a remote research site or providing a time-series of satellite imagery for a researcher studying change detection (like, say for a glacier front in Greenland).

This also presents a challenge. How do we manage and effectively deliver that much data? We have relied on skilled staff, ingenuity, cheap storage, high-performance computing, and automation to become successful.

As the saying goes, automate or die.

What’s your role at the PGC? How did you find your way into a job like this?

I started at the PGC as a graduate student in 2008. I knew nothing about Antarctica or the Arctic, but my background and studies in GIS & cartography offered a wide range of jobs. After I graduated, I became a full-time employee as the lead cartographer of the (at the time, very small) group. Currently, I do a lot more GIS web application development and geospatial data management. We have recognized the need for more automated, “self-service” systems for our users to get the data they need in a timely manner, and less of asking a PGC employee for a custom product. As the saying goes, automate or die. But, of course, I still spend a fair bit of my times creating maps to keep my cartographic juices going.

Antarctica and the South Polar Regions. Map from the American explorer Richard Byrd’s second expedition in 1933. [Credit: Byrd Antarctic Expeditions]

What kind of work do PGC employees do in Antarctica?

The PGC staffs an office at the United States’ McMurdo Station annually from October to February, with 3-5 staff rotating throughout the field season. It is really an extension of our responsibilities, with a couple interesting twists, both good and bad. First, a majority of our users (NSF-funded researchers) come through McMurdo Station in preparation for their fieldwork. It’s a beneficial and unique experience to meet with them one-on-one and solve problems, ironically, faster than email exchanges back in the States. Second – and this is true of all of Antarctica – the internet bandwidth is very limited. So, we have to a) prepare more regarding what data/imagery we have on site and b) do more with less. That always proves to be a fun challenge because it is impossible to access our entire archive of imagery from down there.

How could I forget collecting Google Street View in Antarctica.

There have been several years, however, when we do get to go out into the field! In past years, we have conducted various field campaigns in the nearby McMurdo Dry Valleys to collect survey ground control to make our satellite imagery more accurate. And, how could I forget collecting Google Street View (with some custom builds of the typical car-camera system for snowmobiles, heavy-duty trucks, and backpacks). The Google Street View provides a window into the world of Antarctica – history, facilities, science, and of course its beautiful landscapes – to a wide audience who only dream of visiting Antarctica.

Brad on a snowmobile collecting Google Street View imagery [Credit: Brad Herried]

What are some of the interesting projects PGC has worked on? What’s exciting at PGC right now?

The PGC does a lot to contribute to polar mapping. There’s not exactly a ton of geospatial data or maps for the polar regions, especially Antarctica. What data or maps there are, it is not often of very high quality. For example, there are regions of Antarctica (especially in inland East Antarctica) which have not been properly mapped or surveyed since the 1960s. Those maps offer little help if you’re trying to land an aircraft in the area. So, PGC has done a lot to improve that geospatial data including creating more accurate coastlines, improving geographic coordinates of named features (sometimes the location can be off by 10s of kilometers!), organizing historic aerial photography, and digitizing map collections. These are important to have, but it all changes when you can collect data 100 times more accurate with satellites…

There’s not exactly a ton of geospatial data or maps for the polar regions, especially Antarctica.

Where it gets really interesting is how we can apply our archive of satellite imagery to help researchers solve problems or come up with cutting-edge solutions with the data. One example is the ArcticDEM project. In a private-public collaboration, PGC is using high performance computing (HPC) to develop a pan-Arctic Digital Elevation Model (DEM) at a resolution 10 times better than what exists now. This project requires hundreds of thousands of stereoscopic satellite imagery pairs to be processed using photogrammetry techniques to build a three-dimensional model of the surface for the entire Arctic. There are countless more applications for the imagery and we’ll continue to push the limits of the technology to produce innovative products to help measure the Earth and solve really important research questions.

ArcticDEM hillshade in East Greenland. DEM(s) created by the Polar Geospatial Center from DigitalGlobe, Inc. imagery. [Credit: Brad Herried/ Polar Geospatial Center].

 

What resources can cryosphere researchers and other polar scientists without US funding get from PGC to enhance their research?

Our website provides a wealth of non-licensed data, freely available to download. That includes our polar map catalog (with over 2,000 historic maps of the polar regions), aerial photography, and elevation data. The ArcticDEM project I mentioned before is freely available (see https://www.pgc.umn.edu/data/arcticdem/), as are all DEMs created (derived) from the optical imagery. Moreover, we work with the international community on a regular basis to continue mapping efforts across both poles.

 

What advice do you have for students interested in a career in science or geospatial science?

This might be a little bit of a tangent, but learn to code. I was trained in cartography ten years ago and we hardly touched the command line. Now? You certainly don’t have to be an expert, say, Python programmer, but you’re behind if you don’t know how to automate some of your tasks, data processing, analysis, or other routine workflows. It allows you to focus on the things you’re actually an expert in (and, employers are most certainly looking for these skills).

ArcticDEM hillshade of Columbia Glacier, Alaska. DEM(s) created by the Polar Geospatial Center from DigitalGlobe, Inc. imagery. [Credit: Brad Herried/ Polar Geospatial Center].

Personally, what has been the highlight of your time at PGC so far?

I will never forget the first time I stepped off the plane landing in Antarctica as a graduate student. A surreal, breathtaking (literally), and completely foreign feeling. To be able to experience the most remote places on Earth first-hand naturally leads to a better understanding of them. So, the highlight for me is this: I find myself asking more questions, talking to the preeminent researchers and students about their work, and discovering the purpose of it all. I may be a small piece in the puzzle of understanding our Earth’s poles, but I’m humbled to be a part.

Interview and Editing by George Roth, Additional Editing by Sophie Berger

Image of the week – Micro-organisms on Ice!

Image of the week – Micro-organisms on Ice!

The cold icy surface of a glacier doesn’t seem like an environment where life should exist, but if you look closely you may be surprised! Glaciers are not only locations studied by glaciologists and physical scientists, but are also of great interest to microbiologists and ecologists. In fact, understanding the interaction between ice and microbiology is essential to fully understand the glacier system!


Why study micro-organisms on glaciers?

Micro-plants, micro-animals and bacteria live and reproduce in cryoconite ecosystems on the surface of glaciers. Cryoconite is a dark coloured material (Fig. 2) found at the bottom of cylindrical water-filled melt holes (cryoconite holes) on a glacier surface; it consists of dust and mineral powders transported by the wind, and micro-organisms. Cryoconite holes are formed as the dark coloured material causes localised melting, due to reduced albedo (ability of a surface to reflect solar energy).

Figure 2: Example of a Cryoconite hole filled with dark cryoconite material (markers are 10×10 cm) [Credit: Tommaso Santagata – La Venta Esplorazioni Geografiche]

Because organisms in cryoconite thrive in extreme conditions, they are very unique and interesting to study. Information about their genetic makeup and chemical structure can help to inform, for example, medical and pharmaceutical sciences. Currently, however, information on their community structure is still limited.

Cryoconite ecosystems are very isolated and must work together to survive and thrive. Some micro-organisms (e.g. micro-algae) can photosynthesise and are able to live autonomously inside cryoconite holes using atmospheric carbon dioxide, sunlight, water and chlorophyll. By this same mechanism, they can find all the molecules essential for their vital and structural needs and consequently they generate most of the molecules necessary for all other living things. For example, the waste product of photosynthesis, oxygen, is essential for the survival of all organisms living in aerobiosis in these communities. Due to their key role in the ecosystem, the micro-algae are known as “primary producers”.

As around 70% of the earth is covered in water, which is colonised by micro-algae, studying the way they survive in extreme conditions and how they contribute to the ecosystem is of global importance – especially at this time of climate change.

The diversity of highly active bacterial communities in cryoconite holes makes them the most biologically active habitats within glacial ecosystems.

Data collections – Six days on THE glacier

The Perito Moreno glacier (Fig. 3) is known as one of the most important tourist attraction in Argentinian Patagonia (see our previous IOW post). Each day, hundreds of people observe the impressive front of this glacier and wait to see ice detachments and hear the loud sound of it’s impacts in the water of Lake Argentino. The glacier takes it’s name from the explorer Francisco Moreno, who studied the Patagonian region in the 19th century. The glacier is more than 30 km in length and an area of about 250 km2, Perito Moreno is one of the main outlet glaciers of Hielo Patagonico Sur (southern Patagonia icefield).

Figure 3: Aerial view of the Perito Moreno
[Credit : Tommaso Santagata – La Venta Esplorazioni Geografiche]

In April 2017, after several missions to the Greenland Ice Sheet to study extremophilic micro-organisms (organism that thrive in extreme environments) of ice, a team of Italian and French scientists organised a scientific expedition to study the microbiology of Perito Moreno. The expedition was organised by La Venta and Spélé’Ice and included researchers from several French and Italian Universities (see below for full list)

Perito Moreno is very well known, especially to the La Venta team, who have been organising scientific expeditions in Patagonia since 1991. The microbiological research objectives of this mission were to study the micro-organisms that live on the surface of Perito Moreno and compare them to results obtained in the other polar, sub-polar and alpine regions. The multi-disciplinary research team were able to set up a complex field laboratory, which included a microscope and an innovative small tool size capable of DNA sequencing. This meant that samples could be analysed immediately after their extraction from the ice (Fig. 1).

Getting all the equipment and personnel to achieve this expedition onto the ice was not an easy task. The team and their equipment were transported by boat to a site near the front of the glacier. Equipment then needed to be transported to the Buscaini Refugee, a shelter used as a base-camp by the team (Fig. 4). This took two trips, on foot, of about 7 hours (12 km of trail along the lateral moraine and the ice of the glacier with very heavy backpacks) – not an easy start! Luckily this hardship was somewhat mitigated by the absence of extreme cold, in fact, abnormally hot weather tallowed the team to move and work in t-shirts – not bad!

Figure 4: Walking into the field site along the ice of Perito Moreno – part of the 12km of trail to the Buscaini Refugee shelter
[Credit: Alessio Romeo – La Venta Esplorazioni Geografiche]

Thanks to these favourable weather conditions, all the goals were achieved in the short amount of time the team were allowed to camp on the glacier (special permission is needed from the national park to do this). During the five days of activity, many samples were taken and sequenced directly at the camp by the researches. Other important goals, such as morphological comparisons and measurements of the velocity of the glacier through the use of GPS, laser scanning and unmanned aerial vehicles were achieved by another team of researchers (stay tuned for another blog post about this!).

Universities and research institutes involved: University Bicocca of Milan – Italy, University of Milano – Italy, Sciences of the Earth A.Desio – Italy, Natural History Museum of Paris – France, University Diderot of Paris – France, University of Florence – Sciences of the Earth – Italy, University of Bologna – Italy.

Further Reading

Edited by Emma Smith


Tommaso Santagata is a survey technician and geology student at the University of Modena and Reggio Emilia. As speleologist and member of the Italian association La Venta Esplorazioni Geografiche, he carries out research projects on glaciers using UAV’s, terrestrial laser scanning and 3D photogrammetry techniques to study the ice caves of Patagonia, the in-cave glacier of the Cenote Abyss (Dolomiti Mountains, Italy), the moulins of Gorner Glacier (Switzerland) and other underground environments as the lava tunnels of Mount Etna. He tweets as @tommysgeo

Image of the Week — Hidden lakes in East Antarctica !

Image of the Week — Hidden lakes in East Antarctica !

Who would have guessed that such a beautiful picture could get you interviewed for the national news?! Certainly not me! And yet, the photo of this englacial lake (a lake trapped within the ice in Antarctica), or rather science behind it, managed to capture the media attention and brought me, one of the happy co-author of this study,  on the Belgian  television… But what do we see on the picture and why is that interesting?


Where was the picture taken?

The Image of this Week shows a 4m-deep meltwater lake trapped 4 m under the surface of the Roi Baudouin Ice Shelf (a coastal area in East Antarctica). To capture this shot, a team of scientists led by Stef Lhermitte (TU Delft) and Jan Lenaerts (Utrecht University) went to the Roi Baudouin ice shelf, drilled a hole and lowered a camera down (see video 1).

Video 1 : Camera lowered into borehole to show an englacial lake 4m below the surface. [Credit: S. Lhermitte]

How was the lake formed?

In this region of East Antarctica, the katabatic winds are very persistent and come down from the centre of the ice sheet towards the coast, that is the floating ice shelf (see animation below). The effect of the winds are two-fold:

  1. They warm the surface because the temperature of the air mass increases during its descent and the katabatic winds mix the very cold layer of air right above the surface with warmer layers that lie above.
  2. They sweep the very bright snow away, revealing darker snow/ice, which absorb more solar radiation

The combination leads to more melting of the ice/snow in the grounding zone — the boundary between the ice sheet and ice shelf — , which further darkens the surface and therefore increases the amount of solar radiation absorbed, leading to more melting, etc. (This vicious circle is very similar to the ice-albedo feedback presented in this previous post).

Animation showing the processes causing the warm micro-climate on the ice shelf. [Credit: S. Lhermitte]

All the melted ice flows downstream and collects in depressions to form (sub)surface lakes. Those lakes are moving towards the ocean with the surrounding ice and are progressively buried by snowfalls to become englacial lakes. Alternatively, the meltwater can also form surface streams that drain in moulins (see video 2).

Video 2 : Meltwater streams and moulins that drain the water on the Roi Baudouin ice shelf. [Credit: S. Lhermitte]

Why does it matter ?

So far we’ve seen pretty images but you might wonder what could possibly justify an appearance in the national news… Unlike in Greenland, ice loss by surface melting has  often been considered negligible in Antarctica. Meltwater can however threaten the structural integrity of ice shelves, which act as a plug of the grounded ice from upstream. Surface melting and ponding was indeed one of the triggers of the dramatic ice shelves collapses in the past decades, in the Antarctic Peninsula . For instance, the many surfaces lakes on the surface of the Larsen Ice shelf in January 2002, fractured and weakened the ice shelf until it finally broke up (see video 3), releasing more grounded ice to the ocean than it used to do.

Of course surface ponding is not the only precondition for an ice shelf to collapse : ice shelves in the Peninsula had progressively thinned and weakened for decades, prior their disintegration. Our study suggests however that surface processes in East Antarctica are more important than previously thought, which means that this part of the continent is probably more vulnerable to climate change than previously assumed. In the future, warmer climates will intensify melt, increasing the risk to destabilise the East Antarctic ice sheet.

Video 3 : MODIS images show Larsen-B collapse between January 31 and April 13, 2002. [Credit:NASA/Goddard Space Flight Center ]

Reference/Further reading

Edited by Nanna Karlsson

Quantarctica: Mapping Antarctica has never been so easy!

Quantarctica: Mapping Antarctica has never been so easy!

One of the most time-consuming and stressful parts of any Antarctic research project is simply making a map. Whether it’s plotting your own data points, lines, or images; making the perfect “Figure 1” for your next paper, or replying to a collaborator who says “Just show me a map!,” it seems that quick and effective map-making is a skill that we take for granted. However, finding good map data and tools for Earth’s most sparsely-populated and poorly-mapped continent can be exhausting. The Quantarctica project aims to provide a package of pre-prepared scientific and geographic datasets, combined with easy-to-use mapping software for the entire Antarctic community. This post will introduce you to Quantarctica, but please note that the project is organizing a Quantarctica User Workshop at the 2017 EGU General Assembly (see below for more details).


[Credit: Quantarctica Project]

What is Quantarctica?

Quantarctica is a collection of Antarctic geographic datasets which works with the free, open-source mapping software QGIS. Thanks to this Geographic Information System package, it’s now easier than ever for anyone to create their own Antarctic maps – for any topic and at any spatial scale. Users can add and plot their own scientific data, browse satellite imagery, make professional-quality maps and figures, and much, much more. Read on to learn how researchers are using Quantarctica, and find out how to use it to start making your own (Qu-)Antarctic maps!

Project Origins

When you make a sandwich, you start with bread, not flour. So why would you start with ‘flour’ to do your science?” — Kenny Matsuoka, Norwegian Polar Institute

Deception Island isn’t so deceptive anymore, thanks to Quantarctica’s included basemap layers, customized layer styles, and easy-to-use cartography tools. [Credit: Quantarctica Project]

Necessity is the mother of invention, and people who work in Antarctica are nothing if not inventive. When Kenny Matsuoka found himself spending too much time and effort just locating other Antarctic datasets and struggling with an expired license key for his commercial Geographic Information System (GIS) software in the field, he decided that there had to be a better way – and that many of his Antarctic colleagues were probably facing the same problems. In 2010, he approached Anders Skoglund, a topographer at the Norwegian Polar Institute, and they decided to collaborate and combine some of the critical scientific and basemap data for Antarctica with the open-source, cross-platform (Windows, Mac, and Linux) mapping software QGIS. Quantarctica was born, and was quickly made public for the entire Antarctic community.

Since then, maps and figures made with Quantarctica have appeared in at least 25 peer-reviewed journal articles (that we can find!). We’ve identified hundreds of Quantarctica users, spread among every country participating in Antarctic research, with especially high usage in countries with smaller Antarctic programs. We’ve been actively incorporating even more datasets into the project, teaching user workshops at popular Antarctic conferences – such as EGU 2017 – and building educational materials on Antarctic mapping for anyone to use.

A great example of a Quantarctica-made figure published in a paper. Elevation, imagery , ice flow speeds, latitude/longitude graticules, custom text and drawing annotations… it’s all there and ready for you to use! [Credit: Figs 1 and 2 from Winter et al (2015)].

What data can I find in Quantarctica?

  • Continent-wide satellite imagery (Landsat, MODIS, RADARSAT)
  • Digital elevation models and/or contour lines of bed and ice-surface topography and seafloor bathymetry
  • Locations of all Antarctic research stations and every named location in Antarctica (the SCAR Composite Gazetteer of Antarctica)
  • Antarctic and sub-Antarctic coastlines and outlines for exposed rock, ice shelf, and subglacial lakes
  • Magnetic and gravity anomalies
  • Ice flow velocities, catchment areas, mass balance, and firn thickness grids
  • Ancient UFO crash sites

…just to name a few!

Four examples of included datasets. From left to right: Ice flow speed, drainage basins, and subglacial lakes; bed topography; geoid height; modeled snow accumulation and surface blue ice areas [Credit: Quantarctica Project]

All of these datasets have been converted, imported, projected to a standard Antarctic coordinate system, and hand-styled for maximum visibility and compatibility with other layers. All you have to do is select which layers you want to show! The entire data package is presented in a single QGIS project file that you can quickly open, modify, save, and redistribute as your own. We also include QGIS installers for Windows and Mac, so everything you need to get started is all in one place. And finally, all of the data and software operates entirely offline, with no need to connect to a license server, so whether you’re in a tent in Antarctica or in a coffee shop with bad wi-fi, you can still work on your maps!

Quantarctica was used in traverse planning for the MADICE Project, a collaboration between India’s National Centre for Antarctic and Ocean Research (NCAOR) and the Norwegian Polar Institute (NPI), investigating mass balance, ice dynamics, and climate in central Dronning Maud Land. Check out pictures from their recently-completed field campaign on Facebook and Twitter! Base image: RADARSAT Mosaic; Ice Rises: Moholdt and Matsuoka (2015); Mapping satellite features on ice: Ian Lee, University of Washington; Traverse track: NCAOR/NPI. [Credit: Quantarctica Project]

Every dataset in Quantarctica is free for non-commercial use, modification, and redistribution – we get explicit permission from the data authors before their datasets are included in Quantarctica, always include any README or extra license/disclaimer files, and never include a dataset if it has any stricter terms than that. We always provide all metadata and citation information, and require that any Quantarctica-made maps or figures printed online or in any publication include citations for the original datasets.

How do I start using Quantarctica?

Quantarctica is available for download at http://quantarctica.npolar.no/. It’s a 6 GB package, so if your internet connection is struggling with the download, just contact us and we can send it to you on physical media. You can use the bundled QGIS installers for your operating system, or download the latest version of QGIS at http://qgis.org/ and simply open the Quantarctica project file, Quantarctica.qgs, after installation.

We’re actively developing Version 3 of Quantarctica, for release in Late 2017. Do you know of a pan-Antarctic dataset that you think should be included in the new version? Just email the Quantarctica project team at quantarctica@npolar.no.

Quantarctica makes it easy to start using QGIS, but if you’ve never used mapping software before or need to brush up on a few topics, we recommend QGIS Tutorials and Tips and the official QGIS Training Manual. There are also a lot of great YouTube tutorial videos out there!

 

Nobody said you could only use Quantarctica for work – you can use it to make cool desktop backgrounds, too! Foggy day in the Ross Island / McMurdo Dry Valleys area? Though it often is, the fog effects image was created using only the LIMA 15m Landsat Imagery Mosaic and RAMP2 DEM in Quantarctica, with the help of this tutorial. [Credit: Quantarctica Project]

Quantarctica Short Course at EGU 2017

Are you attending EGU 2017 and want to learn how to analyze your Antarctic data and create maps using Quantarctica? The Quantarctica team will be teaching a short course (SC32/CR6.15) on Monday, 24 April at 13:30-15:00 in room -2.31. Some basic GIS/QGIS experience is encouraged, but not required. If you’re interested, fill out the registration survey here: https://goo.gl/forms/mLaJg686tZq8bm2N2 and feel free to send any questions or comments to quantarctica@npolar.no. We’ll see you in Vienna!

Edited by Kenny Matsuoka and Sophie Berger

Reference/Further Reading

Data sources

[Read More]

Image of the Week – Apocalypse snow? … No, it’s sea ice!

Image of the Week – Apocalypse snow? … No, it’s sea ice!

Sea ice brine sampling is always great fun, but sometimes somewhat challenging !

As sea water freezes to form sea ice, salts in the water are rejected from the ice and concentrate in pockets of very salty water, which are entrapped within the sea ice. These pockets are known as “brines”.

Scientists sample these brines to measure the physical and bio-geochemical properties, such as: temperature, salinity, nutrient, water stable isotopes, Chlorophyll A, algal species, bacterial number and DNA, partial pressure of CO2, dissolved and particulate Carbon and Nitrogen, sulphur compounds, and trace metals.  All of this helps to better understand how sea ice impacts the atmosphere-ocean exchanges of climate relevant gases.

In theory, sampling such brines is very simple: you just have to drill several holes in the sea-ice ensuring that the holes don’t reach the bottom of ice and wait for half an hour. During this time, the brine pockets which are trapped in the surrounding sea ice drain under gravity into the hole. After that, you just need to sample the salty water that has appeared in the hole. Simple…

…at least it would be if they didn’t have to deal with the darkness of the Antarctic winter, blowing snow, handling water at -30°C and all while wearing trace metal clean suits on top of polar gear…hence the faces!


This photo won the jury prize of the Antarctic photo competition, organised by APECS Belgium and Netherlands as part of Antarctica Day celebrations (1st of December).

All the photos of the contest can be seen here.

Edited by Sophie Berger and Emma Smith


Jean-Louis Tison is a professor at the Université libre de Bruxelles. His activities are focused on the study of physico-chemical properties of « interface ice », be it the « ice-bedrock » (continental basal ice) , « ice-ocean » (marine ice) or « ice-atmosphere » (sea ice) interface. His work is based on numerous field expeditions and laboratory experiments, and on the development of equipments and analytical techniques dedicated to the multi-parametric study of ice: textures and fabrics, stable isotopes of oxygen and hydrogen, total gas content and gas composition, bulk salinity, major elements chemistry…

 

Image of the Week – On the tip of Petermann’s (ice) tongue

Image of the Week – On the tip of Petermann’s (ice) tongue

5th August 2015, 10:30 in the morning. The meeting had to be interrupted to take this picture. We were aboard the Swedish icebreaker Oden, and were now closer than anyone before to the terminus of Petermann Glacier in northwestern Greenland. But we had not travelled that far just for pictures…


Petermann’s ice tongue

Petermann is one of Greenland’s largest “marine terminating glaciers”. As the name indicates, this is a glacier, i.e. frozen freshwater, and its terminus floats on the ocean’s surface. Since Petermann is confined within a fjord, the glacier is long and narrow and can be referred to as an “ice tongue”.

Petermann Glacier is famous for its recent calving events. In August 2010, about a quarter of the ice tongue (260 km2) broke off as an iceberg (Fig. 2). In July 2012, Petermann calved again and its ice tongue lost an extra 130 km2.

These are not isolated events. Greenland’s marine terminating glaciers are all thinning and retreating in response to a warming of both air and ocean temperatures (Straneo et al., 2013), and Greenland’s entire ice sheet itself is threatened. Hence, international fieldwork expeditions are needed to understand the dynamics of these glaciers.

Fig. 2: The 2010 calving event of Petermann. Natural-color image from the Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite ( August 16, 2010).  [Credit: NASA’s Earth Observatory]

The Petermann 2015 expedition

In summer 2015, a paleoceanography expedition was conducted to study Petermann Fjord and its surroundings, in order to assess how unusual these recent calving events are compared to the glacier’s past. Our small team focused on the present-day ocean, and specifically investigated how much of the glacier is melted from below by the comparatively warm ocean (that process has been described on this blog previously). In fact, this “basal melting” could be responsible for up to 80% of the mass loss of Petermann Glacier (Rignot, 1996). Additionally, we were also the first scientists to take measurements in this region since the calving events.

Our results are now published (Heuzé et al., 2017). We show that the meltwater can be detected and tracked by simply using the temperature and salinity measurements that are routinely taken during expeditions (that, also, has been described on this blog previously). Moreover, we found that the processes happening near the glacier are more complex than we expected and require measurements at a higher temporal resolution, daily to hourly and over several months, than the traditional summer single profiles. Luckily, this is why we deployed new sensors there! And since these have already sent their data, we should report on them soon!

Edited by David Rounce and Sophie Berger

References and further reading