CR
Cryospheric Sciences

Fieldwork

Image of the Week — Historical aerial imagery of Greenland

Image of the Week — Historical aerial imagery of Greenland

A few month ago, we were taking you on a trip back to Antarctic fieldwork 50 years ago, today we go back to Greenland during 1930s!

When geopolitics serves cryospheric sciences

The Permanent Court of International Justice in The Hague awarded Danish sovereignty over Greenland in 1933 and besides geopolitical interests, Denmark had a keen interest in searching for natural resources and new opportunities in this newly acquired colony. In the 1930s the Danish Government initiated three comprehensive expeditions; one of these, the systematic mapping of East Greenland, was set off by The Greenlandic Agency, The Marines’ air services, The Army’s Flight troops and Geodetic Institute. The Danish Marines provided pilots, mechanics, and three Heinkel seaplanes.

Danish expeditioner Lauge Koch, centre, along with his pilots all dressed in suits made from polar bear. (Credit: The Arctic Institute)

Danish expeditioner Lauge Koch, centre, along with his pilots all dressed in suits made from polar bear. (Credit: The Arctic Institute)

Aerial photography in the 1930s – practical constraints

The airplanes had three seats in an open cockpit. The pilot was seated in the front, the radio operator in the center and in the back the photographer – this seat was originally for the machine-gun operator.

At the outset, the idea was to take vertical images, but that was impossible at the time due to the height of the mountains and the limited capability of the aircraft to reach adequate heights. The airplanes couldn’t reach more than 4000 m – similar to the height of mountains in Greenland. Oblique images were therefore recorded. The reduced view of the terrain when photographing in oblique angles required many more flights than originally planned. The photographic films were processed immediately after each flight. 45,000 km were covered during the first season, which lasted about two and a half months. In the following years, each summer a flight covered parts of the Greenlandic coast. During the Second World War, the mapping was temporarily stopped due to safety reasons.

The aircraft had an open hole in the floor for the photographer, originally where the machine gunner would sit. (Credit: The Arctic Institute)

The aircraft had an open hole in the floor for the photographer, originally where the machine gunner would sit.(Credit: The Arctic Institute)

An unexplored treasure trove of climate data

The tremendous volume of aerial images obtained from several expeditions and hundreds of flights not only constitutes the cornerstone of mapping in Greenland, but is invaluable data for studying climate change in these remote regions. The 1930s survey, compared to modern imagery, provides crucial insight into coastal changes, ice sheet mass balances, and glacier movement. Glacier fluctuations in southeast Greenland have been identified, showing that many land-terminating glaciers underwent a more rapid retreat in the 1930s than in the 2000s, whereas marine-terminating glaciers retreat more rapidly during the recent warming (Bjørk et al, 2012).

An ongoing project between the University of Copenhagen, INSTAAR (Institute of Arctic and Alpine Research) in Boulder, Colorado, and Natural History Museum of Denmark is currently focusing on analysing deltaic changes in Central and Southern Greenland; linking shoreline development to climate changes – these historic aerial images are essential for detecting such coastal evolution. However, there are still many other links between the past and present climate to be discovered from these images. Interested in hearing more about the project or the aerial images? Please contact Mette Bendixen (mette.bendixen@ign.ku.dk)

Bibliography

Bjørk, A. A., Kjær, K. H., Korsgaard, N. J., Khan, S. A., Kjeldsen, K. K., Andresen, C. S., … & Funder, S. (2012). An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nature Geoscience, 5(6), 427-432. http://dx.doi.org/DOI:10.1038/ngeo1481

Edited by Alistair McConnell, Sophie Berger and Emma Smith


Mette BendixenMette Bendixen is s a PhD student at the Center for Permafrost in Copenhagen. She investigates the changing geomorphology of Greenlandic coasts, where climate changes can have huge impact on the local environment.

Image Of The Week – Do My Ice Deceive Me?

Image Of The Week – Do My Ice Deceive Me?

A few weeks ago, we focussed our image of the week on very particular parts of Antarctica, which display blue ice at the surface.

Today we would like to put the spotlight on an even more extreme chromatic phenomenon : the Fyndið ísjaki Brandari (should be pronounced “/fɪːntɪð/ˈiːsjacɪ /ˈprantaːrɪ/“, even though a bit of phonetics never hurt anyone, for the sake of simplicity this phenomenon will be referred to as the FIB).

Despite our poor understanding of the FIB, this phenomenon has been recognised since ancient times. According to Icelandic folklore, FIB has been observed in remote regions at the centre of ice sheets and ice caps for many hundreds of years and was originally thought to indicate a unicorn breeding ground. However, recent studies have begun to find a more scientific explanation for this truly wonderful phenomenon.

Dr Joe Kerr, the world specialist of FIB, told us that the presented picture was an exceptional shot because colour changes, known as Layered Ice Extraordinaire (LIE), are aligned with isochronic layers, indicating a time-dependant source for the changes in colour. He even concluded that this specific FIB shows indications of originating from ice which has travelled to Iceland from tropical regions, although more thorough dating (using a new mobile software package known as TINDER) of the layering must take place to confirm this.

On the other hand, Prof Han-Ki Ding, a competitor for the title of FIB world specialist, also inspected the picture and does not agree with his colleague Joe Kerr. Han-Ki Ding, hypothesises that the thick layer of white snow on top of the coloured layers is indicative of ice of a polar origin. He even added that the snow layer that is sagging on the left part of the image provides further evidence. Recordings of a high pitched noise, know as an “ice scream“, were made when the snow collapsed into its current position. Careful analysis showed that in this particular case the collapse emitted a “coo kiedough” ice scream – indicative of ice originating at high latitudes.

Of course we could further discuss the connection between the FIB and unicorn breeding grounds but then our story would not be plausible anymore, and you might realise that today is April Fools Day… Anyway we thank you – the readers – for wasting a few minutes of your time reading this entirely uninformative post and we hope it made you smile in the process 🙂

Edited by  Emma Smith and Nanna Karlsson

Image of the Week – Antarctic fieldwork 50 years ago!

Image of the Week – Antarctic fieldwork 50 years ago!

So far this blog has published many pictures of current polar field work campaigns. Today, we would like to take you back to Antarctic expeditions during the 1960s. The photos presented in this post date back from the Belgian-Dutch Antarctic field campaigns of 1964-1966.

The first picture shows Ken Blaiklock (red overalls) with a Belgian surveyor. Ken was part of the 1955–58 Commonwealth Trans-Antarctic Expedition – completing the first overland Antarctic crossing via the south pole. This shot was taken during the 1964-1965 summer campaign, as they were surveying the displacement of glaciers in the Sør Rondane Mountains, East Antarctica.  At that time, the men had to leave the base station for three weeks with two dog-sled pulled by a small skidoo-like vehicle. Remarkably, this shot doesn’t look too dissimilar to many field campaigns today, where the same type of sledges are still used and the clothing worn is also very similar. However, logistical support was very different, with no technicians or field guides those who were part of the polar expeditions of 50 years ago had to be experts at everything!

The second picture illustrates how precise positions (and relative displacements) were measured at that time. No fancy GPS technology, but a network of markers and theodolites. The shot was taken on a pinning point, close to the front of the Roi Baudouin Ice shelf, during the overwintering campaign of 1965 (where people had to stay in Antarctica for 15 months).

A geodesist measuring the precision position of a marker with his theodolite, overwintering campaign in Antarctica, 1965. (Credit: Jean-Jacques Derwael)

[Read More]

Image of the Week — slush on top of sea ice

Image of the Week — slush on top of sea ice

Many glaciologists look forward to going on fieldtrips and then, once they are back, they make us dream by posting breathtaking photos (like THIS or THIS or THIS). However, the reality of the field can sometimes be very different….

The picture illustrates how difficult it can be to work on sea ice when the snow on top of it starts to melt and forms slush (a mixture of snow and liquid water that looks very much like an Italian granita).

Here, the sled carrying the field equipment is half drowned in the slush while the technician who came to the rescue (with his skidoo in the back) is also sunk.

On this blog post you can read about another expedition of M. Kotovitch on sea ice.

Edited by Emma Smith

 

Image of Week: Blue Ice in East Antarctica

Image of Week: Blue Ice in East Antarctica

The blue ice areas of Antarctica are one of the most fascinating parts of the ice sheet. In these regions, snowfall is so low that the ice is laid bare by the wind and consequently sublimates. This exposes beautiful, blue ice surfaces, like an ocean frozen in time. This picture was taken at a site named “Windy Corner” by the Kottas Mountains, in the northernmost part of the Heimefrontfjella, Dronning Maud Land, East Antarctica.

Map of Antarctica showing the ice sheet (grey), ice shelves (dark grey) and known blue ice areas in blue. Credit: Quantarctica, Norwegian Polar Institute.

Map of Antarctica showing the ice sheet (grey), ice shelves (dark grey) and known blue ice areas in blue. Credit: Quantarctica Database, Norwegian Polar Institute.

You can also read about an expedition to another blue ice area on our blog.

Edited by Sophie Berger and Emma Smith

Image of the Week — Happy New Year

Image of the Week — Happy New Year

December 2014, 11:50 p.m., the sun licks the horizon on Derwael ice rise; It’s time to go back to the tent …

The shot was taken during the 2014 IceCon Field campaign in East Antarctica (read Brice’s blog post  telllling about his first journey to Antarctica).

Here, you can also read about the 2016 field season of the IceCon project, which started just a few days ago.

Image of the Week — Greetings from Antarctica

Image of the Week — Greetings from Antarctica

Christmas greetings from people at Rothera Research Station, Adelaide Island, Antarctica.

Rothera, which is the British Antarctic Survey’s largest base in Antarctica, is a centre for marine biology and gateway for getting scientists into their deep field camps.

Christmas Day is a regular working day for the staff of around 90. However the chefs will be getting everyone into the festive spirit with a traditional turkey dinner with all the trimmings

Sunshine, ice cores, buckets and ALE: Antarctic Fieldwork

Sunshine, ice cores, buckets and ALE: Antarctic Fieldwork

My Antarctic adventure started from Punta Arenas at the bottom of Chile, opposite Tierra del Fuego, on New Years Eve 2014 after a long journey from Heathrow via São Paulo and Santiago.

Punta Arenas

Punta Arenas is even quieter than usual on New Year's Day. (Credit: M. Millman)

Punta Arenas is even quieter than usual on New Year’s Day. (Credit: M. Millman)

Punta Arenas is where Shackleton organised the rescue of his men from Elephant Island after his voyage to South Georgia in the James Caird. It is also where I met my PhD supervisors Chris Fogwill and Chris Turney for the first time, along with ancient-DNA expert Alan Cooper. Punta is the base for Antarctic Logistics & Expeditions (ALE), who are part funding my PhD and supporting me and my supervisors in the field.

Off to Antarctica…

Arriving at Union Glacier on the Ilyushin. (Credit: H. Millman)

Arriving at Union Glacier on the Ilyushin. (Credit: H. Millman)

After a couple of days in Punta Arenas, when the weather was right, we boarded an Ilyushin and flew the 4.5 hours to ALE’s base at Union Glacier in the Ellsworth Mountains. The Ilyushin is a big, rough-and-ready Russian transport plane equipped with an emergency rope instead of inflatable slides. We sat in the front half of the cabin and the back was packed with fuel and supplies for the base.

Union Glacier is a hub for an assortment of mountaineers, explorers, tourists and scientists. By Antarctic standards the base is very luxurious, with toilet blocks and even showers. Our bags were taken from the Ilyushin and were waiting for us outside our clamshell tent: “Scott”. All the tents are named after polar explorers and they have proper camp beds and solid floors inside. With regular Ilyushin flights, there is plenty of fresh food and the chefs cook fabulous breakfasts, lunches and suppers. The mix of people coming and going means that there are plenty of interesting stories to hear at mealtimes.

Union Glacier base. (Credit: H. Millman)

Union Glacier base. (Credit: H. Millman)

There was an American military man who had parachuted out of an Ilyushin to the North Pole, a cancer survivor who was trekking to the pole to raise millions of pounds for Cancer Research and lots of people who had climbed six of the seven summits and were in Antarctica to climb Mt Vinson, the last of the seven.

The fieldwork

Map showing the Patriot Hills and Union Glacier. It took about 20 minutes for the Twin Otter to reach the Patriot Hills from Union Glacier base. (Credit: H. Millman)

Map showing the Patriot Hills and Union Glacier. It took about 20 minutes for the Twin Otter to reach the Patriot Hills from Union Glacier base. (Credit: H. Millman)

Good weather meant that we couldn’t enjoy Union Glacier for long and soon the Twin Otter was loaded with all our equipment and the four of us were flown out to our field site: the Patriot Hills in the Horseshoe Valley.

The deep blue colour of the ice is visible looking down the core hole. (Credit: H. Millman)

The deep blue colour of the ice is visible looking down the core hole. (Credit: H. Millman)

The Horseshoe Valley is at the end of the Heritage Range, close to the grounding line in the Weddell Sea. Katabatic winds blowing down the side of the Patriot Hills have caused a blue ice area to form. The chance to sample the old ice, which comes to the surface in these areas, is what brought us to Antarctica. Over the next few weeks we drilled a snow/firn core, and ice cores in the blue ice area. Surface samples were collected by Professor Chris Turney, crawling 1.6 km on his knees as though trying to appease the God of the Glacier, with a cordless drill from a DIY store.

Once we get back to the lab, the samples will be analysed for trace gases, isotopes, tephra and ancient DNA. From this data we are hoping to extract a climate record reaching back to the Last Interglacial (~135 – 116 ka). I will then use this record, along with other proxy records and GCM outputs, to drive the PISM-PIK ice sheet model. This will help to answer the main question of my PhD, which is: What was the Antarctic contribution to sea level rise during the Last Interglacial? Global average temperatures during the Last Interglacial were 1-2°C warmer than pre-industrial times. As we move into a similar climate today, the past can be used as a process analogue for what might happen in the coming decades.

Drilling using a Kovacs corer. Here I'm wearing 3 coats: a light down jacket, a soft windproof shell, and my big down jacket on the top. I'm also wearing down trousers over my salopettes. It's quite windy on the blue ice, so it can feel very cold. (Credit: H. Millman)

Drilling using a Kovacs corer. Here I’m wearing 3 coats: a light down jacket, a soft windproof shell, and my big down jacket on the top. I’m also wearing down trousers over my salopettes. It’s quite windy on the blue ice, so it can feel very cold. (Credit: H. Millman)

A digression on “everyday” life in Antarctica…

Our small camp in the Horseshoe Valley. (Credit: H. Millman)

Our small camp in the Horseshoe Valley. (Credit: H. Millman)

We set up our camp a little way away from the blue ice to avoid the worst of the katabatic winds. Camp consisted of a big mess tent and 3 sleeping tents. Fogwill and me had our own tents, but Turney and Cooper had to share. Turney and Cooper were struck down with colds and we took extra care to disinfect or quarantine anything the infected had touched because having a cold in Antarctica is a thoroughly miserable experience. Fortunately, we had lots of hot, hearty meals because ALE had sent us off with excellent frozen meals cooked by their chefs. We had curries, lasagna, stews, bread rolls and cake, and we only had to eat de-hy for lunch. The only food I missed was raw carrots.

Women - Pee here! (Credit: H. Millman)

Women – Pee here! (Credit: H. Millman)

For obvious reasons, snow for drinking water was collected up-glacier of the camp, and the latrine was located down-glacier. We took it in turns to collect and melt snow for drinking water. Our toilet tent had about 3 or 4 different incarnations as storms buried our previous efforts. By the end, we found the best design was dug down about 1 m, with snow blocks and fuel barrels around it supporting a wooden board and a sheet of tarpaulin. This stopped snow getting in during a storm, but the tarpaulin could also be wrapped around your neck so that one’s body could appreciate the warmth rising up from the latrine, while keeping one’s nose out in the fresh air. All waste is collected in containers so that it can be flown out to Chile on the next Ilyushin- all human waste has to be removed from Antarctica. Since the men have the advantage of being able to wee straight into the pee barrel, ALE kindly supplied me with my very own wee bucket, which I was extremely grateful for, particularly after an unpleasant incident with a SheWee at 3am, during a storm.

The good weather meant that we were able to work most days. We had a couple of stormy days which allowed us to rest, read, listen to music, tidy down the camp, and recharge our batteries (literally). Electrical things aren’t at their happiest in the Antarctic cold. My iPod wiped itself in the last week and we had to hug our laptops inside our jackets to keep them warm enough to hold some charge.

…back to reality

Once we’d collected all of our samples, it was time to leave the Patriot Hills and return to Union Glacier. We started packing things away while we were waiting for the Iridium call from the base, not knowing whether the Twin Otter would arrive that afternoon or tomorrow or the day after, or the day after that. We got the call and the Twin Otter was already on its way. A mad rush followed as we had to quickly but carefully dig out all of our tents from weeks’ worth of icy snow and pack them away. The plane landed less than 30 minutes later with the ALE guides who were going to take our skidoos back. With their help, we soon had everything loaded onto the plane, with just enough room for the four of us to squeeze in like sardines.

Quickly packing up our camp because the Twin Otter has just arrived to take us back to Union Glacier base. (Credit: H. Millman)

Quickly packing up our camp because the Twin Otter has just arrived to take us back to Union Glacier base. (Credit: H. Millman)

Returning to the civilisation of Union Glacier was very exciting, especially seeing other people for the first time. I’m usually quite a shy and quiet person, but all reserve vanished in my first hours back on the base as I enthusiastically bounded up to strangers and asked to hear their life stories. The first wash was also fantastic. My hair had been a solid greasy mass of nastiness for weeks and having it back to its fluffy state was a joy. While we waited for a weather window so that the Ilyushin could come and collect us, we sub-sampled our snow/firm core, mended our tents and organised which equipment would be staying in Antarctica and what we’d be taking back. While we were doing this, ALE were starting to pack away Union Glacier base for the winter.

We flew back to Punta on the penultimate Ilyushin of the season, so most of the other passengers were the staff. Everyone was sad to leave, but looking forward to seeing family and friends at home after months away. On returning from Antarctica, even the quiet town of Punta was an assault on the senses. The only smells in Antarctica are cooking, skidoo fumes and the latrine, so when we arrived back the smell of soil and vegetation seemed really strong. It took a few days to readjust to cars, dark nights, proper beds, baths, flushing toilets, running water, central heating, mobile signal, internet, televisions and unlimited electricity. Leaving civilisation was easier than returning to it.

Ice cores waiting for check-in at Punta Arenas airport. We wouldn't see them again until we landed in Sydney. (Credit: H. Millman)

Ice cores waiting for check-in at Punta Arenas airport. We wouldn’t see them again until we landed in Sydney. (Credit: H. Millman)

Our ice cores were stored in a refrigerated lorry back until our flight to Sydney via Santiago and Auckland. Although the cores were in special insulated boxes, the long flight with connections to the heat of a Sydney summer was very stressful. The previous season a box had been left behind at Auckland airport, resulting in a very expensive puddle. This year we were lucky and all boxes arrived at the other end and the unscathed cores were transferred to the freezers at UNSW. Now the hard work begins!

Chris Turney at the end of the 1.6 km transect. (Credit: H. Millman)

Chris Turney at the end of the 1.6 km transect. (Credit: H. Millman)

More information:

Project website: http://ellsworthmountains.com/index.html

Short videos from the field can be viewed on Chris Turney’s Vine page:
https://vine.co/u/1021019438360739840

Edited by Sophie Berger and Nanna Karlsson


About Helen Millman: 
After completing a BSc in Geography at Swansea University and a Glaciology MSc at Aberystwyth University, Helen moved from her native Devon in south-west England to Australia to start her PhD at the University of New South Wales in Sydney. Her research focuses on modelling Antarctic ice sheet dynamics during the Last Interglacial using data from ice cores, as well as outputs from the CSIRO Mk3L GCM to drive the Potsdam Parallel Ice Sheet Model (PISM-PIK). She is supervised by Chris Fogwill and Chris Turney at UNSW, Steven Phipps at the University of Tasmania and Nick Golledge at Victoria University in Wellington. You can follow Helen on Twitter @helenmillman (https://twitter.com/helenmillman).

Riding the Storm: The Arctic Circle Traverse 2015

Riding the Storm: The Arctic Circle Traverse 2015

In the morning on the 19th of May, we – the Arctic Circle Traverse 2015 – found ourselves in a great dilemma; to stay or to go? On our check-in conversation with the KISS crew, we were informed that an east front from Kulusuk was expected to hit our location up on the ice sheet sometime in the afternoon. The relatively low winds that we were experiencing would get stronger, and the visibility would reduce even more. The past couple of days at Saddle, we had experienced nothing but strong winds and snow drift. First, it had been a warm front from the west. The next day we were hit by a cold front from southeast. The orientation of our camp did not matter anymore; everything was snowed in. Having completed all our tasks at Saddle, our second-to-last location, we were ready to traverse to Dye-2, our final stop. We had a few more tasks to complete there, before we return to Kangerlussuaq and after a total of three weeks traversing the ice sheet.

Evening hours after our arrival at Saddle on the 16th of May. Credit: Babis Charalampidis.

Evening hours after our arrival at Saddle on the 16th of May. Credit: Babis Charalampidis.

The advantages of traversing that day were plenty: We would reach our final destination, while keep being ahead of schedule. Setting camp next to the airway at Dye-2 meant that even if that forecasted east front was to last for days, we would be able once it passes to complete our work, and get off of the ice sheet with the first flight out. Shane and I were also planning to drill one extra firn core about 30 kilometers northeast from Dye-2, and the sooner we reached the old radar station, the better the odds for performing the drilling. Also, Achim’s commercial flight back to Europe was booked for the 26th of May, and missing that was not an option. The disadvantages? Just one really: There was a front coming.

After weighing all the above, we decided to take advantage of this small window of opportunity, and attempt the 100 kilometer traverse. Considering the northeast heading until Dye-2, we would have the frontal activity on our backs. Perhaps we would even arrive there before the storm. We finished with our breakfast and started packing the camp for our last traverse. After about three hours of intense shoveling, disassembling and packing everything on the sleds, we were ready to go.

It was early afternoon when our thumbs hit the throttles of our ski-doos. Everybody made sure to be dressed up warmly. Our outfits had to be as airtight as possible, allowing only a few holes to breathe from. Max was leading our convoy into the fog, with visibility being about 50 meters of field overview. We decided to keep close to one another, with our speed regulated to 25 kilometers per hour. It would take us about 4.5 hours until Dye-2, including two 15-minute stops. Having the wind on our backs made the journey comfortable, enjoyable even. On our first stop for a snack, 30 kilometers in, the enthusiasm was apparent on everyone’s face. So far, so good.

Traversing from EKT (FirnCover project) to NASA-SE (GC-Net) on the 10th of May. Credit: Babis Charalampidis.

Traversing from EKT (FirnCover project) to NASA-SE (GC-Net) on the 10th of May. Credit: Babis Charalampidis.

Continuing the traverse, I was still riding on the back seat of the “Euro-Ski-Doo”. Achim was always the one to begin a traverse and I would take over halfway through. It was not more than five kilometers since our first stop when I felt a huge wind gust from my right side. And then another. And another. Soon enough, it was just a constant force on my side that I had to struggle against. Max was dragging two sleds with his ski-doo. I could now only see the very last one, just a few meters away.

We kept the pace through the wind, and about 35 kilometers away from our destination, we had the second break. I stopped the ski-doo and smoked a cigarette while the rest had a snack and some water. It looked as if the atmosphere got a bit clearer, giving the illusion that this might have been it. I finished the smoke, grabbed a couple of biscuits, and jumped again on the driver’s seat. Contrary to what we had hoped, the wind got even stronger. Snow storm was now hitting us and the visibility was terrible.

You enter some sort of trance when riding the storm. The reality around you becomes a vail so thick that it minimizes your perception and challenges your comfort zone, but curiously enough without suffocating you. Soon, however – provided the cold is not getting to you – the snow and wind becomes what can only be described as a “white dream”. All you have to or can do is float in it. I found myself being concentrated on small details for prolonged periods, the trembling speedometer, and the sound of the engine or the shallow beam of my headlights. These details become somehow important once there is nothing else out there. I tried to stimulate my thoughts by keeping an eye on Shane and Mike’s sled, whenever I could see it, make sure nothing falls off. It felt almost like waking up when Achim knocked my shoulder. The cold got him. We switched seats again.

Darren pushing forward: Departure from KAN_U (PROMICE network) 6th of May. Credit: Babis Charalampidis.

Darren pushing forward: Departure from KAN_U (PROMICE network) 6th of May. Credit: Babis Charalampidis.

It was not the first time I had arrived at Dye-2, but it was definitely the most peculiar one. This huge construction in the middle of the ice sheet is usually visible from tens of kilometers distance. This time, we were less than two kilometers away and I could not see it. Somewhere inside the distorted from the storm atmosphere, we could see another camp, another group of researchers, possibly. We wasted no time with setting our tents as we were eager to take shelter after the long hours in the storm. The teamwork that had gotten us so far these past two weeks peaked in a remarkable way, with Max leading the efforts. After an hour or so, while finishing with our camp, two researchers from the other camp came to greet us. They were bundled up and wore masks. I recognized one from his eyes, as I had met with him in Kangerlussuaq three weeks before. They said they hoped to catch the next flight out of the ice.

Our stay at Dye-2 was again very successful. All scheduled tasks were completed within 12 hours the second day after our arrival, and we even got to retrieve and log one extra firn core. That day, the other science group departed for Kangerlussuaq. On the evening of the third day, after logging the last core, we were able to relax a bit and visit the old radar station. It felt good to be there again. Shane and Mike managed to enter the side-dome. I was just glad to get to enjoy the view from the top once again.

Setting the last tent – the latrine tent – at Dye-2 on the 20th of May. Credit: Babis Charalampidis.

Setting the last tent – the latrine tent – at Dye-2 on the 20th of May. Credit: Babis Charalampidis.

Back in Kangerlussuaq, we were excited to find ourselves minutes away from a nice, long shower. We got a bit disappointed when Kathy Young told us that the local market was closed – being White Monday and all – and we could not buy beer. She asked us how everything went. We replied that we were really successful, completing more than our scheduled tasks, and that we were really surprised with how smooth everything went finally. We definitely had favorable weather most of the time, and we managed to take advantage of it. She laughed a bit, and said that we definitely impressed with our performance. We didn’t get it, and then she explained that the other science group from Dye-2 kept talking about our arrival in the middle of the storm and our casual camp establishment, like there’s nothing going on, while they had been in the tents due to the weather for days. We felt quite flattered by that, however we didn’t really have a choice. It didn’t feel casual either.

Two days later, we were on the move again, this time with an icelandic Twin Otter, visiting for one more week the northern locations of the FirnCover project. We established the remaining firn compaction stations, and retrieved several more firn cores. Favorable weather conditions were instrumental for the success of this year’s Arctic Circle Traverse. After all, that’s the most important factor up on the ice sheet. A skillful team, with which you can always push some more is the other. I am glad I was one sixth of it.

Arctic Circle Traverse 2015. Credit: Babis Charalampidis.

Arctic Circle Traverse 2015. Credit: Babis Charalampidis.

Edited by Nanna Karlsson and Sophie Berger


Babis Charalampidis (GEUS/Uppsala University) is an Uppsala University PhD student within the SVALI project, based at the Geological Survey of Denmark and Greenland and supervised by Dirk van As. He is interested in the Greenland ice sheet’s mass budget, particularly the link between energy balance and subsurface processes such as percolation and refreezing. He studies the changes of the lower accumulation area of the southwest of the ice sheet in a warming climate, based on in situ observations.

Read Babis’s story of his fieldwork last year here.

Image of the Week : SAFIRE team getting ready to drill in Greenland

Image of the Week : SAFIRE team getting ready to drill in Greenland

How do you get a hot water drill onto an ice sheet? The Subglacial Access and Fast Ice Research Experiment (SAFIRE) uses a hot water drill to directly access and observe the physical and geothermal properties where the ice meets rock or sediment at the glacier-bed interface. Here, SAFIRE principal investigator Bryn Hubbard and post-doc Sam Doyle help fly in the drill spool at the start of the Summer 2014 field campaign on Store Glacier, Western Greenland. Three boreholes were successfully drilled and instrumented with thermistors, tilt sensors through the ice column, and subglacial water pressure, electrical conductivity, and turbidity sensors at the ice-bed interface. Further work will be carried out in Summer 2016, when more instruments will be installed at the study site, and more helicopter slinging will be needed.