CR
Cryospheric Sciences

Céline Heuzé

is a VINNOVA Marie Curie research fellow at the University of Gothenburg, in southwest Sweden. She is a polar physical oceanographer currently focusing on one particular water mass, the North Atlantic Water, studying it from its formation in the Labrador Sea to its melting of Greenland floating glaciers. She completed her PhD in 2015 at the University of East Anglia, UK, on the representation of Antarctic Bottom Water in climate models. She is also the 2017 executive secretary of APECS Sweden. She tweets as @ClnHz as well as @APECS_Sweden and blogs on PolarFever when at sea.

Image of the week – How hard can it be to melt a pile of ice?!

Image of the week – How hard can it be to melt a pile of ice?!

Snow, sub-zero temperatures for several days, and then back to long grey days of near-constant rain. A normal winter week in Gothenburg, south-west Sweden. Yet as I walk home in the evening, I can’t help but notice that piles of ice have survived. Using the equations that I normally need to investigate the demise of Greenland glaciers, I want to know: how hard can it be to melt this pile of ice by my door? In the image of this week, we will do the simplified maths to calculate this.


Why should the ice melt faster when it rains?

The icy piles of snow are made of frozen freshwater. They will melt if they are in contact with a medium that is above their freezing temperature (0°C); in this case either the ambient air or the liquid rainwater.

How fast they will melt depends on the heat content of this medium. Bear with me now – maths is coming! The heat content of the medium per area of ice, , is a function of the density and specific heat capacity of the medium. Put it simply, the heat capacity is a measure of by how much something will warm when a certain amount of energy is added to it. also depends on the temperature of the medium over the thickness of the boundary layer i.e. the thickness of the rain or air layer that directly impacts the ice.

Assuming that I have not scared you away yet, here comes the equation:

For liquid water (in this article, the rain): , . For the ambient air: , . So we can plug those values into our equation to obtain the heat content of the rain and of the air. We can consider the same temperature over the same (e.g. Byers et al., 1949), and hence we get .

Stepping away from the maths for a moment, this result means that the heat contained in the rain is more than 3000 times that of the ambient air. Reformulating, on a rainy day, the ice is exposed to 3000 times more heat than on a dry day!

The calculations have obviously been simplified. The thickness of the boundary layer is larger for the atmosphere than for the rain, i.e. larger than just a rain drop. At the same time, the rain does not act on the ice solely by bringing heat to it (this is the thermic energy), but also acts mechanically (kinematic energy): the rain falls on the ice and digs through it. For the sake of this blogpost however, we will keep it simple and concentrate on the thermic energy of the rain.

How long will it take for the rain to melt this pile of ice then?

Promise, this will be the last equation of this blogpost! Reformulating the question, what is the melt rate of that ice? Be it for a high latitude glacier or a sad pile of snow on the side of a road, the melt rate is the ratio of the heat flux from the rain (or any other medium) over the heat needed to melt the ice. It indicates whether the rain brings enough heat to the ice surface to melt it, or whether the ice hardly feels it:

More parameters are involved

  • the density of the ice;
  • the latent heat of fusion, defined as how much energy is needed to turn one kilogram of solid water into liquid water;
  • the heat capacity of the ice (see previous paragraph);
  • the difference between the freezing temperature (0°C) and that of the interior of the ice (usually taken as -20°C).

But what is  I am glad you ask! This heat flux , i.e. , is crucial: it not only indicates how much heat your medium has, but also how fast it brings it to the ice. After all, it does not matter whether you are really hot if you stay away from your target. I actually lied to you, here comes the final equation, defining the heat flux:

We can consider that . We already gave and earlier. As for , this is our precipitation, or how much water is falling on a surface over a certain time (given in mm/hour usually during weather bulletins). On 24th January 2018, as I was pondering why the ice had still not melted, my favourite weather forecast website indicated that (278.15 K) and .

Eventually putting all the numbers together, we obtain . So that big pile on the picture that is about 1 m high will require constant rain for nearly 14 days – assuming that the temperature and precipitation do not change, and neglecting a lot of effects as already explained above. Or it would take just over one hour of the Wikipedia record rainfall of 300 mm/hour – but then ice would be the least of my worries.

The exact same equations apply to this small icy island, melted by the air and ocean [Credit: Monika Dragosics (distributed via imaggeo.egu.eu)]

In conclusion, liquid water contains a lot more heat than the air, but ice is very resilient. The mechanisms involved in melting ice are more complex than this simple calculation from only three equations, yet they are the same whether you are on fieldwork on an Antarctic ice shelf or just daydreaming on your way home.

Other blogposts where ice melts…

Edited by Adam Bateson and Clara Burgard

Image of the Week — Think ‘tank’: oceanography in a rotating pool

Miniature ocean at the Coriolis facility in Grenoble. [Credit: Mirjam Glessner]

To study how the ocean behaves in the glacial fjords of Antarctica and Greenland, we normally have to go there on big icebreaker campaigns. Or we rely on modelling results, especially so to determine what happens when the wind or ocean properties change. But there is also a third option that we tend to forget about: we can recreate the ocean in a lab. This is exactly what our Bergen-Gothenburg team has been doing these last weeks at the Coriolis facility, in sunny Grenoble.


How to build your own miniature ocean

Take a 13m diameter (circular) swimming pool. Install it on a rotating platform, and start turning to simulate the Coriolis force, i.e. the impact of the Earth rotation on the flow. Fill it so that the water level reaches 90cm. Actually, the exact value does not matter and can be changed; just make sure that your tank width is an order of magnitude larger than your depth, and that you do not overflow everywhere on the lab floor. Congratulations, you have an ocean! But for now it is a bit boring.

Let’s add some stratification and density-driven currents. As we explained in a previous entry, all you need to do for that is change the temperature and/or salinity of your water. The people here at the Coriolis facility say that changing the salinity is easier than the temperature, so ok, put a source somewhere in your tank that will spit out salty water. Make it even more realistic: have some trough, underwater mountains, solid ice shelves etc. Or rather, some Plexiglas of the corresponding shape. Now you have a beautiful part of the ocean with realistic currents!

But how do you observe it? You can lower probes into the water at specific locations, as if you were doing miniature CTD casts in your miniature ocean. Or you can visualise the whole full-depth flow: add tracer particles to the water flowing from the source (in our case, biodegradable plastic), shoot lasers at it at various depth levels, and take high resolution pictures as you do so. Then, you can track the particles from one image to the next to infer their velocity, using a method called PIV.

 

By the way, it looks way neater than on this image – that one is just from our overview camera, for fun. [Credit: Céline Heuzé]

What does it look like when you fire lasers at a large rotating tank?

In a nutshell, it looks like this:

The water flows from the source on the right of the image, towards the ‘ice shelf’ on the left. We are watching the scene from above, from our office that rotates with the tank. The laser successively illuminates several levels from the bottom of the channel to the water surface, revealing the changing structure of the flow with depth. In our real experiment, it took more than 10 minutes for the water to reach the ‘ice shelf’ – here, I have slightly accelerated it.

It is surprisingly peaceful and relaxing to watch. Well, there is tension and suspense regarding what the flow will do since this is, after all, why we are here. But otherwise you are in the dark, with particles shining all around you, in the silence except for the low-squeeking noise of the rotating tank, gently rocked by the vibrations of the platform, and there is not much you can do but wait and enjoy the view. You can also count how many undesired bubbles and dead insects floating at the surface you can see!

Why do we need rotating tank experiments?

As we explained in this blog, the future of the Antarctic ice sheet is unknown due to marine ice sheet instability. We do not know under which conditions the floating ice shelves that block (‘buttress’) the big land-based ice sheet may collapse. In particular, we do not know what controls the flow of comparatively warm waters that melt the ice shelves:

  •  under which conditions do these waters penetrate under the ice?
  •  at which depths do they sit?
  •  what are the impacts of stratification and the shape of the ice shelf itself?

These questions cannot easily be answered by going in the field. We would need access to many ice shelves, year round, and the ability to observe the flow everywhere –including under the ice– synoptically. Instead in the lab, we just need to adjust our flow speed, or the rotation speed of the tank, or the amount of salt in the source, and we are ready to observe!

Further reading:

The blog of the team: https://skolelab.uib.no/blogg/darelius/

Our blog post about the video game Ice Flows!, illustrating the marine ice sheet instability

Edited by Sophie Berger

Image of the Week – ROVing in the deep…

Aggregates of sea ice algae seen from the ocean below by the ROV [Credit: Katlein et al. (2017)].

Robotics has revolutionised ocean observation, allowing for regular high resolution measurements even in remote locations or harsh conditions. But the ice-covered regions remain undersampled, especially the ice-ocean interface, as it is still too risky and complex to pilot instruments in this area. This is why it is exactly the area of interest of the paper from which our Image of the week is taken from!


This is sea ice… seen from the ocean

Traditionally, only divers (and maybe seals, fish, krill, belugas, etc.) have been able to see what is happening just under the sea ice, in the ocean. That is no routine activity – I personally have not been in a fieldwork campaign involving a diver. It is extremely dangerous to dive in such cold waters, and the diver is limited to a small area around the entry hole, which might refreeze really fast. The most common method is to drill small holes from the top of the sea ice to the ice-ocean interface at specific locations instead, and collect the bottom of the resulting ice core. There are obvious problems with this method:

  • drilling takes a lot of time and effort;
  • you cannot drill everywhere, since it becomes unsafe if the ice is too thin (you still have to be standing on the ice to do the drilling);
  • the location of your core has to be representative of what you are sampling.

This is why researchers are trying to more often use sea robots, which can take measurements over a large area while the researchers are safe somewhere else. But most robots that are now used to monitor the ocean are not adapted to ice-covered regions, and the few that are require a lot of specifically trained technicians to operate them and/or can only perform very specific tasks.

Our Image of the Week was taken by a new robot, “The Beast”, whose specificities are described in the recently published Katlein et al. (2017). In brief, it is ice-resistant, small, very manoeuvrable, can be operated by only one or two people from a cosy hut on the ice, and contains any possible sensor you can think of (even a small water bottle for sampling, and a net). It belongs to the family of Remotely Operated Vehicles (ROV), which means that it is connected to the operator by a cable – if anything goes wrong under the ice, just pull on the leash!

And thanks to ROVs, we can see (e.g. on this Image of the Week) that the thickness of the sea ice, hence the amount of light that goes through it and the whole sympagic communities vary a lot over small regions.

What the pilot sees when driving the ROV by a sea ice pressure ridge [Credit: Katlein et al. (2017)].

Why do we need such observations?

  1. Robustness: it will not totally replace the traditional ice coring, for some studies still need to get the actual ice. But it will ensure that the choice of locations make sense, or help extrapolate the localised coring results to a larger region.
  2. Validation: for basin-wide studies, we need satellites. But satellite retrievals, especially those for sea ice thickness, still need in-situ measurements for validation. ROVs can provide more validation points than traditional point-coring for the same mission duration, hence ultimately improving algorithms.
  3. Seeing is believing: for anything from outreach to future fieldwork preparation, videos captured by an ROV are an unvaluable tool. Ecologists can even see which species live there (or discover new ones).

 

Further reading

Edited by Clara Burgard

Image of the Week – Ice Ice Bergy

Image of the Week – Ice Ice Bergy

They come in all shapes, sizes and textures. They can be white, deep blue or brownish. Sometimes they even have penguins on them. It is time to (briefly) introduce this element of the cryosphere that has not been given much attention in this blog yet: icebergs!


What is an iceberg?

Let’s start with the basics. An iceberg, which literally translates as “ice mountain”, is a bit of fresh ice that broke off a glacier, an ice shelf, or a larger iceberg, and that is now freely drifting in the ocean. As an approximation, you can consider that since an iceberg is already in the water (about 90% under water even), its melting does not contribute to sea-level rise. However, if you remember our Sea Level “For Dummies” post, you know that the melting of fresh ice reduces the ocean’s density and makes it expand. Icebergs are found at both poles, although they tend to be larger in the Southern Ocean. The largest iceberg ever spotted there was 335 by 97 km, which represents an area larger than Belgium !

Modelled trajectories of icebergs around Antarctica. The different colours represent different size classes, ranging from 0-1 km² (class 1) to 100-1000 km² (class 5). [Credit: subset of Fig 2 from Rackow et al (2017)]

Icebergs can drift over thousands of kilometres (Rackow et al., 2017), during several years. A more thorough account of the life of an iceberg will be given in a future post, but be aware that among other things, as it drifts:

  • The iceberg is eroded by the waves and melted by the relatively warm ocean;
  • It can split in several pieces because of this melting and mechanical stress;
  • Sea ice can freeze around it, trapping it in the pack ice.

This means that the iceberg changes shape a lot, and can be tricky to monitor (Mazur et al, 2017).

Why do we want to monitor icebergs?

You may have heard of the Titanic, and hence are aware that icebergs pose a risk for navigation not only in the polar regions but even in the North Atlantic. Icebergs also are large reservoirs of freshwater, and depending on how and where they melt, this inflow of melted freshwater can really affect the ocean; it even dominates the freshwater budget in some Greenland fjords (Enderlin et al., 2016).

Icebergs have traditionally been rather understudied, so we are only now discovering how important they are and how they interact with the rest of the climate system: increasing sea ice production (A. Mazur, PhD thesis, 2017), biological activity (Vernet et al., 2012), and even carbon storage (Smith et al., 2011). And sometimes, they have penguins on them!

All eyes in the CryoTeam are now turned to the Antarctic Peninsula, where a giant iceberg may detach from the Larsen C ice shelf soon. To learn how we know that, check this video made by ESA. And of course, continue reading us – we’ll be reporting about the birth of this monster berg!

An iceberg by Antarctica [Credit: C. Heuzé]

Edited by Sophie Berger

Further reading

  • Enderlin et al. (2012), Iceberg meltwater fluxes dominate the freshwater budget in Greenland’s iceberg-congested glacial fjords, Geophysical Research Letters, doi:10.1002/2016GL070718

  • Mazur et al. (2017), An object-based SAR image iceberg detection algorithm applied to the Amundsen Sea, Remote Sensing of Environment, doi:10.1016/j.rse.2016.11.013

  • Rackow et al. (2017), A simulation of small to giant Antarctic iceberg evolution: Differential impact on climatology estimates, Journal of Geophysical Research: Oceans, doi: 10.1002/2016JC012513
  • Smith et al. (2011), Carbon export associated with free-drifting icebergs in the Southern Ocean, Deep Sea Research, doi: 10.1016/j.dsr2.2010.11.027
  • Vernet et al. (2012), Islands of Ice: Influence of Free-Drifting Antarctic Icebergs on Pelagic Marine Ecosystems, Oceanography, doi:10.5670/oceanog.2012.72

Image of the Week — The ice blue eye of the Arctic

Image of the Week — The ice blue eye of the Arctic

Positive feedback” is a term that regularly pops up when talking about climate change. It does not mean good news, but rather that climate change causes a phenomenon which it turns exacerbates climate change. The image of this week shows a beautiful melt pond in the Arctic sea ice, which is an example of such positive feedback.


What is a melt pond?

The Arctic sea ice is typically non-smooth, and covered in snow. When, after the long polar night, the sun shines again on the sea ice, a series of events happen (e.g. Fetterer and Untersteiner, 1998):

  • the snow layer melts;

  • the melted snow collects in depressions at the surface of the sea ice to form ponds;

  • these ponds of melted water are darker than the surrounding ice, i.e. they have a lower albedo. As a result they absorb more heat from the Sun, which melts more ice and deepens the pond. Melt ponds are typically 5 to 10 m wide and 15 to 50 cm deep (Perovich et al., 2009);

  • eventually, the water from the ponds ends up in the ocean: either by percolation through the whole sea-ice column or because the bottom of the pond reaches the ocean. Sometimes, it can also simply refreeze, as the air temperatures drop again (Polashenski et al., 2012).

Melt ponds cover 50-60% of the Arctic sea ice each summer (Eicken et al., 2004), and up to 90% of the first year ice (Perovich al., 2011). How do we know these percentages? Mostly, thanks to satellites.

Monitoring melt ponds by satellites

Like most phenomena that we discuss on this blog, continuous in-situ measurements are not feasible at the scale of the whole Arctic, so scientists rely on satellites instead. For melt ponds, spectro-radiometer data are used (Rösel et al., 2012). These measure the surface reflectance of the Earth i.e. the proportion of energy reflected by the surface for wavelengths in the visible and infrared (0.4 to 14.4 μm). The idea is that different types of surfaces reflect the sunlight differently, and we can use these data to then map the types of surfaces over a region.

In particular for the Arctic, sea ice, open ocean and any stage in-between all reflect the sunlight differently (i.e. have different albedos). The way that the albedo changes with the wavelength is also different for each surface, which is why radiometer measurements are taken for a range of wavelengths. With these measurements, not only can we locate the melt ponds in the Arctic, but even assess how mature the pond is (i.e. how long ago it formed) and how deep it extends. These values are key for climate change predictions.

Fig. 2: Melt pond seen by a camera below the sea ice. (The pond is the lighter area) [Credit: NOAA’s climate.gov]

Melt ponds and the climate

Let’s come back to the positive feedback mentioned in the introduction. Solar radiation and warm air temperature create melt ponds. The darker melt ponds have a higher albedo than the white sea ice, so they absorb more heat, and further warm our climate. This extra heat is also transferred to the ocean, so melt pond-covered sea ice melts three times more from below than bare ice (Flocco et al., 2012). This vicious circle heat – less sea ice – more heat absorbed – even less sea ice…, is called the ice-albedo feedback. It is one of the processes responsible for the polar amplification of global warming, i.e. the fact that poles warm way faster than the rest of the world (see also this post for more explanation).

The ice-albedo feedback is one of the processes responsible for the polar amplification of global warming

But it’s not all doom and gloom. For one thing, melt ponds are associated with algae bloom. The sun light can penetrate deeper through the ocean under a melt pond than under bare ice (see Fig. 2), which means that life can develop more easily. And now that we understand better how melt ponds form, and how much area they cover in the Arctic, efforts are being made to include more realistic sea-ice properties and pond parametrisation in climate models (e.g. Holland et al., 2012). That way, we can study more precisely their impact on future climate, and the demise of the Arctic sea ice.

Edited by Sophie Berger

Further reading

Image of the Week – On the tip of Petermann’s (ice) tongue

Image of the Week – On the tip of Petermann’s (ice) tongue

5th August 2015, 10:30 in the morning. The meeting had to be interrupted to take this picture. We were aboard the Swedish icebreaker Oden, and were now closer than anyone before to the terminus of Petermann Glacier in northwestern Greenland. But we had not travelled that far just for pictures…


Petermann’s ice tongue

Petermann is one of Greenland’s largest “marine terminating glaciers”. As the name indicates, this is a glacier, i.e. frozen freshwater, and its terminus floats on the ocean’s surface. Since Petermann is confined within a fjord, the glacier is long and narrow and can be referred to as an “ice tongue”.

Petermann Glacier is famous for its recent calving events. In August 2010, about a quarter of the ice tongue (260 km2) broke off as an iceberg (Fig. 2). In July 2012, Petermann calved again and its ice tongue lost an extra 130 km2.

These are not isolated events. Greenland’s marine terminating glaciers are all thinning and retreating in response to a warming of both air and ocean temperatures (Straneo et al., 2013), and Greenland’s entire ice sheet itself is threatened. Hence, international fieldwork expeditions are needed to understand the dynamics of these glaciers.

Fig. 2: The 2010 calving event of Petermann. Natural-color image from the Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite ( August 16, 2010).  [Credit: NASA’s Earth Observatory]

The Petermann 2015 expedition

In summer 2015, a paleoceanography expedition was conducted to study Petermann Fjord and its surroundings, in order to assess how unusual these recent calving events are compared to the glacier’s past. Our small team focused on the present-day ocean, and specifically investigated how much of the glacier is melted from below by the comparatively warm ocean (that process has been described on this blog previously). In fact, this “basal melting” could be responsible for up to 80% of the mass loss of Petermann Glacier (Rignot, 1996). Additionally, we were also the first scientists to take measurements in this region since the calving events.

Our results are now published (Heuzé et al., 2017). We show that the meltwater can be detected and tracked by simply using the temperature and salinity measurements that are routinely taken during expeditions (that, also, has been described on this blog previously). Moreover, we found that the processes happening near the glacier are more complex than we expected and require measurements at a higher temporal resolution, daily to hourly and over several months, than the traditional summer single profiles. Luckily, this is why we deployed new sensors there! And since these have already sent their data, we should report on them soon!

Edited by David Rounce and Sophie Berger

References and further reading

Image of the Week — Allez Halley!

Image of the Week — Allez Halley!

On the Brunt Ice Shelf, Antarctica, a never-observed-before migration has just begun. As the pale summer sun allows the slow ballet of the supply vessels to restart, men and machines alike must make the most of the short clement season. It is time. At last, the Halley VI research station is on the move!


Halley, sixth of its name

Since 1956, the British Antarctic Survey (BAS) has maintained a research station on the south eastern coast of the Weddell Sea. Named after the 17th century British astronomer Edmond Halley (also the namesake of Halley’s comet), this atmospheric research station is, amongst other things, famous for the measurements that led to the discovery of the ozone hole (Farman et al., 1985).

Due to the inhospitable nature of Antarctica, there have been six successive Halley research stations:

  • Halley I to IV had to be abandoned and replaced when they got buried too deeply beneath the snow that accumulated over their lifetimes (up to ten years per station).
  • Halley V was built on steel platforms that were raised periodically, so the station did not end up buried under snow. However, Halley V was flowing towards the ocean along with the ice shelf when a crack in the ice formed. To avoid finishing up as an iceberg, the station was demolished in 2012.
  • Halley VI, active since 2012, can be raised above the snow and also features skis, so that it can be towed to a safer location if the ice shelf again threatens to crack. However, no one expected that this would have to be put in practice less than 5 years after the station’s opening…

The relocation project, featuring the new October crack. Inset, timeline of the awakening of Chasm 1. The ice shelf flows approximately from right to left. [Credit: British Antarctic Survey].

The awakening of the cracks

The project of moving Halley VI was announced a year ago. A very deep crack in the ice (“Chasm 1” in the map above) upstream of the station and dormant for 35 years, started growing again barely a year after the opening of Halley VI. The risk of losing the station if this part of the ice shelf broke off as an iceberg became obvious, and it was decided to move the station upstream – beyond the crack.

Additionally, there is another problem, or rather another crack, which appeared last October. This one is located north of the station and runs across a route used to resupply Halley VI. This means that of the two locations where a supply ship would normally dock, one is no longer connected to the research station and hence rather useless. Not only is the station now encircled by deep cracks, now it also has only one resupply route remaining; to bring equipment, personnel and food and fuel supplies to the station – all of which are needed to successfully pull off the station relocation.

Bringing Halley VI to its new location before the end of the short Antarctic summer season will be a challenge. We shall certainly keep you up-to-date with Halley news as well as with news about the rapid changes of the Brunt Ice Shelf (because we’re the Cryosphere blog after all!). In the meantime, you can feel like a polar explorer and enjoy this (virtual) visit of Halley VI.

References and further reading

Edited by Clara Burgard, Sophie Berger and Emma Smith

Image of the Week – What an ice hole!

Image of the Week – What an ice hole!

Over the summer, I got excited… the Weddell Polynya was seemingly re-opening! ”The what?” asked my new colleagues. So today, after brief mentions in past posts, it is time to explain what a polynya is.


Put it simply, a polynya, from the Russian word for “ice hole”, is a hole in the sea-ice cover. That means that in the middle of winter, the sea ice locally and naturally opens and reveals the ocean.

There are two types of polynyas

  • coastal polynyas, also known as latent heat polynyas, open because strong winds push the sea ice away from the coast.
    The ocean being way warmer than the winter-polar night atmosphere, there is a strong heat loss to the atmosphere. New sea ice also forms,  rejecting brine (salt) and forming a very cold and salty surface water layer, which is so dense that it sinks to the bottom of the ocean. This type of polynya can close back when the wind stops.
  • open ocean polynyas, sometimes called sensible heat polynyas, open because the sea ice is locally melted by the ocean. In normal conditions, a cold and fresh layer of water sits above a comparatively warm and salty layer. But mixing can occur which would bring this warm water up, directly in contact with the sea ice, which then melts. Similar to the coastal one, once the polynya has open heat loss and sea ice processes form dense water that will sink. But in this case, the sinking sustains the polynya: it further destabilises the water column, so more warm water has to be mixed up, which prevents sea ice from reforming…
What a polynya looks like, from MODIS satellite: (https://modis.gsfc.nasa.gov/)

What a polynya looks like, from MODIS satellite: (https://modis.gsfc.nasa.gov/) [Credit: David Fuglestad for Wikimedia Commons]

Some polynyas worth mentioning

  • the North Water Polynya, between Greenland and Canada in Baffin Bay, is the largest in the Arctic with 85 000 km2 (Dunbar 1969) and was officially discovered as early as 1616 by William Baffin. In fact, Inuit communities have lived in its vicinity for thousands of years (e.g. Riewe 1991), since this hole in the ice is extremely rich in marine life (e.g. Stirling, 1980).
  • Hell Gate Polynya, in the Canadian archipelago which owes its name to a dramatic event…  but this is a story for later as today we would like to leave you,  reader, with a positive impression about polynyas!
  • the Weddell Polynya, in the Weddell Sea, was discovered as we started monitoring sea ice by satellites in the 1970s. It was a huge open ocean polynya, reaching 200-300 000 km2 and lasting three winters (Carsey 1980), and it is so famous because it has not re-opened since. Although this year, the signs are here… it may happen again! It is also my personal favourite because I spent my PhD studying its representation in climate models, which wrongly simulate its opening every winter, for reasons that are still not totally clear…

Polynyas are a fascinating feature of the cryosphere, not least because they occur in the middle of winter in harsh environments and cannot be instrumented easily. They are a key spot where the ocean, the ice and the atmosphere interact directly. Their opening has a large range of consequences from plankton bloom to deep water formation. And we still struggle to represent them in models, so there is lots of work to do for early career scientists!

References and further reading

  • Carsey, F. D (1980). “Microwave observation of the Weddell Polynya.” Monthly Weather Review 108.12: 2032-2044.
  • Dunbar, M (1969). “The geographical position of the North Water”. Arctic. 22: 438–441. doi:10.14430/arctic3235
  • Riewe, R (1991). “Inuit use of the sea ice.” Arctic and Alpine Research 1:3-10. doi:10.2307/1551431
  • Smith Jr, W. O., and D. Barber, eds (2007). “Polynyas: Windows to the world”. Vol. 74. Elsevier.
    Stirling, I. A. N. (1980). “The biological importance of polynyas in the Canadian Arctic.” Arctic: 303-315, http://www.jstor.org/stable/40509029

Edited by Sophie Berger and Emma Smith

Image of the Week — FRISP 2016

Image of the Week — FRISP 2016

The Forum for Research into Ice Shelf Processes, aka FRISP, is an international meeting bringing together glaciologists and oceanographers. There are no parallel sessions; everyone attends everyone else’s talk and comment on their results, and the numerous breaks and long dinners encourage new and interdisciplinary collaborations. In fact, each year, a few presentations are the result of a previous year’s question!

The location changes every year, moving around the institutions that are involved with Arctic and Antarctic research. The 2016 edition just occurred this week, 3rd – 6th October, in a marine research station of the University of Gothenburg, in the beautiful Gullmarn Fjord.

Each year, a few presentations are the result of a previous year’s question!

Fjord at the sunset [Credit: Céline Heuzé]

Gullmarn fjord at the sunset [Credit: Céline Heuzé]

70 participants from 37 institutions:

  • Attended 49 talks on model results, new observation techniques, and everything in between;

  • Spent more than 15h discussing these results, including 2h around 15 posters;

  • Drank 50 L of coffee, 60 L of tea, 20 L of lingon juice… and a fair amount of wine!

Poster session at the FRISP 2016 meeting. [Credit: Céline Heuzé]

Poster session at the FRISP 2016 meeting. [Credit: Céline Heuzé]

I can’t really choose THE highlight of the conference.
As an organiser, it was a real pleasure to simply see it happen after all the long hours of planning.
As a scientist, it was a great and productive meeting, giving me new ideas and the opportunity to discuss my recent work with the big names of the field in a friendly environment.
And as a human, I enjoyed most the under-ice footages, and in particular the general ”ooooh” that came from the audience.

It was a bit sad to say goodbye to the participants, old friends and new collaborators. But I know that I will see them again during FRISP 2017… and I hope to see you there as well!

 Edited by Sophie Berger and Emma Smith

Water Masses “For Dummies”

Water Masses “For Dummies”

Polar surface water, circumpolar deep water, dense shelf water, North Atlantic deep water, Antarctic bottom water… These names pop in most discussions about the ice-ocean interaction and how this will change in a warming climate, but what do they refer to?

In our second “For Dummies” article, we shall give you a brief introduction to the concept of “water mass”, explain how to differentiate water from more water, and why you would even need to do so.


Global heat budget and the need for an ocean circulation

The global climate is driven by differences between the incoming shortwave radiation and the outgoing longwave radiation (Fig. 1):

  • In the tropics, there is a surplus of energy: the Sun brings more heat, all year-round, than what is radiated out;
  • At the poles in contrast, there is a net deficit: more energy is leaving than is coming from the Sun (who is absent in winter).

The global ocean and atmosphere circulations act to reduce this imbalance, by transporting the excess heat from the tropics to the pole. Here we will focus on the global ocean circulation only, since this post is written by an oceanographer, but similar principles also apply to atmospheric circulation.

Fig 1 :Earth’s latitudinal radiation bugdet, The tropics show a surplus of energy that compensates the Poles’ deficit[Credit: National Oceanograpy Center

Fig 1 :Earth’s latitudinal radiation bugdet, The tropics show a surplus of energy that compensates the Poles’ deficit [Credit: National Oceanograpy Center].

The global ocean circulation

In a nutshell, surface waters bring heat towards the poles where they cool down, sink to the abyss, and return towards the tropics as deep waters where they can go back to the surface..…

We talk about “the global ocean circulation” because although the Earth officially has five oceans, they are not totally separate bodies of water. In fact, the Arctic, Atlantic, Indian, Pacific and Southern oceans are interconnected, with water circulating and moving between them. How does this happen?

The global ocean circulation has two components:

  • The wind-driven circulation, fast but limited to a few hundred metres below the surface of the ocean (read more about it here for example);
  • And the thermohaline circulation (shown on Fig. 2), slower but which affects the whole depth of the ocean.

Today’s post focuses on the latter, since we will talk about water properties. The thermohaline circulation, also called density-driven circulation, depends on two water properties:

  • The temperature (‘thermo’) is mostly controlled by heat exchange with the atmosphere or the ice. Cold water has a high density.
  • The salinity (‘haline’) can be modified by evaporation, precipitation, or addition of fresh water from melted glaciers/ice sheets or rivers. Salty water has a high density.
Fig 2- The global thermohaline circulation shows warm surface currents in red, cold deep currents in blue. Deep waters form in the North Atlantic and Southern oceans. [Credit: NASA]

Fig 2- The global thermohaline circulation shows warm surface currents in red, cold deep currents in blue. Deep waters form in the North Atlantic and Southern oceans [Credit: NASA].

Roughly speaking, a water mass is any drop of the ocean within a specific range of temperature and salinity, and hence specific density. Some water masses are found at particular locations or seasons, while others can be found all around the globe, all the time. Since density sets the depth (density MUST always increase with depth), water masses will lie and travel at particular depth levels.

A quick and dirty oceanography guide

Water masses are formed.

Some are the result of the mixing of other water masses. The others start at the water surface, where they exchange gas (notably oxygen and carbon) with the atmosphere. When a water mass becomes denser than the waters below it , for example, if it is cooled by the wind or ice, it sinks to its corresponding depth within the ocean.

Fig 3- The bathymetry of the Arctic Ocean forces dense (deep) water masses to enter the region via Fram Strait whereas lighter (shallower) waters can go through the Barents Sea [Credit: adapted from IBCAO bathymetry map, Jakobsson et al., 2012 ].

Water masses move all around the globe…

…provided their density allows it. The vertical distribution of density in the ocean must be “stably stratified”, which means that the density increases with depth. In practice, that means that dense waters cannot climb up a shallow bathymetric feature but have to find a way around it. For example to enter the Arctic Ocean (Fig 3), a dense water mass has no choice but to go via Fram Strait, whereas a less dense one can go via the Barents Trough. Similarly, there is a depth limit of about 500 m to reach the northwestern Greenland glaciers.

Water masses retain their properties

Or rather, not all these properties change considerably with space and time. We are not talking only about temperature and salinity, but also about gas and chemical concentrations. It is then possible to track a water mass as it travels around the globe or watch its evolution with time.

You should use T-S diagrams

Visualising water properties can either be done with one graph showing how the temperature varies with depth plus another one for the salinity (multiplied by the number of locations to be observed at the same time); or all of this information can be combined on one image (as done on Fig. 4). This image is called a T-S diagram it and shows how the temperature (T) varies as a function of the salinity (S). It is customary to also draw the lines of constant density (the ‘isopycnals’, black on Fig. 3). These isopycnals give information about the types of mixing happening and the stratification, but we will talk about that in another post.

Fig 4 - an example of how to combine several profiles (top) into a T-S diagram, for one of the randomly selected Arctic historical points that I work with.[Credit: C. Heuzé]

Fig 4 – an example of how to combine several profiles (top) into a T-S diagram, for one of the randomly selected Arctic historical points that I work with [Credit: C. Heuzé].

Because each water mass occupies a very specific region of the T-S diagram (see Fig 5 for an example in the Atlantic), identifying them is relatively easy once you have plotted your data on such diagrams.

Fig 5 – example of a reference T-S diagram with the different water masses of the Atlantic Ocean. Water massed are labelled by their acronym (e.g. AABW= Antarctic Bottom Water) [Credit: after Emery and Meincke (1986)]

Why do ocean water masses matter to the cryosphere?

  • Marine ice sheet instability, and more generally basal melting, is caused by warm dense waters melting floating glaciers from below; how dense the water mass is determines whether it can even reach the glacier.
  • Sea ice formation and melting can be largely affected by water masses moving up and down, especially is those going up are warm.

But there’s a reason why we always talk about “ice-ocean” interactions: it’s not just the ocean acting on the ice, but also the ice impacting the ocean:

  • The densest water mass in the world, Antarctic Bottom Water, forms in the middle of winter if a hole in the sea-ice cover opens (that is called a polynya), suddenly exposing the relatively warm ocean to the extremely cold atmosphere. The resulting strong heat loss and the increased salinity as sea ice reforms make this water sink straight to the bottom;
  • On the other hand, deep water formation can be stopped by the cryosphere: paleorecord evidence showed that it happened in the North Atlantic due to surging ice sheet / marine ice sheet instability (so called Heinrich events) or meltwater floods (Younger Dryas);
  • Less dramatically, icebergs, ice shelves or even sea ice, can cool or freshen water masses they meet, forming “modified” water masses (for example “modified Atlantic Water”),

Each aspect of these interactions is already experiencing climate change and is much more complex than this brief overview… but that will be the topic of another post!

Further reading

 Edited by Sophie Berger and Emma Smith