TS
Tectonics and Structural Geology

Labwork

Minds over Methods: Tectonochemistry of Melting Mud in the Mantle, evidence from the Oman/UAE ophiolite

Minds over Methods: Tectonochemistry of Melting Mud in the Mantle, evidence from the Oman/UAE ophiolite

For this first Minds over Methods of 2019, we invited Christopher Spencer, Senior Research Fellow at Curtin University in Australia, to tell us something about tectonochemistry. By applying geochemistry to tectonic processes, it is possible to get more insight into the different stages of the rock cycle. By combining fieldwork and geochemical analyses of the Oman/UAE ophiolite, Chris and his co-workers believe they found the first direct and in-situ evidence of sediment melting in the mantle.

 

Credit: Christopher Spencer

Tectonochemistry of Melting Mud in the Mantle, evidence from the Oman/UAE ophiolite

Christopher Spencer, Senior Research Fellow, Curtin University, Australia

The rock cycle is the first thing we learn in Geology 101. Magma and lava cool to form igneous rocks. Igneous rocks then erode to form sediment, which forms sedimentary rocks as it is compacted. Increasing pressure and heat then create metamorphic rocks, which eventually will melt. In each of the transitions described in the rock cycle, tectonics is usually involved. Granite batholiths form in subduction zones and are uplifted and eroded in collision zones. The sediments derived therefrom are deposited along continental margins that are often then returned to subduction zones where they contribute to new magmatic systems. There is a wide array of tools that we can use to evaluate the role of tectonics in the rock cycle, of which geochemistry is able to provide insight into each stage of the process.

Applying geochemistry to tectonics is (unsurprisingly) referred to as tectonochemistry. Similar to tectonophysics, where geophysics is applied to address large-scale tectonic questions, tectonochemistry provides a unique view into geochemical proxies of tectonic processes. The melting of sediment along convergent margins is a classic tectonochemical problem, as the unique chemical signature of sediment found in a granite provides unequivocal evidence for the melting of a sedimentary rock. In collisional systems, like the Himalaya, tectonochemistry has been used to constrain the melting of meta-sedimentary rocks as crustal thickening and decompression drives dehydration of micas which leads to melting. Collisional systems provide clear and in situ evidence for sediment melting.

Figure 1: Clockwise from top left: tourmaline-bearing leucogranite from the Himalaya in NW India, leucogranite dykes intruding meta-sedimentary rocks exposed at 5000m altitude, in situ melting of meta-pelite and formation of leucogranite, incongruent melting of muscovite + plagioclase + quartz to form leucogranite but leaving the biotite behind. Credit: Christopher Spencer.

 

Sediments are also thought to melt in subduction systems, but given the difficulty of accessing the asthenosphere directly, it is more challenging to constrain the processes occurring deep in a subduction zone. The incorporation of sediment in subduction zones is often constrained using the geochemistry of the resulting magmatic rocks. The chemical signature of sediment provides a clear indication of its incorporation in the magma, but it is often unclear whether the contamination is occurring in the asthenospheric wedge or in the upper crust. For example, many granite batholiths contain zircon grains that are foreign to the host magma and whose age spectra match the detrital zircon age spectra of the adjacent sedimentary units. This relationship is a clear indication that sedimentary contamination occurred in the upper crust. Unfortunately, the geochemical proxies used to establish the sedimentary contamination only provide indirect evidence for the subduction of sedimentary material into the asthenospheric wedge. Such indirect evidence includes seismic stratigraphy showing sedimentary units being subducted beneath the forearc and whiffs of sedimentary geochemical signals in arc volcanics. Although these evidences point towards sediment being subducted deep into the asthenospheric wedge where it melts and contaminates the magmas coming off the subducting slab, they do not preserve direct evidence of sediment melting in the mantle.

To acquire direct evidence of processes happening deep in the mantle, I set my sights on the Oman/UAE ophiolite, where a thick succession of mantle peridotite is preserved beneath a complete stratigraphic section of oceanic crust. Previous work has shown that this ophiolite not only preserves an intact record of oceanic crustal stratigraphy, but also geochemical features of a subduction zone in the oceanic crust. This implies the ophiolite formed in a supra-subduction setting, where during the earliest phase of subduction, extension in the upper plate caused rifting and formation of oceanic crust above a subduction zone.

 

Figure 2: Oceanic crustal stratigraphy of the Oman/UAE ophiolite comprised of (clockwise from top left): pillow basalts, sheeted dykes, layered gabbros, and mantle peridotite. Credit: Christopher Spencer.

 

During fieldwork in the ophiolite, while traversing the 8-15 km thickness of the mantle peridotite, I encountered a number of granitoid dykes that cross cut the peridotite, but do not cross the petrologic Moho. Many of these dykes contained tourmaline, muscovite, biotite, and even andalusite, minerals that would be expected from the melting of sedimentary material. Finding these minerals in the mantle indicates these grantoid dykes formed from the melting of sedimentary material and here they were within the mantle! Subsequent analysis of zircon grains from these granitoid dykes revealed the age of these dykes was equivalent to the age of the overlying ophiolite providing bullet-proof evidence that they intruded while the ophiolite was forming above a subduction zone. To provide the nail in the coffin for a sedimentary origin, I performed oxygen isotope analysis of the zircon and quartz. Sedimentary material has a distinct oxygen isotopic composition and igneous rocks that are thought to have experienced sediment contamination have δ18O values that lie along mixing lines between a sediment end member and the mantle. The oxygen isotopic analyses of the sub-Moho granitoids of the Oman/UAE ophiolite revealed the highest δ18O values ever measured in igneous rocks, providing unequivocal evidence that these granitoids represent pure sediment melts. In a paper published in Geology (Spencer et al., 2017), my coauthors and I argue these igneous rocks represent the first direct and in situ evidence of sediment melting in the mantle. Lucky for us, we have just scratched the surface of the exciting things left to learn about these fascinating granitoids and I look forward to the opportunity to return to the Oman/UAE ophiolite.

Figure 3: Sub-Moho granitoids of the Oman/UAE ophiolite: A) Cathodoluminescence image of a zircon shown with location and result of δ18O analyses. B) Photograph of sub-Moho granitoids. C) Hand sample of granite with tourmaline and lepidolite (lithium-bearing mica). Credit: Christopher Spencer.

 

Minds over Methods: What controls the shape of oceanic ridges?

Minds over Methods: What controls the shape of oceanic ridges?

In this edition of Minds over Methods, Aurore Sibrant, postdoc at Bretagne Occidentale University (France) explains how she studies the shape of oceanic ridges, and which parameters are thought to control this shape. By using laboratory experiments combined with observations from nature, she gives new insights into how spreading rates and lithosphere thickness influence the development of oceanic ridges. 

 

Credit: Aurore Sibrant

What controls the shape of oceanic ridges? Constraints from analogue experiments

Aurore Sibrant, Post-doctoral fellow at Laboratoire Géosciences Océans, Bretagne Occidentale University, France

Mid-oceanic ridges with a total length > 70 000 km, are the locus of the most active and voluminous magmatic activity on Earth. This magmatism directly results from the passive upwelling of the mantle and decompression melting as plates separate along the ridge axis. Plate separation is taken up primarily by magmatic accretion (formation of the oceanic crust), but also by tectonic extension of the lithosphere near the mid-ocean ridge, which modifies the structure of the crust and morphology of the seafloor (Buck et al., 2005). Therefore, the morphology of the ridge is not continuous but dissected by a series of large transform faults (> 100 km) as well as smaller transform faults, overlapping spreading centres and non-transform offsets (Fig. 1). Altogether, those discontinuities form the global shape of mid-ocean ridges. While we understand many of the basic principles that govern ridges, we still lack a general framework for the governing parameters that control segmentation across all spreading rates and induce the global shape of ridges.

Geophysical (Schouten et al., 1985; Phipps Morgan and Chen, 1993; Carbotte and Macdonald, 1994) and model observations (Oldenburg and Brune, 1975, Dauteuil et al., 2002, Püthe and Gerya, 2014) suggest that segmentation of oceanic ridges reflects the effect of spreading rate on the mechanical properties and thermal structure of the lithosphere and on the melt supply to the ridge axis. To understand the conditions that control the large-scale shape of mid-ocean ridges, we perform laboratory experiments. By applying analogue results to observations made on Earth, we obtain new insight into the role of spreading velocity and the mechanical structure of the lithosphere on the shape of oceanic ridges.

 

Laboratory experiments

The analogue experiment is a lab-scale, simplified reproduction of mid-oceanic ridges system. Our set-up yields a tank filled from bottom to top by a viscous fluid (analogous to the asthenosphere) overlain by the experimental “lithosphere” that can adopt various rheologies and a thin surface layer of salted water. This analogue lithosphere is obtained using a suspension of silica nanoparticles which in contact with the salted water emplaced on the surface of the fluid causes formation of a skin or “plate” that grows by diffusion. This process is analogous to the formation of the oceanic lithosphere by cooling (Turcotte and Schubert, 1982). With increasing salinity, the rheology of the skin evolves from viscous to elastic and brittle behaviour (Di Giuseppe et al., 2012; Sibrant and Pauchard, 2016).

The plate is attached to two Plexiglas plates moving perpendicularly apart at a constant velocity. The applied extension nucleates fractures, which rapidly propagate and form a spreading axis. Underlying, less dense, fresh fluid responds by rising along the spreading axis, forming a new skin when it comes into contact with the saline solution. By separately changing the surface water salinity and the velocity of the plate separation, we independently examine the role of spreading velocity and axial lithosphere thickness on the evolution of the experimental ridges.

 

Figure 2. Close up observations of analogue mid-oceanic ridges and schematic interpretation for different spreading velocity. The grey region is a laser profile projected on the surface of the lithosphere: the laser remains straight as long as the surface is flat. Here, the large deviation from the left to centre of the image reveals the valley morphology of the axis. Credit: Aurore Sibrant.

 

Analogue mid-oceanic ridges

Over a large range of spreading rates and salinities (Sibrant et al., 2018), the morphology of the axis is different in shape. The ridge begins with a straight axis (initial condition). Then during the experiment, mechanical instabilities such as non-transform offset, overlapping spreading centres and transform faults develop (Fig. 2) and cause the spreading axis to have a non-linear geometry (Fig. 3). A key observation is the variation of the shape of the analogue ridges with the spreading rate and salinities. For similar salinity and relative slow spreading rates, each segment is offset by transform faults shaping a large tortuous ridge (i.e. non-linear geometry). In contrast, at a faster spreading rate, the ridge axis is still offset by mechanical instabilities but remains approximately linear.

Figure 3. Ridge axis morphology observed in the experiments and schematic structural interpretations of the ridge axis, transform faults (orange ellipsoids) and non-transform faults (purple ellipsoids). Measurements of lateral deviation (LD) correspond to the length of the arrows. For comparison, white squares represent the size of closeup shows in Fig 2. Credit: Aurore Sibrant.

We can quantify the ridge shape by measuring the total lateral deviation, which is the total accumulated offset of the axis, when the tortuosity amplitude becomes stable. For cases with similar salinities, the results indicate two trends. First, the lateral deviation is high at slow spreading ridges and decreases within increasing spreading rate until reaching a minimum lateral deviation value for a given critical spreading rate (Fig 4A). Then the lateral deviation remains constant despite the increasing spreading rate. Experiments with different salinities also present a transition between tortuous and linear ridges. These two trends reflect how the lithosphere deforms and fails. In the first regime, the axial lithosphere is thick and is predominantly elastic-brittle. In such cases, the plate failures occur from the surface downwards through the development of faults: it is a fault-dominated regime. In contrast, for faster spreading rate or smaller salinities, the axial lithosphere is thin and is predominantly plastic. Laboratory inspection indicates that fractures in plastic material develop from the base of the lithosphere upwards: it is a fluid-intrusion dominated regime.

 

 

Comparison with natural mid-oceanic ridge

In order to have a complete understanding of the mid-oceanic ridge system, it is essential to compare the laboratory results with natural examples. Hence, we measure the lateral deviation of nature oceanic ridges along the Atlantic, Pacific and Indian ridges. The measurements reveal the same two regimes as found in laboratory data. The remaining step consists of finding the appropriate scaling laws to superpose the natural and experiment data. This exercise requires dynamics similarity between analogue model and real-world phenomena which is demonstrated using dimensionless numbers (Sibrant et al., 2018). Particularly, the “axial failure parameter – πF” describes the predominant mechanical behaviour of the lithosphere relative to its thickness. Low-πF accretion is dominated by fractures in a predominantly elastic-brittle lithosphere: the lateral deviation of the ridges is tortuous, while at higher pF, accretion is dominated by intrusion in a predominantly plastic lithosphere: the shape of the mid oceanic ridges is mostly linear (Fig 4B).

 

Figure 4. (A) Lateral deviation values measured in the experiments in function of the spreading rate velocities and salinities. (B) Evolution of the lateral deviation of the ridge axis, normalized by the critical axial thickness (Zc) relative to the axial failure parameter. Dark grey is the laboratory experiments and the colored circles are the Earth data. Adapted from Sibrant et al., 2018.

 

Our experiments give insight into the role of axial failure mode (fault-dominated or intrusion-dominated) on the shape of mid-oceanic ridges. In the future, we want to use this experimental approach to investigate the origin of mechanical instabilities, such as transform faults or overlapping spreading centres. This experimental development and results are a collaborative work between Laboratoire FAST at Université Paris-Saclay and Department of Geological Sciences at the University of Idaho and involves E. Mittelstaedt, A. Davaille, L. Pauchard, A. Aubertin, L. Auffray and R. Pidoux.

 

 

References
Buck, W.R., Lavier, L.L., Poliakov, A.N.B., 2005. Modes of faulting at mid-ocean ridges. Nature 434, 719-723.
Schouten, H., Klitgord, K.D., Whitehead, J.A., 1985. Segmentation of mid-ocean ridges. Nature 317, 225-229.
Carbotte, S.M., Macdonald, K. C., 1994. Comparison of seafloor tectonic fabric at intermediate, fast, and super fast spreading ridges: Influence of spreading rate, plate motions, and ridge segmentation on fault patterns. J. Geophys. Res. 99, 13609-13631.
Phipps Morgan, J., Chen, J., 1993. Dependence of ridge-axis morphology on magma supply and spreading rate. Nature 364, 706-708.
Oldenburg, D.W., Brune, J.N., 1975. An explanation for the orthogonality of ocean ridges and transform faults. J. Geophys. Res. 80, 2575-2585.
Dauteuil, O., Bourgeois, O., Mauduit, T., 2002. Lithosphere strength controls oceanic transform zone structure: insights from analogue models. Geophys. J. Int. 150, 706-714.
Püthe, C., Gerya, T., 2014. Dependence of mid-ocean ridge morphology on spreading rate in numerical 3-D models. Gondwana Res. 25, 270-283.
Turcotte, D., Schubert, G., Geodynamics (Cambridge Univ. Press, New York, 1982).
Di Giuseppe, E., Davaille, A., Mittelstaedt, E., Francois, M., 2012. Rheological and mechanical properties of silica colloids: from Newtonian liquid to brittle behavior. Rheologica Acta 51, 451-465.
Sibrant, A.L.R., Pauchard, L., 2016. Effect of the particle interactions on the structuration and mechanical strength of particulate materials. European Physics Lett., 116, 4, 10.1209/0295-5075/116/49002.
Sibrant, A.L.R., Mittelstaedt, E., Davaille, A., Pauchard, L., Aubertin, A., Auffray, L., Pidoux, R., 2018. Accretion mode of oceanic ridges governed by axial mechanical strength. Nature Geoscience 11, 274-279.

 

Minds over Methods: Experimental seismotectonics

Minds over Methods: Experimental seismotectonics

For our next Minds over Methods, we go back into the laboratory, this time for modelling seismotectonics! Michael Rudolf, PhD student at GFZ in Potsdam (Germany), tells us about the different types of analogue models they perform, and how these models contribute to a better understanding of earthquakes along plate boundaries.

 

Credit: Michael Rudolf

Experimental seismotectonics – Seismic cycles and tectonic evolution of plate boundary faults

Michael Rudolf, PhD student at Helmholtz Centre Potsdam – German Research Centre for Geosciences GFZ

The recurrence time of large earthquakes that happen along lithospheric-scale fault zones such as the San Andreas Fault or Chile subduction megathrusts, is very long (≫100 yrs.) compared to human timescales. The scarcity of such events over the instrumental record of around 60 years is unfortunate for a statistically sound analysis of the earthquake time series.

So far, only few megathrust events have been monitored in detail with near-field seismic and geodetic networks. To circumvent this lack of observational data, we at Helmholtz Tectonic Laboratory use analogue modelling to understand plate boundary faulting on multiple time-scales and the implications for seismic hazard. We use models of strike-slip zones and subduction zones, to investigate several aspects of the seismic cycle. Additionally, numerical simulations accompany and complement each experimental setup using experimental parameters.

 

Seismotectonic scale models
In my project, we develop experiments that can model multiple seismic cycles in strike-slip conditions. Our study employs two types of experimental setups both are using the same materials. The first is simpler (ring shear setup) and is able to show the on-fault rupture propagation. The second is geometrically more similar to the natural system, but only the surface deformation is observable.

To model rupture propagation, we introduce deformable sliders in a ring shear apparatus. Two cylindrical shells of ballistic gelatine (Ø20 cm), representing the side walls, rotate against each other, with a thin layer (5 mm) of glass beads (Ø355-400µm) in between representing an annular fault zone. A see-through lid connected to force sensors holds the upper shell in place, whereas the machine rotates the lower shell. Through the transparent lid and upper shell, we directly observe the fault slip. We can vary the normal stress on the fault (<20 kPa) and the loading velocity (0.0005 – 0.5 mm/s).

The next stage of analogue model, features depth-dependent normal stress and a rheological layering mimicking the strike-slip setting in the uppermost 25-30 km of the lithosphere (see also Mehmet Köküm’s blog post). A gelatine block (30x30cm) compressed in uniaxial setting represents the elastic upper crust under far-field forcing. Embedded in the block is a thin fault filled with quartz glass beads. The ductile lower crust is modelled using viscoelastic silicone oil. The model floats in a tank of dense sugar solution, to guarantee free-slip, stress-free boundaries.

 

Figure 2 – Setup and monitoring technique during an experiment. Several cameras record the displacement field and the ring shear tester records the experimental results. Credit: Michael Rudolf

 

Analogue earthquakes
Both setups generate regular stick-slip cycles including minor creep. Long phases of quiescence, where no slip or very slow creep occurs, alternate with fast slip events sometimes preceded by slow slip events. The moment magnitude of analogue earthquake events is Mw -7 to -5. The cyclic recurrence of slip events is an analogue for the natural seismic cycle of a single-fault system.

 

Figure 3 – Detailed setup and results from the ring shear tester experiments. The upper right image shows a snapshot of an analogue earthquake rupture along the fault zone. The plot shows the recorded shear forces and slip velocities over one hour of experiment. Credit: Michael Rudolf

 

Optical cameras record the slip on the fault and the deformation of the sidewalls. Using digital image correlation techniques, we are able to visualize accurately deformations on the micrometre scale at high spatial and temporal resolution. Accordingly, we can verify that analogue earthquakes behave kinematically very similar to natural earthquakes. They generally nucleate where shear stress is highest, and then propagate radially until the seismogenic width is saturated. In the end, the rupture continues laterally along the fault strike. Our experiments give insight into the role of viscoelastic relaxation, interseismic creep, and slip transients on the recurrence of earthquakes, as well as the control of loading conditions on seismic coupling and rupture dynamics.

 

Figure 4 – Setup and Results for the strike-slip geometry. The surface displacement field is very similar to natural earthquakes. The plot shows that due to technical limitations of this setup, fewer events are recorded but the slip velocities are higher. Credit: Michael Rudolf

 

Future developments
Together with our partners in the Collaborative Research Centre (CRC1114 – Scaling Cascades in Complex Systems) we employ a new mathematical and numerical description of the fault system, to simulate our experiments and get a physical understanding of the empirical friction laws. In the future, we want to use this multiscale spatial and temporal approach to model complex fault networks over many seismic cycles. The experiments serve as benchmarks and cross-validation for the numerical code, which in the future will be using natural parameters to get a better geological and mathematical understanding of earthquake slip phenomena and occurrence patterns in multiscale fault networks.

Minds over Methods: Making ultramylonites

Minds over Methods: Making ultramylonites

“Summer break is over, which means we will continue with our Minds over Methods blogs! For this edition we invited Andrew Cross to write about his experiments with a new rock deformation device – the Large Volume Torsion (LVT) apparatus. Andrew is currently working as a Postdoctoral Research Associate in the Department of Earth and Planetary Sciences, Washington University in St. Louis, USA. He did his PhD at the University of Otago, New Zealand, although he is originally from the UK. His main research interest lies in understanding how micro-scale deformation processes influence the evolution of Earth’s lithosphere and tectonic plate boundaries. Hopefully we will be seeing more of him in the very near future” – Subhajit Ghosh.

Credit: Andrew Cross

Investigating strain-localisation processes in high-strain laboratory deformation experiments

Andrew Cross, Postdoctoral Research Associate at the Department of Earth and Planetary Sciences, Washington University in St. Louis, USA.

Below the upper few kilometres of the Earth’s surface – where rocks break and fracture under stress – elevated temperatures and pressures enable solid rocks to flow and bend, like a chocolate bar left outside on a warm day. This ductile flow of rocks and minerals plays a crucial role in many large-scale geodynamic processes, including mantle convection, the motion of tectonic plates, the flow of glaciers and ice sheets, and post-seismic and post-glacial rebound.

Fig. 1: Creep deformation occurs over very long timescales in the Earth. To replicate these processes on observable timescales, we must increase the rate of deformation in the laboratory. Credit: Andrew Cross

Unlike seismogenic slip that periodically accommodates large displacements over very short timescales, ductile flow occurs continuously, and at an almost imperceptibly slow rate: for example, rocks in the Earth’s interior creep at a rate roughly 10 billion times slower than that of the long-running pitch drop experiment1. Since few researchers are willing to wait millions of years to observe creep deformation in nature, we need ways of replicating these processes on much shorter timescales. Fortunately, by increasing temperature and the rate of deformation in the laboratory, we can generate creep behaviour in small samples of rock over timescales of a few hours, days, or weeks (Fig. 1).

In the Experimental Studies of Planetary Materials (ESPM) group at Washington University in St. Louis, we have spent the last couple of years developing a new rock deformation device – the Large Volume Torsion (LVT) apparatus (Fig. 2) – for performing torsion (twisting) experiments on geologic materials. By twisting small, disk-shaped rock samples, we are able to apply much more deformation (“strain”) than by squashing cylindrical samples end-on: this enables us to replicate deformation processes that operate in high-strain regions of the Earth (along the boundaries between tectonic plates, for instance).

Fig. 2: The Large Volume Torsion (LVT) apparatus. A 100-ton hydraulic ram applies a confining pressure, while electrical current passes through a graphite tube around the sample, generating heat through its electrical resistance. A screw actuator (typically used to raise and lower drawbridges) is used to rotate the lower platen and twist the sample, held between two tungsten-carbide anvils. Credit: Andrew Cross

Using the LVT apparatus, we are starting to investigate the microstructural and mechanical processes that lead to the formation of mylonites and ultramylonites: intensely deformed rocks that comprise the high-strain interiors of ductile shear zones and tectonic plate boundaries. It is widely thought that dramatic grain size reduction during (ultra)mylonite formation causes strain localisation, since strain-weakening deformation mechanisms (i.e., diffusion creep and grain boundary sliding) dominate at small grain sizes. However, grain size reduction (and therefore strain-weakening) is counteracted by the tendency of grains to grow over time, in the same way that bubbles in soapy water merge and grow over time.

An effective way of limiting grain growth is through “Zener pinning”, whereby the intermixing of grains of different mineral phases prevents grain boundary migration (and therefore growth). However, despite its suspected importance for ultramylonite formation and the occurrence of localised deformation on Earth (and possibly other planetary bodies), the processes leading to interphase mixing remain somewhat poorly understood and quantified.

Fig. 3: A comparison between our experimentally deformed calcite-anhydrite samples2 (backscattered electron (BSE) images), and natural metagranodiorite mylonites from Gran Paradiso, Western Alps3 (quartz grains, in black, mapped using electron backscatter diffraction (EBSD). Credit: Andrew Cross and Kilian et al., 2011.

To investigate phase mixing processes, we recently performed torsion experiments on mixtures of calcite and anhydrite. By deforming these mixtures to different amounts of strain, and then analysing the deformed samples in a scanning electron microscope, we were able to observe and quantify the evolution of deformation microstructures and mechanisms leading to ultramylonite formation. Backscattered electron (BSE) images show that clusters of the different minerals stretch out to form very thin, fine-grained layers, similar to foliation in natural shear zones (Fig. 3). At relatively large shear strains (17 < γ < 57) those layers disaggregated to form a fine-grained and homogeneously mixed aggregate. Electron backscatter diffraction (EBSD) analysis showed that calcite crystals became progressively more randomly oriented during phase mixing, indicative of a transition to the strain-weakening diffusion creep and grain boundary sliding regime.

The fact that a large amount of strain is required for phase mixing – and therefore strain-weakening – suggests that 1) only mature (highly-strained) shear zones are likely to maintain their weakness over long periods of geologic time, and 2) these features are therefore more likely to be reactivated after periods of quiescence. Inherited, long-lived mechanical weakness may well explain why tectonic plate boundaries are often reactivated over multiple cycles of continent accretion and rifting.

 

http://smp.uq.edu.au/content/pitch-drop-experiment

 Cross, A. J., & Skemer, P. (2017). Ultramylonite generation via phase mixing in high‐strain experimentsJournal of Geophysical Research: Solid Earth122(3), 1744-1759.

 3 Kilian, R., Heilbronner, R., & Stünitz, H. (2011). Quartz grain size reduction in a granitoid rock and the transition from dislocation to diffusion creepJournal of Structural Geology33(8), 1265-1284.

Minds over Methods: Reconstruction of salt tectonic features

Minds over Methods: Reconstruction of salt tectonic features

What is the influence of salt tectonics on the evolution of sedimentary basins and how can we reconstruct such salt features? Michael Warsitzka, PhD student at the Friedrich Schiller University of Jena, explains which complementary methods he uses to better understand salt structures and their relation to sedimentary basins. Enjoy!

 

Credit: Michael Warsitzka

Reconstruction of salt tectonic features from analogue models and geological cross-sections

Michael Warsitzka, PhD student, Institute of Geosciences, Friedrich Schiller University Jena

Salt tectonics, as a sub-discipline of structural geology, describe deformation structures developing due to the special deformation behaviour of salt (as synonym for a sequence of evaporitic rocks). Salt behaves like a viscous fluid over geological time scales and, therefore, it may flow due to lateral differences in thickness and density of the supra-salt layers. This influences the structural evolution of sedimentary basins, because salt flow can modify the amount of regional subsidence of the basin. Local sinks (“minibasins”) develop in regions from where salt is squeezed out and salt structure uplifts, e.g. diapirs or pillows evolve in regions of salt influx. Unfortunately, temporal changes of salt flow patterns are often difficult to reconstruct owing to enigmatic ductile deformation structures in salt layers. Understanding the evolution of salt-related structures requires either forward modelling techniques (e.g. physically scaled sandbox experiments) or restoration of sedimentary and tectonic structures of the supra-salt strata.

In my PhD thesis, I tried to integrate both, analogue modelling and restoration, to investigate salt structures and related minibasins developed in the realm of extensional basins. The sandbox model is a lab-scale, simplified representative of natural salt-bearing grabens, e.g. the Glückstadt Graben located in the North German Basin (Fig. 1). A viscous silicone putty and dry, granular sand were used to simulate ductile salt and brittle overburden sediments. Cross sections were cut through the model at the end of each experiment to conduct reconstruction of the final experimental structures. The material movements were monitored with a particle tracking velocimetry (PIV) technique at the sidewalls of the experimental box.

(text continues below figure)

Fig 1: 2D restoration of the supra-salt (post-Permian) strata in the Glückstadt Graben (Northern Germany). Credit: Michael Warsitzka

Using experimental and geological cross sections, structures in the overburden of the ductile layer can be reconstructed, if present-day layer geometries and lithologies of the overburden strata can be identified. From natural clastic and carbonatic sediments we know that they compact with burial, reducing the layer thickness. Therefore, the reconstruction procedure sequentially removes the uppermost layer and layers beneath are decompacted and shifted upwards to a horizontal surface (Fig. 2). The sequence of decompaction and upward shifting is then repeated until the earliest, post-salt stage is reached (Fig. 1). It intends to restore the initial position, shape and thickness of each reconstructed layer.

In analogue experiments, no decompaction is necessary, because the compressibility of the granular material is insignificant for depths of a few centimetre. Restoration can be directly applied to coloured granular layers revealing detailed layer geometries for each experimental period (Fig. 2a). The PIV technique displays coeval material movement and strain patterns occurring during the subsidence of the experimental minibasins (Fig. 2b). Based on the observation that the experimental structures resemble those reconstructed from the natural example (Glückstadt Graben during the Early Triassic, Fig. 1), it can be inferred that strain patterns observed in the experiments took place in a similar manner during the early stage of extensional basins. This demonstrates the advantage of applying both methods. First, original geometries of basin structures can be determined from the restoration and then reproduced in the model. If the restored geometries are suitably validated by the models, the kinematics observed in the model can be translated back to nature and help to understand the effect of salt flow on the regional subsidence pattern.

Fig 2: Result of an analogue model showing (a) reconstructed sand layers restored from a central cross section, and (b) monitored displacement and strain patterns in the viscous layer above the left basal normal fault. Credit: Michael Warsitzka

Minds over Methods: studying dike propagation in the lab

Minds over Methods: studying dike propagation in the lab

Have you ever thought of using gelatin in the lab to simulate the brittle-elastic properties of the Earth’s crust? Stefano Urbani, PhD student at the university Roma Tre (Italy), uses it for his analogue experiments, in which he studies the controlling factors on dike propagation in the Earth’s crust. Although we share this topic with our sister division ‘Geochemistry, Mineralogy, Petrology & Volcanology (GMPV)’, we invited Stefano to contribute this post to ‘Minds over Methods’, in order to show you one of the many possibilities of analogue modelling. Enjoy!

 

dscn0024Using analogue models and field observations to study the controlling factors for dike propagation

Stefano Urbani, PhD student at Roma Tre University

The most efficient mechanism of magma transport in the cold lithosphere is flow through fractures in the elastic-brittle host rock. These fractures, or dikes, are commonly addressed as “sheet-like” intrusions as their thickness-length aspect ratio is in the range of 10-2 and 10-4 (fig.3).

Understanding their propagation and emplacement mechanisms is crucial to define how magma is transferred and erupted. Recent rifting events in Dabbahu (Afar, 2005-2010) and Bardarbunga (Iceland, 2014, fig.1) involved lateral dike propagation for tens of kilometers. This is not uncommon: eruptive vents can form far away from the magma chamber and can affect densely populated areas. Lateral dike propagation has also been observed in central volcanoes, like during the Etna 2001 eruption. Despite the fact that eruptive activity was mostly fed by a vertical dike to the summit of the volcano, several dikes propagated laterally from the central conduit and fed secondary eruptive fissures on the southern flank of the volcanic edifice (fig.2). Lateral propagation can hence occur at both local (i.e. central volcanoes) and regional (i.e. rift systems) scale, suggesting a common mechanism behind it.

fig-3mario-cipollini

Fig. 2 Lava flow near a provincial road, a few meters from hotels and souvenir shops, during the 2001 lateral eruption at Etna. Credit: Mario Cipollini

Therefore, it is of primary importance to evaluate the conditions that control dike propagation and/or arrest to try to better evaluate, and eventually reduce, the dike-induced volcanic risk. Our knowledge of magmatic systems is usually limited to surface observations, thus models are useful tools to better understand geological processes that cannot be observed directly. In particular, analogue modelling allows simulating natural processes using scaled materials that reproduce the rheological behavior (i.e ductile or brittle) of crust and mantle. In structural geology and tectonics analogue modelling is often used to understand the nature and mechanism of geological processes in a reasonable spatial and temporal scale.

d_grad_dike57_080Field evidence and theoretical models indicate that the direction of dike propagation is controlled by many factors including magma buoyancy and topographic loads. The relative weight of these factors in affecting vertical and lateral propagation of dikes is still unclear and poorly understood. My PhD project focuses on investigating the controlling factors on dike propagation by establishing a hierarchy among them and discriminating the conditions favoring vertical or lateral propagation of magma through dikes. I am applying my results to selected natural cases, like Bardarbunga (Iceland) and Etna (Italy). To achieve this goal, I performed analogue experiments on dike intrusion by injecting dyed water in a plexiglass box filled with pig-skin gelatin. The dyed water and the gelatin act as analogues for the magma and the crust, respectively. Pig-skin gelatin has been commonly used in the past to simulate the brittle crust, since at the high strain rates due to dike emplacement it shows brittle-elastic properties representative of the Earth’s crust. We record all the experiments with several cameras positioned at different angles, taking pictures every 10 seconds. This allows us to make a 3D reconstruction of the dike propagation during the experiment.

In order to have a complete understanding of the dike intrusion process it is essential to compare the laboratory results with natural examples. Hence, we went to the field and studied dikes outcropping in extinct and eroded volcanic areas, with the aim of reconstructing the magma flow direction (Fig. 3). This allows validating and interpreting correctly the observations made during the laboratory simulations of the natural process that we are investigating.

fig-1

Fig. 3 Outcrop of dikes intruding lava flows. Berufjordur eastern Iceland.

 

Minds over Methods: Experimental earthquakes

Minds over Methods: Experimental earthquakes

After our first edition of Minds over Methods, which was about Numerical Modelling, we now move to Rock Experiments! How can rock experiments be used to study processes within the Earth? We invited Giacomo Pozzi, PhD student at Durham University, to explain us how he uses rock experiments to study fault behaviour during earthquakes.

 

13072693_10207863372934990_7705005482414752149_oExperimental earthquakes to understand the weak behaviour of faults.

Giacomo Pozzi, PhD student at Durham University

As seismic slip along faults accommodates large deformations in the upper crust, the intriguing absence of significant heat flow anomalies (which are expected to be produced by intense energy dissipation during slip) along major geological bodies like the S. Andreas fault pushed the researchers to start conceiving a new, dynamic theory of friction, which eventually led to the concept of low frictional strength of faults during propagation of earthquakes.

rotary_apparatus

Fig 1. the Rotary apparatus

In the past two decades, the development of machines capable of shearing natural materials made it possible to achieve direct, experimental evidences of how friction in rocks (and gouges, when pulverised) drops from Byerlee’s values (μ=0.6-0.8) towards zero when approaching seismic velocities (>10 cm/s) and this independently of the rock composition.

However, even though a common bulk behaviour is witnessed, the weakening mechanisms that operate at the microscale are strongly dependent on the mineralogy and, despite a large amount of literature focused on this research, they are still poorly understood as their physic is an evergreen matter of debate.

My Ph.D. focuses on a weakening mechanism that has been recently proposed to occur in carbonate faults: viscous flow by grain boundary sliding, a diffusion creep dominated process particularly efficient in fine grained aggregates. In order to verify and characterise this hypothesis we try to reproduce coseismic shear conditions in pure calcite (CaCO3) gouges with a Low to High Velocity Rotary (LHVR) apparatus (Figure 1). This machine allows to simulate arbitrary amounts of slip in a thin volume of gouge, our experimental fault core, which is squeezed between two hollow cylinders. A piston located in the lower part of the apparatus lifts the lower cylinder producing an axial load (up to 25MPa) perpendicular to the plane of slip while the top cylinder spins at angular velocities up to 1500rpm (1.4 m/s tangential velocity at the reference radius).

rotary_lrDuring the experiments we record different mechanical parameters that can be processed to obtain: displacement, velocity, axial stress, shear stress, axial displacement and, with an opportune equation, the estimated temperature in the shear zone. The ratio between shear stress and axial stress gives the friction coefficient that produces a classic weakening profile when plotted against the displacement as in the graph of figure 2, where are evident two main stages: pre-weakening (μ>0.6) and weakening stage (μ<0.3).

At the end of each experiment we carefully remove the sheared sample in order to make microstructural analysis. We describe the architecture of the shear zone mainly by acquiring electron backscattered (EBS) images (figure 3) on polished sections of the samples using a scanning electron microscope. We are also planning to use cathodoluminescence and EBS diffraction to study in detail the distribution of strain, temperature and hidden geometries.

By coupling the mechanical data and the microstructural analysis of experiments stopped at different amounts of slip we are able to reconstruct the evolution of the shear zone, including the transition between a pre-weakening brittle behaviour to the steady state weakening stage where ductile-plastic processes are dominant. Understanding how the internal architecture of the shear zone changes with time and measuring its geometrical features is of paramount importance to achieve a quantitative description of the processes, which can lead to new physical laws.

With our experiments we are trying to link a qualitative description of complex natural processes and quantitative simulations based on the current physical knowledge. As a matter of fact, the obtained microstructures can be compared to natural equivalents while mechanical data and inferred laws can be implemented in numerical models.

weakening_profile

Fig 2. Weakening profile

sem_image

Fig 3. SEM BSE image of a cross section of the slip zone