CR
Cryospheric Sciences

Cryospheric Sciences

Image of the Week – We walked the Talk to Everest

Fig. 1: Group photo with Mount Everest backdrop following presentations at the Sagarmatha National Park office in Namche Bazar (3,500 m a.s.l) with 60 participants (wrapped up against the cold temperatures). [Credit: Dhananjay Regmi].

The 12 day “Walk the Talk” Field Conference and Community Consultation through Sagarmatha National Park, Nepal, discussed a wide range of research outputs with local communities, tourists, and officials. Topics covered glaciers, mountains, environmental and landscape change, Sherpa livelihoods, tourism, and natural hazards. The conference, organised by Himalayan Research Expeditions, was the first of its kind, designed to receive community input into research topics and pursue applied benefits. Scott and Katie were two of the participants, presenting work from their PhDs in the Everest region and the NERC-funded EverDrill project.


Presentations and discussions

The team of international and Nepali scientists gave presentations every evening, trekking each day between six different villages along the Everest Base Camp trail. We were also joined by officials from the Nepal Department of Tourism and the Mountain Institute. The highest destination for the conference was Imja Glacial Lake, at over 5,000 m elevation, where we viewed first-hand the results of a recent $7 million project to lower the lake water level, aiming to reduce the risk of an outburst flood.

The Sagarmatha National Park has been a focus for scientists of many disciplines for decades. As well as thousands of tourists trekking to Everest Base Camp each year, it is also frequented by those hoping to summit Mount Everest (Sagarmatha). The park has therefore experienced significant change over a relatively short timescale as it copes with this huge influx of people. Presentations for the “Walk the Talk” conference ranged from impacts of tourism (for example, on local people, yak breeding and waste disposal) to natural hazards such as glacial lake outburst floods and landslides.

Katie presented ongoing work from her PhD and the “EverDrill” project (Fig. 2), for which she has conducted several field seasons on Khumbu Glacier in the Sagarmatha National Park. Fieldwork has included hot-water drilling of boreholes into the glacier and installing sensors to measure ice temperature at various depths to investigate the glacier’s thermal regime. She discussed how these measurements showed that Khumbu’s ice is warmer than expected, potentially putting the glacier at risk of more rapid melting as air temperatures rise. The warmer ice towards the terminus also allows subsurface meltwater drainage, about which very little is known. Katie has also carried out fluorescent dye tracing experiments to work out how meltwater travels through Khumbu Glacier, including storage within (englacial) and on the surface (supraglacial). As Khumbu and similar glaciers retreat in the future, meltwater storage and runoff will have implications for the downstream communities who depend on such water sources.

Fig. 2: Katie presenting measurements of Khumbu Glacier’s thermal regime and hydrology at the Sagarmatha National Park headquarters in Namche Bazar (3,500 m a.s.l.). [Credit: Dhananjay Regmi].

Scott presented results from his PhD investigating melt processes and water storage on Khumbu Glacier (Fig. 3). Areas of Khumbu Glacier have thinned by up to 80 m over the last three decades and glacier flow is slowing down, which allows meltwater to pond on the glacier surface. The rugged glacier surface is pitted with ice cliffs and ponds, which act as hot-spots of melt in areas of the glacier otherwise insulated by a thick layer of rocks and sediment (debris-cover). The rapid formation, persistence, and drainage of meltwater stored on glaciers across the Himalaya is a growing concern due to the potential for outburst floods and increased rates of glacier melt. An outburst flood event that occurred in the Everest region in 2017 destroyed trekking trails and a bridge.

Fig. 3: Scott presenting a study of glacier thinning at the Sagarmatha National Park office in Namche Bazar (3,500 m a.s.l). [Credit: Dhananjay Regmi].

After the final day of trekking, an extra night was spent in the village of Lukla, before flying back to Kathmandu. Each presentation was summarised in a few slides, and collated into a full talk that was given in Nepali by Dr. Dhananjay Regmi, organiser of the conference and head of Himalayan Research Expeditions. By presenting all our research in Nepali, more local people attended and were able to hear about and suggest new directions for research in the valley. This presentation was given again two days later, also in Nepali, at the Department of Tourism in Kathmandu, for locals who had already travelled back to the city to avoid the high-elevation winter chill.

Outreach activities

Fig. 4: The projection augmented relief model shown after presentations in the village of Phortse. The inset shows glacier velocity data projected onto the glaciers in the Everest region. [Credit: Gu Changjun and Scott Watson].

We designed outreach activities and leaflets to enhance the PowerPoint presentations given at each village by providing interactive demonstrations of key research concepts and results. Scott used an AGU Celebrate 100 grant to design a projection augmented relief model (PARM) of the Everest region (Fig. 4). The PARM system projected research results including glacier velocity, mass loss, ice thickness, temperature, and animations of glacier flow, onto a 3D model, which stimulated discussion of the research. The 3D model allowed the local communities to easily visualise the data in the context of well-known mountain peaks and glaciers, and to observe the changing environment (such as the expansion of Imja Lake) from a projected time-lapse animation.

Fig. 5: Katie demonstrating glacier thermal regime and hydrology using a 3D model to conduct example dye tracing experiments. The lower panel is a GIF showing the dye tracing. [Credit: Scott Watson and Katie Miles].

Katie’s interactive outreach was to demonstrate dye tracing experiments on a 3D model of Khumbu Glacier (Fig. 5). Food colouring was used to “dye” the water, which was “injected” into a supraglacial stream, then “disappeared” into the glacier. The side view into the glacier showed this water flowing through and beneath the ice, before emerging back at the surface, flowing through surface ponds and exiting the glacier at its terminus. The side view also showed the approximate ice temperatures measured by the EverDrill project, which actively showed where (and why) the glacier is experiencing more melt.

The model was very well received by scientists and locals – while the water was being injected, we would explain what was happening in both English and Nepali, and there were always plenty of questions. While the dye tracing experiments didn’t work perfectly every time, surface floods offered an opportunity to talk about other hazards that have been recently observed on Khumbu Glacier.

Summary

The “Walk the Talk” Field Conference and Community Consultation was a new style of conference, aiming to communicate a wide range of research topics in the Everest region of Nepal and the Sagarmatha National Park. The combination of high-elevation trekking and presentations was sometimes tiring, but the trek facilitated discussions about the landscape we were immersed in and was a fantastic learning experience. It is hoped that the conference will travel to different locations in the future to share research and understand the priorities of other communities in Nepal.

Further reading

Edited by Violaine Coulon


Scott Watson is a Postdoc at the University of Arizona, USA, studying glaciers in the Everest region and the surface interactions of supraglacial ponds and ice cliffs. He also investigates natural hazards and glacial lake outburst floods. Tweets @CScottWatson. Website: www.rockyglaciers.co.uk

 

 

 

Katie Miles is a PhD student at the Centre for Glaciology, Aberystwyth University, UK, studying the internal structure and subsurface hydrology of high-elevation debris-covered glaciers in the Himalaya through borehole-based investigations and dye tracing experiments. Tweets @Katie_Miles_851. EverDrill website: www.EverDrill.org

Image of the Week – Delaying the flood with glacial geoengineering

Figure 1: Three examples of glacial geoengineering techniques to mitigate sea-level rise from ice-sheet melting [Credit: Adapted from Figure 1 of Moore et al. (2018); Design: Claire Welsh/Nature].

As the climate is currently warming, many countries and cities are preparing to cope with one of its major impacts, namely sea-level rise. Up to now, the mitigation of climate change has mainly focused on the reduction of greenhouse gas emissions. Large-scale geoengineering has also been proposed to remove carbon from the atmosphere or inject aerosols into the stratosphere to limit the rise in temperature. But locally-targeted geoengineering techniques could also provide a way to avoid some of the worst impacts, like the sea-level rise. In this Image of the Week, we present examples of such a technique that could be applied to the Antarctic and Greenland ice sheets (Moore et al., 2018; Wolovick and Moore, 2018).


Sea level is rising…

The sea level of the world oceans has been rising at a mean rate of 3 mm per year since the 1990s, mainly due to ocean thermal expansion, land-ice melting and changes in freshwater storage (see this post). More than 90% of coastal areas could experience a sea-level rise exceeding 20 cm with a 2°C warming (relative to the pre-industrial period), which is likely to happen by the middle of this century (Jevrejeva et al., 2016).

The Antarctic and Greenland ice sheets constitute two huge reservoirs of ice and contain the equivalent of 60 and 7 m of sea-level rise, respectively, if completely melted. Although a complete disintegration of these two ice sheets is not on the agenda in the coming years, surface melting of the Greenland ice sheet and the flow of some major polar glaciers could be enhanced by different positive feedbacks (see this post on climate feedbacks and this post on marine ice sheet instability). These feedbacks would elevate the sea level even more than projected by the models.

… but could potentially be delayed by glacial geoengineering

In order to cope with this threat, reducing our greenhouse gas emissions might not be sufficient to delay the rise of sea level. One alternative has been suggested by Moore et al. (2018) and consists of using glacial geoengineering techniques in the vicinity of fast-flowing glaciers of the Antarctic and Greenland ice sheets. They propose three different ways to delay sea-level rise from these glaciers and these are presented in our Image of the Week (Fig. 1):

A.   A pumping station could be installed at the top of the glacier with the aim of extracting or freezing the water at the glacier base. This would slow down the glacier sliding on the bedrock and reduce its contribution to sea-level rise.

B.   An artificial island (about 300 m high) could be built in the cavity under the floating section of the glacier (or ice shelf). This would enhance the so-called buttressing effect (see this post) and decrease the glacier flow to the ocean.

C.   A wall of up to 100 m high could be built in the ocean bay right in the front of the ice shelf. This would block (partially or completely) any warm water circulating underneath the ice shelf and delay the sub-shelf melting (see this post).

In theory

Wolovick and Moore (2018) studied in detail the possibility of building artificial islands (proposal B above) underneath the ice shelf of Thwaites Glacier (West Antarctica), one of the largest glacier contributors to the ongoing sea-level rise. They used a simple ice-flow model coupled to a simple ocean model and considered different warming scenarios in which they introduced an artificial island underneath the ice shelf.

Figure 2 below illustrates an example coming from their analysis. In the beginning (Fig. 2b), the grounding line (separation between the grounded ice sheet in blue and the floating ice shelf in purple) is located on top of a small mountain range. When running the model under a global warming scenario, the grounding line retreats inland and the glacier enters into a ‘collapsing phase’ (Fig. 2c; marine ice sheet instability). The introduction of an artificial island under the ice shelf with a potential to block half the warm ocean water allows the ice shelf to reground (Fig. 2d; the ice-shelf base touches the top of the small island below). The unprotected seaward part of the ice shelf shrinks over time, while the protected inland part thickens and regrounds (Fig. 2e-f), which overall decreases the glacier mass loss to the ocean.

Figure 2: Example of a model experiment realized on Thwaites Glacier by Wolovick and Moore (2018). Different times are presented and show the (b) initial state, (c) the collapse underway, (d) the initial effect of the construction of the artificial island below the ice shelf, (e) the removal of the seaward ice shelf and thickening of the landward ice shelf, (f) the stabilization of the glacier [Credit: Figure 5 of Wolovick and Moore (2018)].

In practice

The model experiments presented above show that delaying sea-level rise from glacier outflow is possible in theory. In practice, this would mean substantial geoengineering efforts. For building a small artificial island under the ice shelf of Pine Island Glacier (West Antarctica), 0.1 km3 of gravel and sand would be necessary. That same quantity would be sufficient to build a 100 m high wall in front of Jakobshavn Glacier (Greenland) to prevent warm water from melting the ice base. For building such a wall in front of Pine Island Glacier, a quantity of 6 km3 (60 times more than Jakobshavn) of material would be needed.

In comparison, the Three Gorges Dam used 0.03 km3 of cast concrete, the Hong Kong’s airport required around 0.3 km3 of landfill, and the excavation of the Suez Canal necessitated 1 km3 of material. Thus, the quantities needed for building glacial geoengineering structures are comparable in size to the current large engineering projects.

However, many other aspects need to be considered when implementing such a project. In particular, the construction of such structures in cold waters surrounded by icebergs and sea ice is much more difficult than in a typical temperate climate. A detailed study of physical processes in the region of the glacier, such as ocean circulation, iceberg calving, glacier sliding and erosion, and melting rates, is needed before performing such projects. Also, the number of people needed to work on a project of this scale is an important factor to include.

Potential adverse effects

Beside all the factors that need to be considered to implement such a project, there is a list of potential adverse effects. One of the main risks is to the marine ecosystems, which could be affected by the constructions of the islands and walls. Also, if not properly designed, the geoengineering solutions could accelerate the sea-level rise instead of delaying it. For instance, in the case of water extraction (proposal A above), the glacier might speed up rather than slow down if water at the glacier’s base is trapped in pockets.

Wolovick and Moore (2018) do not advocate that glacial geoengineering is done any time soon, due to the different factors mentioned above. Instead, they suggest that we start thinking about technological solutions that could delay sea-level rise. Other studies also look at different glacial geoengineering ideas (see this post).

In summary

Glacial geoengineering techniques constitute a potential way to cope with one of the greatest challenges related to global warming, namely sea-level rise. In theory, these projects are possible, while in practice a series of technical difficulties and potential ecological risks do not allow us to implement them soon.

While important to keep thinking about these solutions, the most important action that humanity can take in order to delay sea-level rise is to mitigate greenhouse gas emissions. And scientists like us need to keep carefully studying the cryosphere and the Earth’s climate in general.

Further reading

Edited by Jenny Turton


David Docquier is a post-doctoral researcher at the Earth and Life Institute of Université catholique de Louvain (UCL) in Belgium. He works on the development of processed-based sea-ice metrics in order to improve the evaluation of global climate models (GCMs). His study is embedded within the EU Horizon 2020 PRIMAVERA project, which aims at developing a new generation of high-resolution GCMs to better represent the climate.

 

Image of the Week – Why is ice so slippery?

Ice can be slippery! [Credit: giphy.com]

Having spent most of my life in places where the temperature hardly ever falls below zero, my first winter in Sweden was painful. Especially for my bum, who met the ice quite unexpectedly. Reading the news this week, from reports of emergency services overwhelmed after so many people had slipped to a scientific study on how no shoes have a good enough grip, via advice on how to walk like a penguin, I understand I am far from alone in having a problem with ice. But why is ice so slippery anyway? This is what we will talk about in this Image of the Week.


Did you know that you lacked friction?

To understand why one might fall sometimes, let us start with why one usually can walk without falling: friction! Friction is a resistive force that can have three causes:

  • Adhesion (think about glue or tape)

  • Surface roughness (think about sandpaper)

  • Deformation (think about dragging a suitcase over a gravel path)

Each of these types of friction is nicely explained on this website, so I will concentrate on our walking question. Note that if you are standing still, it is a different story; then we are talking about static (instead of dynamic) friction. And everything is actually a bit more complicated than the distinction between the three causes, since adhesion and roughness are somehow related. I will not get into that, but if that stirred your interest, you could have a look at this paper. Anyway, back to walking.

The roughness of our roads and pavements, along with that of your shoes and their deformation ability, is, of course, crucial. But in the case of water after the rain or rotten autumn leaves, adhesion can be the deciding factor between casually walking and experiencing a sudden unexpected loss of altitude: not that much adhesion between your foot and what you walk on, but rather between what you walk on and the rest of the world. And that is exactly the problem with ice.

Frozen lake [Credit: Nilay Dogulu (distributed via imaggeo.egu.eu)]

Water really is a weird material

Coming from a place where people rarely worry about ice, I had never heard the commonly accepted reasons why ice is slippery. A quick internet search informed me that a common belief is that ice is slippery because, by walking on it, we melt the very surface of the ice through the pressure of our weight and/or the heat of the friction. As a result, we end up with a dangerous layer of liquid water between our foot and the ice, lose adhesion, and … boom! A study published this summer has a different explanation: water in its solid form is made of chains of molecules attached to three other water molecules. But the chain has to stop somewhere, so, at the very surface, molecules are only attached to one or two others, and can, as a result, be easily detached from the rest of the ice. When that happens, they just hang around on top of the ice, “like marbles on a dancefloor“.

However, it cannot be seen as a layer of liquid water, rather as a gas, the authors of that new study say. Not that it makes a big difference when you are on the floor… The good (?) news is, this strange property of ice depends on temperature. They report that ice is the most treacherous at -7°C, but then becomes safer as the temperature decreases.

EGU Cryosphere friendly advice: how to walk around -7°C

Personally, I avoid roads and pavements like the plague and walk on frozen paths and grass, which retain some roughness unless covered by a lot of snow. Since it is not always possible, adopt the technique of our favourite polar animal:

  • put your centre of mass ahead of you by slightly bending your torso forward

  • go slowly

  • move your foot next to each other, instead of in front of one another

  • or give up and slide on your belly!

One of our favourite polar animals [Credit: Giuseppe Aulicino (distributed via imaggeo.egu.eu)].

Further reading

Edited by Clara Burgard

Image of the Week – What’s Hot in the Cryosphere? A 2018 review

Image of the Week – What’s Hot in the Cryosphere? A 2018 review

Every year, humanity understands more and more about a remote and unforgiving component of the Earth system – the cryosphere. 2018 has been no exception, and in this blog post we’ll take a look at some of the biggest scientific findings of cryospheric science in 2018. We will then look forward to 2019 and beyond, to see what the future holds for these rapidly changing climate components.


The Cryosphere at 1.5°C warming

In 2018, the IPCC (Intergovernmental Panel on Climate Change) released their report that looked at the impact of 1.5 and 2.0°C of global warming by 2100 on the Earth system. In the Arctic, warming is already in excess of 2.0˚C, driving a very strong decreasing trend in the summer sea-ice extent. The IPCC suggest that sea-ice-free summers will occur once per century at 1.5°C, but this increases to once per decade at 2.0°C. Limiting warming to 1.5˚C will also save 1.5-2.5 million km2 of permafrost thaw (preventing the release of ancient carbon into the atmosphere), 10 cm of sea-level rise contribution from ice sheets and glaciers, and reduce the risk of the irreversible collapse of the ice sheets. Read more about the cryosphere under 1.5°C warming in this previous post.

 

Mass Balance of the Antarctic Ice Sheet

Compiling 24 independent estimates of mass balance, from a number of different remote sensing and modelling techniques, the IMBIE team produced the best estimate of how Antarctica is responding to continued climate warming. The mass balance refers to the net change in ice mass, accounting for all of the inputs and outputs to the ice. They quantify that ice mass loss from West Antarctica has increased three-fold between 1992 and 2017, largely due to melting from a warmer ocean. On the Antarctic Peninsula, the collapse of ice sheets has led to an increase ice mass loss by a factor of 4. East Antarctica is gaining mass slightly, although this is highly uncertain, by 5 ± 46 billion tonnes per year. Overall, Antarctica has lost 2,720 ± 1,390 billion tonnes of ice in this 25-year time period, and this mass loss is accelerating. Read more about these results in this previous post.

Mass loss from the Antarctic ice sheet is accelerating, largely due to ocean warming impacting West Antarctica. East Antarctica is very slightly gaining mass, but this doesn’t go anywhere near balancing out mass loss across the continent [Credit: NASA Goddard].

A polluted cryosphere

It’s easy to think of the cryosphere as a pristine, beautiful, untouched landscape. However, research from 2018 has shown us that the remoteness of Polar Regions has not protected them from man-made pollution. In one litre of melted Arctic sea-ice, 234 particles of plastic and over 12,000 particles of microplastics were found, which will only go onto adversely impact Arctic wildlife by spreading through the ecosystem. Radioactive material from the Chernobyl accident has also been found to be concentrated in dark sediments found on Swedish glaciers. As these glaciers melt, this concentration of radioactive material may be released in meltwater. In Greenland, lead pollution found in ice cores has provided exciting new insight into wars, plagues and invasions during the Roman Empire.

In 2018, we saw a glimpse of the geological secrets that Greenland hides beneath its ice sheet. However, there is still a hidden world that future field-based campaigns or airborne radar missions will help to unravel [Credit: NASA Goddard].

What secrets is Greenland hiding?

In 2018, we got our best ever look beneath the Greenland ice sheet. Scientists from the British Antarctic Survey and NASA found that the hotspot (a thermal plume in the Earth’s mantle) currently under Iceland was once beneath Greenland, between 80 to 50 million years ago. This hotspot was discovered by studying the magnetism of minerals beneath the ice. Using airplanes, radio waves and sediment that’s washed out from underneath the ice sheet has also revealed a massive 31 kilometre wide meteorite crater underneath Hiawatha glacier. Given it’s beneath three kilometres of ice, the age of this crater is unknown, but given the interest and speculation in connecting this event to an abrupt cooling period 12,000 years ago (the Younger Dryas), we may know very soon.

 

Blast Off!

Satellites remain one of the most popular methods of monitoring the vast, hostile cryosphere. In 2018, a new generation of earth observation missions launched. ESA’s Sentinel-3B continues the Copernicus programme, monitoring the reflectivity of the ice, elevation and sea-ice thickness. NASA’s GRACE FO mission continues the successful first GRACE mission, which used gravimetry to ‘weigh’ different regions of ice. NASA also launched ICESat-2, which will provide global elevation data at unprecedented spatial resolution on a 91-day repeat orbit. Each satellite is being finely tuned to make sure it’s working exactly as intended, and we’ll get the first science from them in 2019. Stay tuned!

Remote sensing data has provided us with answers to some of the biggest questions in the cryosphere. We use it to help quantify mass loss, sea-level rise and glacial retreat. In 2019, new missions will take our knowledge of cryospheric sciences to new heights! [Credit: Liam Taylor]

A look ahead to 2019

On the ground, getting inside the ice will continue to provide fascinating insights into the history of the cryosphere – from reconstructing winds in sub-Antarctic islands using ice cores, to further insights deep inside the world’s highest glacier. As permafrost continues to thaw, we are likely to hear of more discoveries of woolly mammoths, ancient diseases and carbon release. The IPCC will also publish their special report devoted to The Ocean and Cryosphere in a Changing Climate, which will provide the best overall state of the cryosphere to date. And, of course, the infamously named ‘Boaty McBoatface’ will provide us with incredible data from beneath sea-ice and ice shelves when the RRS Sir David Attenborough is launched. 2018 has been a truly exciting year to be a cryospheric scientist, and 2019 looks set to be another hot one!

 

Edited by Adam Bateson


Liam Taylor is a PhD student at the University of Leeds and Centre for Polar Observation and Monitoring. His research looks at identifying novel remote sensing methods to monitor mountain glaciers for water resource and hazard management. He is passionate about climate change and science communication to a global audience, as an educator on free online climate courses and through his personal blog. You can find Liam on Twitter.

Image of the Week – Will Santa have to move because of Climate Change?

Santa Claus on the move [Credit: Frank Schwichtenberg, CC BY 3.0, Wikimedia Commons]

Because of global warming and polar amplification, temperature rises twice as fast at the North Pole than anywhere else on the planet. Could that be a problem for our beloved Santa Claus, who, according to the legend, lives there? It appears that Santa could very well have to move to one of its second residences before the end of this century. But even if he moves to another place, the smooth running of Christmas could be in jeopardy…


But…. Where does Santa live?

The most famous of Santa’s residence is in Lapland, Finland, at Korvatunturi. But since this area is a little isolated, Finns then moved it near the town of Rovaniemi. For Swedes, it’s in Gesunda, northwest of Stockholm. The Danes, them, are convinced that he lives in Greenland while according to the Americans, he lives in the town of North Pole, Alaska. In Norway, there is even disagreement within the country: some Norwegians believe he lives in Drøback, 50 km south of Oslo while other believe he lives in the Northernmost inhabited town in the world: Longyearbyen, Spitsbergen, where Santa even has its own postbox!
Even in the southern hemisphere, Christmas Island claims to be Santa’s second home.

Santa’s huge postbox in Longyearbyen, Spitsbergen [Credit: Marie Kotovitch] and Rovaniemi, Finland: the self-proclaimed “official hometown of Santa Claus” [Credit: Pixabay]

It seems that Santa Claus has many places to stay.. But according to the legend, Santa’s real permanent residence is in fact the true North Pole. However, as shown by the Arctic Report Card 2018, the Arctic sea-ice cover continues its declining trends, with this year’s summer extent being the sixth lowest in the satellite record (1979-2018). The latest IPCC 1.5°C warming special report states that “ice-free Arctic Ocean summers are very likely at levels of global warming higher than 2°C” relative to pre-industrials levels. Considering that the world is currently on course for between 2.6 to 4.8°C of warming relative to pre-industrial levels by 2100, Santa’s home is projected to sink into the Arctic Ocean before the end of the current century. It appears it would be time for Santa to start thinking about which one of his second residences he will choose to move to…

Will Santa have to find a new home? [Credit: Pixabay]

Rudolf might be in trouble…

Of course, if he moves away from the melting North Pole, Santa still needs snow at Christmas to be able to take off his sled. But, actually, this could become a problem.
This year, there was still no snow in Rovaniemi, Finland, the self-proclaimed “official hometown of Santa Claus”, by the end of November, making the local tourist attractions very worried. Luckily, it has now snowed there since, but how does this look like for the years to come? According to the latest Arctic Report Card, the long-term trends of terrestrial snow cover are negative.

Another problem which might complicate Santa’s work was underlined in a study published in 2016. This study showed that reindeers are getting smaller because of warmer Arctic temperatures. How come? During the long winter, reindeers are usually able to find their food (which consists of grasses, lichens and mosses) by brushing aside the snow that covers it. But because of the warmer temperatures, rain now falls on the existing snow cover and freezes. The animals’ diet is thus locked away under a layer of ice. As a result, reindeers are hungry and lose their babies or give birth to much leaner ones. The Arctic Report Card 2018 states that the population of wild reindeer in the Arctic has decreased by more than half in the last two decades.

All this is not going to get better, as Arctic temperatures for the past five years (2014-18) all exceed previous records. According to the Danish Meteorological Institute, in November 2016, Arctic temperatures were reaching an incredible peak at around -5°C while average temperature at this period usually is around -25°C.

Climate change also affects reindeers [Credit: Photo by Red Hat Factory on Unsplash]

Christmas trees also at risk!

You may say that Santa is Santa and that he will be able to find a solution to all these problems. Let’s hope you’re right! But another problem is looming on the horizon: you might soon not be able to welcome Santa in your own home as it should with a beautiful Christmas tree.

Indeed, this summer’s heat waves have strongly affected Christmas tree crops everywhere in Europe. Moreover, a 2015 study shows that native Scandinavian Christmas trees are also affected by climate change, and more specifically by reduced snowfall. The latter acts like an insulation layer which protects the roots from the cold winter.

We hope that this post has made you realize the urgency of the fight against global warming! However, in the meantime, don’t forget that the most important to spend a nice Christmas is the Christmas spirit! We wish you all a very merry Christmas and a wonderful new year!

As a little Christmas gift..

  • If you want to find out the truth about Santa’s real home, you can always check it by yourself by using the Santa Tracker by Google to follow Santa’s Christmas Eve trip and check where he comes back at the end of the night…
  • The highlights of the Arctic Report Card 2018 are summarized in this video.

Further reading

Edited by Clara Burgard

Image of the Week – Permafrost features disappearing from subarctic peatlands

Image of the Week – Permafrost features disappearing from subarctic peatlands

Some of the most remarkable, marginal features of permafrost – palsas – are degrading and disappearing metre by metre from North European peatlands, and are driven close to extinction by the climate change.


What are these permafrost features?

A palsa is a peat mound with an icy core, which stays frozen throughout summer due to the insulating property of dry peat. These mounds can rise up to 10 metres above the surface of surrounding mire (wet terrain dominated by peat-forming vegetation), and they may occur as just a single palsa, group of palsas or as an extensive, but not very high (ca. 1 to 2 m) peat “platform”. The occurrence of palsas is limited by such factors as: low mean annual air temperature (< 0 °C), low annual precipitation (< 500 mm) and at least 40–50 cm thickness of peat layer, which is needed to sufficiently insulate the core during summer (Seppälä, 2011).

The established theory on palsas formation (Seppälä, 2011) is the following:

  1. The formation of a palsa begins when a part of mire freezes deeper in a windblown area with thinner snow cover, which normally protects the ground below from freezing temperatures.

  2. If the frozen peat doesn’t melt completely during summer, an ice lens forms inside the peat layer resulting in uplifting of the mire surface in this area.

  3. In the following winters, the snow is even more likely to be windblown from the mound, which again fosters deeper penetration of frost and formation of new ice lenses.

  4. As soon as a part of mire rises above the water level, the vegetation starts to change and the peat dries out, which contributes to the survival of the ice core during summers.

 

Breaking of the surface and erosion is a natural “step” for mature palsas, when the permafrost has reached the mineral ground below the peat. The melting of a palsa is a form of thermokarst, i.e. thawing of ice-rich permafrost (see this post for more details about thermokarst).

Block-erosion of peat on ridge-type palsa in Nierivuoma mire in Enontekiö, Finland [Credit: Mariana Verdonen].

Palsa, peat hummock or permafrost plateau?

The terminology used when speaking about these permafrost mounds varies, usually according to the continent the research was conducted on or the background of the authors. The term “palsa” comes from Lapland, and was used by Sami and northern Finns to refer to “hummock rising out of a bog with a core of ice” (Seppälä, 1972). In Fennoscandia, this term is used commonly for all main types: ridges, mounds and plateau palsas, whereas in North America the more common terms are either ‘peat or permafrost plateau’ or ‘wooded palsa’ depending on the shape and vegetation cover of the feature (Luoto et al, 2004).

Degrading permafrost of Fennoscandia

More often than not, one may encounter a desolate sight in North European palsa mires: most of the permafrost mounds are degrading by block erosion and/or melting away as a result of thawing of their frozen core. The vegetation that once was growing on hummocks above the wet mire surface, is now dead black in shallow thermokarst ponds surrounding palsas here and there. Although, in some places the conditions may still be favorable for new palsas to form, the general picture is devastating. Palsas are disappearing in most of their area of existence, and it is happening fast.

Thawing palsas of Nierivuoma captured from drone in July 2018. This peatland sprawls across ~7 km2 and is the largest palsa mire in Finland [Credit: Timo Kumpula].

Why should we care?

As climatic change is likely to increase winter and summer precipitation, and is already notable in rising mean annual air temperatures, palsas are predicted to disappear in Fennoscandia almost completely by the end of the 21st century (Fronzek et al, 2010).

It is noteworthy, that the palsa mire is the only mire and bog habitat that is listed as “critically endangered” in the 2016 European Red List of Habitats. While some other cold climate ecosystems may shift to higher latitudes and altitudes, palsa mires seem to be restricted from developing in higher areas, especially because of the required peat layer thickness (Luoto et al, 2004).

If just the loss of this diverse ecosystem type is not alarming by itself, there are couple of issues that I want to highlight:

  • Thawing of the perennially frozen peat changes the carbon fluxes of palsa mires as carbon previously trapped by permafrost becomes available for decay. As the area of dry peat surface decreases, more carbon is released into the atmosphere in the form of more effective greenhouse gas methane (CH4) instead of carbon dioxide (CO2). Recently, also the effects of permafrost thaw on the emissions of nitrous oxide (N2O), which is a strong greenhouse gas, have gained more attention (Marushchak et al, 2011).

  • The heterogeneity formed by variety of mire surfaces, thermokartst ponds and dry palsa mounds creates favorable conditions for species richness in these subarctic environments. In particular, the number and density of bird species seems to be high in the zone of palsa mires compared to more southern mire zones in Fennoscandia, even though no species have been reported to be exclusive to palsa mires (Luoto et al, 2004). This relationship, as well as overall significance of palsa mires for biodiversity is still poorly understood, however.

References

 

Edited by Clara Burgard


Mariana Verdonen is an Early Stage Researcher at the University of Eastern Finland. She focuses on optical, multi-temporal and multiscale remote sensing of environmental changes in Arctic and Subarctic areas. Mariana’s scientific interests are generally in geomorphology, permafrost-landscape dynamics and remote sensing of the Cryosphere. She tweets as @MarianaVerdonen. Contact Email: mariana.verdonen@uef.fi

Image of the Week – Ice-Spy: the launch of ICESat-2

The second generation Ice Cloud and land Elevation Satellite (ICESat-2) from NASA fires 10,000 pulses every second to take elevation measurements up to every 70 cm on-the-ground. This data will offer lots of opportunities for scientists to understand the changing cryosphere in more detail than ever before [Credit: NASA’s Goddard Space Flight Center].

On September 15th, 2018, at 18:02 local time, NASA launched its newest satellite – the second generation Ice, Cloud and land Elevation Satellite (ICESat-2). ICESat-2 only contains one instrument – a space laser that fires 10,000 pulses per second to Earth to measure elevation. Its primary purpose is for monitoring the ever changing cryosphere, so naturally there are plenty of ice enthusiasts that are excited for the data it will provide!


Blast off! ICESat-2 launches successfully from California, on the Delta II Rocket [Credit: NASA / Bill Ingalls].

Space laser?

The space laser is referred to more formally as an ‘altimeter’ (specifically, the Advanced Topographic Laser Altimeter System; ATLAS). Each of the 10,000 pulses per second contain around 20 trillion photons (the elementary unit that makes up light). The instrument works by measuring the time it takes for the photons to travel to Earth, reflect off the surface, and bounce their way back to the receiver. When the land is higher in elevation, there is less distance for the photons to travel, so they arrive back quicker and vice versa. The detector only lets in light at 532 nanometres in the visible spectrum. This means only the target photons are detected and sunlight is filtered out. An on-board clock measures time to a billionth of a second for maximum precision. The 10,000 pulses per second compares to just 40 per second in the original ICESat mission, giving us measurements every 70 cm on-the-ground. ICESat-2 repeats its orbit every 91 days, so we get elevation measurements for everywhere on Earth every 3 months.

What happened to the original ICESat?

ICESat launched in 2003 and lasted 7 years before its mission came to an end when its primary instrument stopped functioning. Its final task was to propel itself into Earth’s atmosphere and burn up on re-entry. In its lifetime, ICESat helped us to quantify decreasing Arctic sea-ice thickness, estimate global above ground biomass using forest canopy height and even find lakes beneath Antarctica. It was such a success that, since 2010, NASA have flown planes (Operation IceBridge) over the cryosphere with the same instruments to bridge the gap in the data loss between the two ICESat missions.

Operation IceBridge flies over ice sheets, ice shelves, glaciers and sea-ice to ensure there is no gap in data between the ICESat missions. You can see more of the stunning imagery collected from Operation IceBridge here! [Credit: NASA’s Goddard Space Flight Center]

What new science will we get from ICESat-2?

The primary purposes of the mission are to measure elevation change of ice sheets, glaciers, sea-ice and the subsequent impacts of sea-level rise. Whereas the original ICESat mission had a single laser beam with 40 pulses per second, ICESat-2 has 6 laser beams with 10,000 pulses per second, which gives an unprecedented level of detail. On the original mission, the orbit may have only provided a single track across a mountain glacier, but the new mission will have significantly more measurements. The higher spatial resolution of ICESat-2 means that the satellite can be used to identify and track icebergs that cross shipping lanes, provide extra measurements of sea-ice thickness for subsistence hunters and detect small topographic changes in potentially active volcanoes. There are many other potential applications of ICESat-2, including for non-cryospheric research, but there will also be many unforeseen applications of the new data that will come about with time.

I’m so excited! When will the first results start coming out?

Whenever satellites are launched with the purpose of earth observation, there is a long period of time when the instruments need to be checked to ensure they are working as intended. NASA will be calibrating ICESat-2 for a few months after launch to ensure the outputs are of the highest possible quality, so don’t expect any publicly available data until early 2019. It’s worth getting it right early in the mission because ICESat-2 has enough fuel on board to last 7 years, so mistakes early on can lead to delays or reduce the overall quality of data collected over the mission. If you can’t wait, however, you can see the first height measurements from Antarctica here!

The first data from NASA’s newest satellite – the second generation Ice Cloud and land Elevation Satellite (ICESat-2). ICESat-2 fires 10,000 pulses every second to take elevation measurements up to every 70 cm on-the-ground. This elevation data shows the first track across the Antarctic ice sheet. Who knows what new science we will discover during its mission! [Credit: NASA’s Goddard Space Flight] Center.

Find out more

Edited by Adam Bateson


Liam Taylor is a PhD student at the University of Leeds and Centre for Polar Observation and Monitoring. His research looks at identifying novel remote sensing methods to monitor mountain glaciers for water resource and hazard management. He is passionate about climate change and science communication to a global audience, as an educator on free online climate courses and through his personal blog. You can find Liam on Twitter.

 

Ice-hot news: The cryosphere and the 1.5°C target

Ice-hot news: The cryosphere and the 1.5°C target

Every year again, the Conference of Parties takes place, an event where politicians and activists from all over the world meet for two weeks to discuss further actions concerning climate change. In the context the COP24, which started this Monday in Katowice (Poland), let’s revisit an important decision made three years ago, during the COP21 in Paris, and its consequences for the state of the cryosphere…


1.5°C target – what’s that again?

Last October, the International Panel on Climate Change (IPCC) released a special report (SR15) on the impacts of a 1.5°C global warming above pre-industrial levels. This target of 1.5°C warming was established during the 21st conference of the parties (COP21), in a document known as the Paris Agreement. In this Agreement, most countries in the World acknowledge that limiting global warming to 1.5°C warming rather than 2°C warming would significantly reduce the risks and impacts of climate change.

But wait, even though achieving this target is possible, which is not our subject today, what does it mean for our beloved cryosphere? And how does 1.5°C warming make a difference compared to the 2°C warming initially discussed during the COP21 and previous COPs?

A reason why the cryosphere is so difficult to grasp is the nonlinear behaviour of its components. What does this mean ? A good basic example is the transition between water and ice. At 99.9°C, you have water. Go down to 0.1°C and the water is colder, but this is still water. Then go down to -0.1°C and you end up with ice. The transition is very sharp and the system can be deeply affected even for a small change in temperature.

As a main conclusion, studies conducted in the context of SR15 show that, below 1.5°C of global warming, most components of the cryosphere will be slightly affected, while above that level of warming, there is more chance that the system may respond quickly to small temperature changes. In this Ice Hot News, we review the main conclusions of the SR15 concerning ice sheets, glaciers, sea ice and permafrost, answering among others the question if achieving the 1.5°C target would prevent us to trigger the potential nonlinear effects affecting some of them.

Ice sheets

The two only remaining ice sheets on Earth cover Greenland and Antarctica. If melted, the Greenland ice sheet could make the sea level rise by 7 m, while the Antarctic ice sheet could make it rise by almost 60 m. A recent review paper (Pattyn et al., 2018), not in SR15 because published very recently, shows that keeping the warming at 1.5°C rather than 2°C really makes the differences in terms of sea level rise contribution by the two ice sheets.

Greenland is a cold place, but not that cold. During the Holocene, the surface of the ice sheet always melted in summer but, in the yearly mean, the ice sheet was in equilibrium because summer melt was compensated by winter accumulation. Since the mid-1990s, Greenland’s atmosphere has warmed by about 5°C in winter and 2°C in summer. The ice sheet is thus currently losing mass from above and its surface lowers down. In the future, if the surface lowers too much, this could accelerate the mass loss because the limit altitude between snow and rainfalls may have been crossed, further accelerating the mass loss. The temperature threshold beyond which this process will occur is about 1.8°C, according to the Pattyn et al., 2018 paper.

Antarctica is a very cold continent, much colder than Greenland, but it has been losing mass since the 1990s as well. There, the source of the retreat is the temperature increase of the ocean. The ocean is in contact with the ice shelves, the seaward extensions of the ice sheet in its margins. The warmer ocean has eroded the ice shelves, making them thinner and less resistant to the ice flow coming from the interior. And if you have read the post about the marine ice sheet instability (MISI), you already know that the ice sheet can discharge a lot of ice to the ocean if the bedrock beneath the ice sheet is deeper inland than it is on the margins (called retrograde). MISI is a potential source of nonlinear acceleration of the ice sheet that, along with other nonlinear effects mentioned in the study, could trigger much larger sea level rise contribution from the Antarctic ice sheet above 2 to 2.7°C.

You can find complementary informations to the Pattyn et al., 2018 paper in SR15, sections 3.3.9, 3.5.2.5, 3.6.3.2 and in FAQ 3.1.

Glaciers crossing the transantarctic mountains, one of them ending up to Drygalski ice tongue (left side) in the Ross sea. The ice tongue is an example of those ice shelves that form as grounded ice flows toward the sea from the interior. Ice shelves are weakened by a warmer ocean, which accelerates upstream ice flow [Credit: C. Ritz, PEV/PNRA]

Glaciers

Over the whole globe, the mass of glaciers has decreased since pre-industrial times in 1850, according to Marzeion et al., 2014. At that time, climate change was a mix between human impact and natural variability of climate. Glacier response times to change in climate are typically decades, which means that a change happening, for instance, today, still has consequences on glaciers tens of years after. Today, the retreat of glaciers is thus a mixed response to natural climate variability and current anthropogenic warming. However, since 1850, the anthropogenic warming contribution to the glacier mass loss has increased from a third to more than two third over the last two decades.

Similarly to the Greenland ice sheet, glaciers are prone to undergo an acceleration of ice mass loss wherever the limit altitude where rainfall occurs more often than snowfall is higher and at the same time the glacier surface lowers. However, as opposed to ice sheets, glaciers can be found all over the world under various latitudes, temperature and snow regimes, which makes it difficult to establish a unique temperature above which all the glaciers in the world will shrink faster in a nonlinear way. There are, however, model-based global estimates of ice mass loss over the next century. The paper from Marzeion et al., 2018, shows that under 1.5-2°C of global warming, the glaciers will lose the two thirds of their current mass, and that for a 1°C warming, our current level of warming since pre-industrial times, the glacier are still committed to lose one third of their current mass. This means the actions that we take now to limit climate change won’t be seen for decades.

You can find complementary informations in SR15, sections 3.3.9, 3.6.3.2 and in FAQ 3.1.

Sea ice

As very prominently covered by media and our blog (see this post and this post), the Arctic sea-ice cover has been melting due to the increase in CO2 emissions in past decades. To understand the future evolution of climate, climate models are forced with the expected CO2 emissions for future scenarios. In summer, the results of these climate model simulations show that keeping the warming at 1.5°C instead of 2°C is essential for the Arctic sea-ice cover. While at 1.5°C warming, the Arctic Ocean will be ice-covered most of the time, at 2°C warming, there are much higher chances of a sea-ice free Arctic. In winter, however, the ice cover remains similar in both cases.

In the Antarctic, the situation is less clear. On average, there has been a slight expansion of the sea-ice cover (see this post). This is, however, not a clear trend, but is composed of different trends over the different Antarctic basins. For example, a strong decrease was observed near the Antarctic peninsula and an increase in the Amundsen Sea. The future remains even more uncertain because most climate models do not represent the Antarctic sea-ice cover well. Therefore, no robust prediction could be made for the future.

You can find all references were these results are from and more details in Section 3.3.8 of the SR15. Also, you can find the impact of sea-ice changes on society in Section 3.4.4.7.

Caption: Sea ice in the Arctic Ocean [D. Olonscheck]

Permafrost

Permafrost is ground that is frozen consecutively for two years or more. It covers large areas of the Arctic and the Antarctic and is formed or degraded in response to surface temperatures. Every summer, above-zero temperatures thaw a thin layer at the surface, and below this, we find the boundary to the permafrost. The depth to the permafrost is in semi-equilibrium with the current climate.

The global area underlain by permafrost globally will decrease with warming, and the depth to the permafrost will increase. In a 1.5°C warmer world, permafrost extent is estimated to decrease by 21-37 % compared to today. This would, however, preserve 2 millions km2 more permafrost than in a 2°C warmer world, where 35-47 % of the current permafrost would be lost.

Permafrost stores twice as much carbon (C) as the atmosphere, and permafrost thaw with subsequent release of CO2 and CH4 thus represents a positive feedback mechanism to warming and a potential tipping point. However, according to estimates cited in the special report, the release at 1.5°C warming (0.08-0.16 Gt C per year) and at 2°C warming (0.12-0.25 Gt C per year) does not bring the system at risk of passing this tipping point before 2100. This is partly due to the energy it takes to thaw large amounts of ice and the soil as a medium for heat exchange, which results in a time lag of carbon release.
The response rates of carbon release is, however, a topic for continuous discussion, and the carbon loss to the atmosphere is irreversible, as permafrost carbon storage is a slow process, which has occurred over millennia.

Changes in albedo from increased tree growth in the tundra, which will affect the energy balance at the surface and thus ground temperature, is estimated to be gradual and not be linked to permafrost collapse as long as global warming is held under 2°C.

The above-mentioned estimates and predictions are from the IPCC special report Section 3.5.5.2, 3.5.5.3 and 3.6.3.3.

Slope failure of permafrost soil [Credit: NASA, Wikimedia Commons].

So, in summary…

In summary, what can we say? Although the 1.5°C and 2°C limits were chosen as a consensus between historical claims based on physics and a number that is easy to communicate (see this article), it seems that there are some thresholds for parts of the cryosphere exactly between the two limits. This can have consequences on longer term, e.g. sea-level rise or permanent permafrost loss. Additionally, as the cryosphere experts and lovers that we are here in the blog team, we would mourn the loss of these exceptional landscapes. We therefore strongly hope that the COP24 will bring more solution and cooperation for the future against strengthening of climate change!

Further reading

Edited by Clara Burgard and Violaine Coulon


Lionel Favier is a glaciologist and ice-sheet modeller, currently occupying a post-doctoral position at IGE in Grenoble, France. He’s also on twitter.

 

 

 

Laura Helene Rasmussen is a Danish permafrost scientist working at the Center for Permafrost, University of Copenhagen. She has spent many seasons in Greenland, working with the Greenland Ecosystem Monitoring Programme and is interested in Arctic soils as an ecosystem component, their climate sensitivity, functioning and simply understanding what goes on below.

 

 

Clara Burgard is a PhD student at the Max Planck Institute for Meteorology in Hamburg. She investigates the evolution of sea ice in general circulation models (GCMs). There are still biases in the sea-ice representation in GCMs as they tend to underestimate the observed sea-ice retreat. She tries to understand the reasons for these biases. She tweets as @climate_clara.

 

Image of the Week – (Un)boxing the melting under the ice shelves

Image of the Week – (Un)boxing the melting under the ice shelves

The Antarctic ice sheet stores a large amount of water that could potentially add to sea level rise in a warming world (see this post and this post). It is currently losing ice, and the ice loss has been accelerating in the past decades. All this is linked to the melting of ice – not at the surface but at the base, underneath the so-called ice shelves which form the continuation of the Antarctic ice sheet over the ocean. These floating ice shelves (represented in color in our Image of the Week) are melted by ocean water from underneath. How can this process called ‘sub-shelf melting’ be included in ice-sheet models? One simple way is to divide the ice-shelf cavity into a number of ocean boxes. Let’s briefly see how it works.


How to model sub-shelf melting in ice-sheet models?

There are three main ways to do so – which way is most suitable depends on the application:

  1. The most elaborated approach is to use ocean models that resolve ocean dynamics underneath the ice shelves. However, they need a lot of computational power.

  2. As an alternative, simple parameterizations in which melting is a function of the depth of the ice-shelf base can be used. However, such parameterizations are for many applications too simple…

  3. Recently, intermediate approaches that include the basic ocean dynamics have been developed (e.g. Lazeroms et al., 2018; Pelle et al., in review). One such approach is the ocean box model (Olbers and Hellmer, 2010) that we extended for the use in an ice-sheet model. Our extension is called Potsdam Ice-shelf Cavity mOdel (PICO, Reese et al., 2018).

In the following, we take a closer look into the approach of PICO…

“Boxing” the cavity circulation

In Antarctic ice-shelf cavities (i.e. the water below the ice shelves), in general, an overturning circulation transports ocean water from the sea floor along the ice-shelf base towards the calving front (see Figure 2). It is driven by the “ice-pump” (Lewis and Perkin, 1986): ice melting near the grounding line (separation between the grounded ice sheet and the floating ice shelf) reduces the density of the ambient water. It becomes buoyant and rises along the shelf base towards the ocean. Through this process, new water from outside of the ice-shelf cavity is “pumped” along the continental shelf towards the grounding line. This leads to the typical pattern of highest melting near the deep grounding lines and lower melting towards the calving front.

 

Figure 2: Schematic showing the ocean boxes following the ice-shelf base, with the first box B1 near the grounding line, and the last box Bn at the calving front. The arrows indicate the overturning circulation. The ocean water enters the cavity from box B0 which is at depth of the continental shelf, in front of the ice shelf. [Credit: Fig. 1 of Reese et al. (2018)]

 

By dividing the ice-shelf cavity into 2 to 5 ocean boxes, the transport of the overturning circulation is simplified while the sub-shelf melt pattern is captured. The open ocean conditions are simply represented by the ocean reservoir box B0 (Figure 2). And the circulation is driven by the differences in water density between the ocean reservoir (B0 in Figure 2) and the first box near the grounding line (B1 in Figure 2). The model computes sub-shelf melting successively over the ocean boxes, starting near the grounding line.

Sub-shelf melting with PICO

Sub-shelf melting can vary a lot in-between ice shelves (Figure 1). Antarctic ice-shelf cavities can roughly be sorted into two types (Joughin et al., 2012). The first category are the cold cavities in which the ocean water is close to the freezing point and in which sub-shelf melting is generally low, about 0.1 meter per year. The second category are warm cavities which have a temperature of about 1 degree – that does not sound like much, but for an ice shelf, this feels like being in a sauna – and sub-shelf melting can easily exceed 10 meters per year. Small changes in ocean temperatures can hence have large effects on sub-shelf melting. An increase in sub-shelf melting thins the ice shelf, as for example observed in the Amundsen Sea region in West Antarctica (see this post). The ice shelves there are examples for warm cavities, and a cold cavity is, for instance, underneath the Filchner-Ronne Ice Shelf (see Figure 1 for the specific locations).

In reality, of course, things are much more complicated than simulated by our PICO model. For example, the Coriolis effect can influence ocean circulation in the cavities, sills in the bed can block access of warm water to the grounding line and so on…

Applications of PICO

To summarize, PICO is a simple and efficient modeling tool that can capture the general pattern of sub-shelf melting observed in Antarctica today. Being implemented in the Parallel Ice Sheet Model, it is openly available, so if you got excited about what it can do and want to use it yourself, you’re welcome to download it!

Further reading

Edited by David Docquier


Ronja Reese is a postdoctoral researcher at the Potsdam Institute for Climate Impact Research, Germany, in the group of Prof. Dr. Ricarda Winkelmann. She investigates ice dynamics in Antarctic with a focus on ice-ocean interactions and ice-shelf buttressing. She developed and implemented PICO together with Ricarda Winkelmann, Torsten Albrecht, Matthias Mengel and Xylar Asay-Davis. Contact Email: ronja.reese@pik-potsdam.de

Image of the Week – Breaking the ice: river ice as a marker of climate change

Figure 1. Dates of ice breakup on Alaskan river reaches wider than 150 m calculated using Moderate Resolution Imaging Spectroradiometer (MODIS) data. [Credit: Wayana Dolan].

Common images associated with climate change include sad baby polar bears, a small Arctic sea ice extent, retreating glaciers, and increasing severe weather. Though slightly less well-known, river ice is a hydrological system which is directly influenced by air temperature and the amount and type of precipitation, both of which are changing under a warming climate. Ice impacts approximately 60 % of rivers in the Northern Hemisphere and therefore will be a clear indicator of climate change over the coming century.


River ice terminology

First, I think it is important to get some quick vocabulary out of the way. There are three primary variables used to study large-scale trends in river ice:

  • Ice freeze-up: The process of ice accumulation on a river reach (a segment of a river), usually during the autumn or winter.
  • Ice breakup: The process of ice loss from a river segment. Breakup style is often related to a pulse of increased runoff from snow melt, known as the spring flood wave. Thermal breakup occurs when river ice melts prior to the arrival of the spring flood wave. It is a slow and relatively calm process. Alternatively, mechanical breakup occurs when ice on a river has not melted prior to the arrival of the spring flood wave. Mechanical breakups often cause severe ice jam floods, whereas thermal breakups are rarely associated with flooding events. You can observe an example of mechanical ice breakup and associated ice jam flooding in 2018 on the North Saskatchewan River at Petrofka Orchard on the video below [Credit: Planet Labs, Inc.].
  • Ice cover duration: The length of time a river segment is ice-covered between freeze-up and breakup.

Now that we know these key phrases, let’s get to the good stuff!

Why should you care about river ice?

Shifts in river ice cover duration can be used as an indicator for Arctic climate change due to its relationship with air temperature and precipitation (Prowse et al. 2002). Hotter air temperatures generally relate to earlier ice breakup, later ice freeze-up, and shorter ice cover duration. These trends in breakup and freeze-up have been observed over the past 150 years on multiple rivers in the Northern Hemisphere by Magnuson et al. 2000. Many arctic communities rely on ice roads, which often travel across frozen rivers, lakes, and wetlands. These roads are important for transporting food, fuel, and mining equipment, to predominately first nations people. They are also commonly used by people who live subsistence-based lifestyles for hunting and trapping during the winter months. If ice cover duration shortens, these roads will be stable for a shorter period each winter. Alternatively, longer ice-free seasons would allow for decreased shipping costs in many boreal and Arctic regions, which currently use ice breaking to clear shipping pathways (Prowse et al. 2011). Another trend observed in several large Arctic rivers is a shift from mechanical breakup to thermal breakup (Cooley & Pavelsky, 2016). While this change could lead to a decrease in ice jam flood damage to hydropower and other infrastructure, it could also cause a dramatic decrease in sediment and nutrient transport to near-river Arctic ecosystems such as floodplains and deltas.

Recent research has shown ice cover trends to be geographically complex and dependent upon variables such as air temperature, basin size, and precipitation (Bennett & Prowse, 2010; Prowse et al. 2002; Rokaya et al. 2018). However, many of these trends are poorly understood on a pan-Arctic scale.

How do we measure changes in river ice?

From the early-1980s through the mid-2000s, satellites missions such as Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS) began allowing researchers to study ice on rivers in inaccessible areas. However, computing power limited the size and scale of rivers which could be observed. More recently, data processing through platforms like Google Earth Engine allow river ice to be studied on a much larger scale.

The University of North Carolina at Chapel Hill (UNC) has a working group which makes use of these new programs to study changes in pan-Arctic river and lake ice. My current project seeks to quantify historical river ice breakup and freeze-up using MODIS. We have developed an ice detection algorithm that has successfully been applied to all river reaches in Alaska wider than 150 m, limited by the 250 m spatial resolution of MODIS (Figure 1). Note that our detection algorithm can be applied to rivers which are slightly sub-pixel in width. I am currently working on calculating trends in this dataset and the expansion of the algorithm to pan-Arctic rivers, so that we can better identify which regions in the Arctic are changing the fastest. A quick glance at the dataset reveals that ice breakup is highly variable through time and space, even between upstream and downstream reaches of the same river. Internal variation in breakup dates within a given river may be caused by temperature gradients along the river profile, changes in elevation, as well as variation in the amount and type of precipitation. Additionally, preliminary work by UNC postdoctoral researcher Xiao Yang uses Google Earth Engine, Landsat, and MERRA-2 data to globally model river ice (Figure 2). This model can be applied to future climate change scenarios to see how river ice will change as the temperature warms. Keep an eye out for this paper in the next few months!

Figure 2. Preliminary results from modelling global river ice coverage using Landsat imagery, latitude, longitude, and surface air temperatures from MERRA-2. Colors refer to the percentage of the total river length in each area that is ice-covered each month (aggregated from 1984 to 2018) [Credit: Xiao Yang].

Future outlook

River ice cover duration is expected to shorten as the climate warms. Shifts in ice breakup and freeze-up processes can impact sediment and nutrient delivery, Arctic transportation and hunting, and ice-related hazards. However, our preliminary results show that river ice breakup varies both spatially and temporally throughout Alaska (Figure 1). Ongoing research at UNC will allow researchers to identify areas of the pan-Arctic which are most vulnerable to river ice-related change.

Further resources

Edited by Scott Watson


Wayana Dolan is a current M.S. student and future Ph.D. student at the University of North Carolina at Chapel Hill (USA) working with Dr. Tamlin Pavelsky. Her current research involves using remote sensing to study large-scale changes in river ice. She is passionate about any project that allows her to do Arctic fieldwork. Dolan also works with the WinSPIRE program – a summer research internship for female high school students in North Carolina. You can contact her by email or on twitter as @wayana_dolan.