Cryospheric Sciences


Image of the Week — Into Iceberg Alley

Tabular iceberg, Ross Sea, Antarctica [Credit: Marlo Garnsworthy]

Crew in hardhats and red safety gear bustle about, preparing our ship for departure. A whale spouts nearby in the Straits of Magellan, a fluke waving in brief salute, before it submerges again. Our international team of 29 scientists and 2 science communicators, led by co-Chief Scientists Mike Weber and Maureen Raymo, is boarding the JOIDES Resolution, a scientific drilling ship. We’re about to journey on this impressive research vessel into Antarctic waters known as Iceberg Alley for two months on Expedition 382 of the International Ocean Discovery Program.

Not only are these some of the roughest seas on the planet, it is also where most Antarctic icebergs meet their ultimate fate, melting in the warmer waters of the Antarctic Circumpolar Current (ACC), which races unimpeded around the vast continent. And there, in the Scotia Sea, we will drill deep into the sea floor to learn more about the history of the Antarctic Ice Sheet.

The Drilling Ship

The JOIDES Resolution, our scientific drilling ship [Credit: William Crawford and IODP]

The JOIDES Resolution is a 134-meter-long research vessel topped by a derrick towering 62 meters above the water line. It can drill hundreds of meters into the sea floor to retrieve long cylinders of mud called cores. Analyzing this sediment can tell scientists much about geology and Earth’s history, including the history of Climate Change.

“Sediment cores are like sedimentary tape recorders of Earth’s history,” says Maureen Raymo. “You can see how the climate has changed, how the plants have changed, how the temperatures have changed. Imagine you had a multilayer cake and a big straw, and you just stuck your straw into your cake and pulled it out. And that’s essentially what we do on the ocean floor.”

Our drilling sites in the Scotia Sea. [Figure modified from Weber, et al (2014)]

Our expedition is “going to a place that’s never really been studied before,” adds Maureen Raymo. “In fact, we don’t even know what the age of the sediment at the bottom will be.” Nevertheless, we hope to retrieve a few million years’ worth of sediment, perhaps even more. The sediment cores will provide a nearly continuous history of changes in melting of the Antarctic Ice Sheet.

What can these cores tell us?

As icebergs melt, the dust, dirt, and rocks they carry—known as “iceberg rafted debris”—fall down through the ocean and are deposited as sediment on the seafloor. Analyzing this sediment can tell us when the icebergs that deposited it calved from the ice sheet, and even where they came from. At times when more debris was deposited, we know more icebergs were breaking away from the Antarctic Ice Sheet, which tells us the ice sheet was less stable.

Much shorter cores previously collected at our drilling sites reveal high sedimentation rates, allowing us to observe changes in the ice sheet and the climate on short timescales (from just tens to hundreds of years).

We now know that rapid discharge of icebergs—caused by rapid melting of Antarctic ice shelves and glaciers—occurred in the past, and that episodes of massive iceberg discharge can happen abruptly, within decades. This has huge implications for how the Antarctic Ice Sheet may behave in the future as our world warms.

Where do icebergs come from?

Ok, let’s back up a little—back to where these icebergs were born. Icebergs break off or “calve” from the margins (edges) of ice shelves and glaciers. Ice shelves are floating sheets of ice around the edges of the land. They are important because they have a “buttressing” effect—that is, they act as a wall, holding back the ice behind them. Glaciers are great flowing rivers of ice that grind their way across the land, picking up the rocks and dirt that become iceberg-rafted debris.

Thwaites velocity map animation [Credit: Kevin Pluck, Pixel Movers & Maker]

Most Antarctic icebergs travel anti-clockwise around Antarctica and converge in the Weddell Sea, then drifting northward into the warmer waters of the Antarctic Circumpolar Current.

Iceberg flux 1976-2017  [Credit: Kevin Pluck & Marlo Garnsworthy, Pixel Movers & Makers]

As our planet warms due to our greenhouse gas emissions, warmer ocean currents are melting Antarctica’s massive glaciers from below, thinning, weakening, and destabilizing them. In fact, the rate of Antarctic ice mass loss has tripled over the last decade alone.

Polar researchers predict that global sea level will rise up to one meter (around 3.2 feet) by the end of this century, and most of this will be due to melting in Antarctica. And if vulnerable glaciers melt, the West Antarctic Ice Sheet is more likely to collapse, raising sea level even further.

Blue is old ice, Mc Murdo Sound, Antarctica [Credit: Marlo Garnsworthy]


A Hazardous Voyage

We face several hazards on this journey. We are hoping we won’t encounter sea ice, as our vessel is not ice-class, but it’s something we must watch for, especially later in the cruise as winter draws nearer. It is certain that, at times, we’ll experience a sea state not conducive to coring—or to doing much but swallowing sea-sickness medication and retiring to one’s bunk. In heave greater than 4–6 meters, operations must stop for the safety of the crew and equipment.

Of course, our highly experienced ice observer will be ever on the lookout for our greatest hazard—icebergs, of course! We are likely to encounter everything from very small “growlers” to larger “bergy bits” to massive tabular bergs. In fact, it is the smaller icebergs that present the most danger to the ship, as large icebergs are both visible to the eye and are tracked by radar, while smaller ones can be more difficult to detect, especially at night. Nevertheless, we are intentionally sailing into the area of highest iceberg concentration and melt.

“My hope,” says Mike Weber, “is that our expedition will unravel the mysteries of Antarctic ice-sheet dynamics for the past, and this may tell is something about its course in the near future.”

“Bergy bit”, Ross Sea, Antarctica [Credit: Marlo Garnsworthy]

Edited by Sophie Berger

The JOIDES Resolution is part of the International Ocean Discovery Program and is funded by the US National Science Foundation.

Marlo Garnsworthy is an author/illustrator, editor, science communicator, and Education and Outreach Officer for JOIDES Resolution Expedition 382 and previously NBP 17-02. She and Kevin Pluck are co-founders of science communication venture, creator of the animations in this article.

Image of the Week – Super-cool colours of icebergs

Image of the Week – Super-cool colours of icebergs

It is Easter weekend! And as we do not want you to forget about our beloved cryosphere, we provide you with a picture nearly as colourful as the Easter eggs: very blue icebergs! What makes them so special? This is what this Image of the Week is about…

What are icebergs made of?

Fig.2: An iceberg with ‘scallop’ indentations [Credit: Stephen Warren].

Icebergs are chunks of ice which break off from land ice, such as glaciers or ice sheets (as you’ll know if you remember our previous post on icebergs). This means that they are mostly made up of glacial ice, which is frozen freshwater from accumulated snowfall. However, in some places where ice sheets extend to the coastline, making an ice shelf, icebergs can be made up of a different type of ice too.


Ice shelves can descend far down into the ocean. Seawater in contact with the ice at depth in the ocean is cooled to the freezing temperature. Because the freezing temperature decreases with decreasing pressure, if the seawater moves upwards in the ocean, it will have a temperature lower than the freezing temperature at that depth. That means it’s super-cooled – the seawater temperature is below the freezing temperature, but it hasn’t become a solid. The seawater cannot last for long in this state and freezes to the base of ice shelves as marine ice, which is seawater frozen at depth. The marine ice can help stabilize the ice shelf as it is less susceptible to fractures than glacial ice. Icebergs that calve from Antarctic ice shelves can sometimes be mixtures of glacial ice (on the top) and marine ice (on the bottom).


What can icebergs tell us?

Icebergs which tip over can tell us about processes that happen at the base of ice shelves. For example, scallops on the ice (the small indentations that can be seen in the second picture) can show the size of turbulent ocean eddies in the ocean at the ice shelf base. Basal cavities or channels show where oceanic melt had a large impact. Any colours visible in the iceberg can also give us information.

Fig.3: Marine ice containing organic matter, giving a greenish appearance [Credit: Stephen Warren].

Why are icebergs different colours?

Like snow (see this previous post), different types of ice appear different colours. A typical iceberg is white because it is covered with dense snow, and snowflakes reflect all wavelengths of ice equally. The albedo of snow, which is the proportion of the incident light or radiation that is reflected by a surface, is very high (nearly 1). Glacial ice is compressed snow, meaning it has fewer light-scattering air bubbles, so light can penetrate deeper than in snow, and more yellows and reds from the visible spectrum are absorbed. This results in a bubbly blue colour, with a slightly lower albedo than snow. Marine ice does not have bubbles, but light can be scattered by cracks, resulting in clear blue ice (see our Image of the Week). However, if the seawater from which the marine ice was formed contained organic matter, like algae and plankton, the resulting marine ice can have a yellowish or even green appearance (Fig. 3). If the marine ice formed near the base of an ice shelf where it meets the sea floor, it could contain sediment, giving it a dirty or black appearance.

So the colour of icebergs can tell us something about how ice was formed hundreds of metres below the ocean surface. You could even say that was super-cool…

Further reading

  • Warren, S. G., C. S. Roesler, V. I. Morgan, R. E. Brandt, I. D. Goodwin, and I. Allison (1993), Green icebergs formed by freezing of organic-rich seawater to the base of Antarctic ice shelves, J. Geophys. Res., 98(C4), 6921–6928, doi:10.1029/92JC02751.
  • Morozov, E.G., Marchenko, A.V. & Fomin, Y.V. Izv. (2015): Supercooled water near the Glacier front in Spitsbergen, Atmos. Ocean. Phys. 51(2), 203-207.
  • Image of the Week – Ice Ice Bergy
  • Image of the Week – Fifty shades of snow

This post is based on a talk by Stephen Warren presented at AMOS-ICSHMO2018

Edited by Clara Burgard

Lettie Roach is a PhD student at Victoria University of Wellington and the National Institute for Water and Atmospheric Research in New Zealand. Her project is on the representation of sea ice in large-scale models, including model development, model-observation comparisons and observation of small-scale sea ice processes.  


Back to the Front – Larsen C Ice Shelf in the Aftermath of Iceberg A68!

Back to the Front – Larsen C Ice Shelf in the Aftermath of Iceberg A68!

Much of the Antarctic continent is fringed by ice shelves. An ice shelf is the floating extension of a terrestrial ice mass and, as such, is an important ‘middleman’ that regulates the delivery of ice from land into the ocean: for much of Antarctica, ice that passes from land into the sea does so via ice shelves. I’ve been conducting geophysical experiments on ice for over a decade, using mostly seismic and radar methods to determine the physical condition of ice and its wider system, but it’s only in the last couple of years that I’ve been using these methods on ice shelves. The importance of ice shelf processes is becoming more widely recognised in glaciological circles: after hearing one of my seminars last year, a glaciology professor told me that he was revising his previous opinion that ice shelves were largely ‘passengers’ in the grand scheme of things and this recognition is becoming more common. Slowly, we are coming to appreciate that ice shelves have their own specific dynamics and, moreover, that they are the drivers of change on other ice masses.

The MIDAS Project

In 2015, I joined the MIDAS project – led by Swansea and Aberystwyth Universities and funded by the Natural Environment Research Council – dedicated to investigating the effects of a warming climate on the Larsen C ice shelf in West Antarctica (Fig. 1). My role was to to assist with geophysical surveys (Fig. 2) on the ice shelf – but more about that later!

Figure 2: Adam Booth overseeing seismic surveys on the Larsen C ice
shelf in 2015 [Credit: Suzanne Bevan].

Larsen C is located towards the northern tip of the Antarctic Peninsula, and is one of a number of “Larsen neighbours” that fringe its eastern cost. MIDAS turns out to have been an extremely timely study, culminating in 2017 just as Larsen C hit the headlines by calving one of the largest icebergs – termed A68 – ever recorded. On 12th July 2017, 12% of the Larsen C area was sliced away by a sporadically-propagating rift through the eastern edge of the shelf, resulting in an iceberg with 5800 km2 area (two Luxembourgs, one Delaware, one-quarter Wales…). As of 14th October 2017 (Fig. 1), A68 is drifting into the Weddell Sea, with open ocean between it and Larsen C. See our previous post “Ice ice bergy” to find out more about how and why ice berg movement is monitored.

The aftermath of A68

As colossal as A68 (Fig, 1) is, its record-breaking statistics are only (hnnngh…) the tip of the iceberg, and of greater significance is the potential response of what remains of Larsen C. This potential is best appreciated by considering what happened to Larsen B, a northern neighbour of Larsen C. In early 2002, over 3000 km2 of Larsen B Ice Shelf underwent a catastrophic collapse, disintegrating into thousands of smaller icebergs (and immortalised in the music of the band British Sea Power). Rewind seven years further back, to 1995: Larsen B calved an enormous iceberg, exceeding 1700 m2 in area. An ominous extrapolation from this is that large iceberg calving somehow preconditions ice shelves to instability, and several models of Larsen C evolution suggest that it could follow Larsen B’s lead and become more vulnerable to collapse over the coming years.

The enormous mass of the intact ice shelf acts like a dam that blocks the delivery of terrestrial ice into the ocean, and the disappearance of the ice shelf removes so-called ‘backstress’ – essentially ‘breaking the dam’.

Then what? Well, ice shelves are in stress communication with their terrestrial tributaries, therefore processes affecting the shelf can propagate back to the supply glaciers. The enormous mass of the intact ice shelf acts like a dam that blocks the delivery of terrestrial ice into the ocean, and the disappearance of the ice shelf removes so-called ‘backstress’ – essentially ‘breaking the dam’. In the aftermath of Larsen B’s collapse, its tributary glaciers were seen to accelerate, thereby delivering more of their ice into the Weddell Sea. It is this aftermath that we are particularly concerned about, since it’s the accelerated tributaries that promote accelerated sea-level rise. Ice shelf collapse has little immediate impact on sea-level: since it is already floating, the shelf displaces all the water that it ever will. But, in moving more ice from the land to the sea, we risk increased sea levels and, with them, the associated socio-economic consequences.

How can we improve our predictions?

Figure 3: Computational model of the changed stress state, Δτuu, of Larsen C following the calving of A68 (output from BISICLES model, from Stephen Cornford, Swansea University). The stress change is keenly felt at the calving front, but also propagates further upstream [Credit: Stephen Cornford]

A key limitation in our ability to predict the evolution of Larsen C is a lack of observational evidence of how ice shelf stresses evolve in the short-term aftermath of a major calving event. These calving events are rare: we simply haven’t had much opportunity to investigate them, so while our computer predictions are based on valid physics (e.g., Fig. 3) it would be valuable to have actual observations to constrain them. Powerful satellite methods are available for tracking the behaviour of the shelf but these provide only the surface response; Larsen C is around 200 m thick at its calving front so there is plenty of ice that is hidden away from the satellite ‘eye in the sky’, but that is still adapting to the new stress regime. So how can we “see” into the ice?

To address this, we’ve recently been awarded an “Urgency Grant” – Response to the A68 Calving Event (RA68CE) – from NERC to send a fieldcrew to the Larsen C ice shelf, involving researchers from Leeds, Swansea and Aberystwyth, together with the British Geological and British Antarctic Surveys.

Figure 4: Emma Pearce and Dr Jim White preparing seismic equipment – intrepid geophysicists ready to wrap-up warm for field deployment on Larsen C! [Credit: Adam Booth]

The field team – Jim White and Emma Pearce (Fig. 4) – will undertake seismic and radar surveys at two main sites (Fig. 3) to assess the new stress regime around the Larsen C calving front. One of these sites is being reoccupied after seismic surveying in 2008-9, during the Swansea-led SOLIS project, allowing us to make a long-term comparison. These, and two other sites, will also be instrumented with EMLID REACH GPS sensors, to track small-scale ice movements than can’t be captured in the satellite data. The field observations will be supplied to a team of glacial modellers at Swansea University, to allow them to improve future predictions (e.g. Fig. 3), while their remote sensing team continues to monitor the evolving stress state at surface.

It’s truly exciting to be coordinating the first deployment, post A68, on Larsen C. Our data should provide a unique missing piece from the predictive jigsaw of Larsen C’s evolution, ultimately improving our understanding of the causes and effects of large-scale iceberg calving – both for Larsen C and beyond!


For ice-hot news from the field, follow Emma Pearce on twitter: @emm_pearce


Edited by Emma Smith

Further Reading

  • More information on Larsen C at the project MIDAS website
  • Learn more about ice shelf evolution with the Ice Flows game – eduction by stealth! Also check out the EGU Cryoblog post about it!
  • Borstad et al., 2017; Fracture propagation and stability of ice shelves governed by ice shelf heterogeneity; Geophysical Research Letters, 44, 4186-4194.
  • Wuite et al., 2015; Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013. The Cryosphere, 9, 957-969.
  • Cornford et al., 2013; Adaptive mesh, finite volume modelling of marine ice sheets; Journal of Computational Physics, 232, 1, 529-549.

Adam Booth is a lecturer in Exploration Geophysics at the University of Leeds, UK. He is the PI on the NERC-funded project “Ice shelf response to large iceberg calving” (NE/R012334/1). After obtaining his PhD from the University of Leeds in 2008, he held postdoctoral positions at Swansea University and Imperial College London, in which he worked with diverse research applications of near-surface geophysics. He tweets as: @Geophysics_Adam

Image of the Week – Ice Ice Bergy

Image of the Week – Ice Ice Bergy

They come in all shapes, sizes and textures. They can be white, deep blue or brownish. Sometimes they even have penguins on them. It is time to (briefly) introduce this element of the cryosphere that has not been given much attention in this blog yet: icebergs!

What is an iceberg?

Let’s start with the basics. An iceberg, which literally translates as “ice mountain”, is a bit of fresh ice that broke off a glacier, an ice shelf, or a larger iceberg, and that is now freely drifting in the ocean. As an approximation, you can consider that since an iceberg is already in the water (about 90% under water even), its melting does not contribute to sea-level rise. However, if you remember our Sea Level “For Dummies” post, you know that the melting of fresh ice reduces the ocean’s density and makes it expand. Icebergs are found at both poles, although they tend to be larger in the Southern Ocean. The largest iceberg ever spotted there was 335 by 97 km, which represents an area larger than Belgium !

Modelled trajectories of icebergs around Antarctica. The different colours represent different size classes, ranging from 0-1 km² (class 1) to 100-1000 km² (class 5). [Credit: subset of Fig 2 from Rackow et al (2017)]

Icebergs can drift over thousands of kilometres (Rackow et al., 2017), during several years. A more thorough account of the life of an iceberg will be given in a future post, but be aware that among other things, as it drifts:

  • The iceberg is eroded by the waves and melted by the relatively warm ocean;
  • It can split in several pieces because of this melting and mechanical stress;
  • Sea ice can freeze around it, trapping it in the pack ice.

This means that the iceberg changes shape a lot, and can be tricky to monitor (Mazur et al, 2017).

Why do we want to monitor icebergs?

You may have heard of the Titanic, and hence are aware that icebergs pose a risk for navigation not only in the polar regions but even in the North Atlantic. Icebergs also are large reservoirs of freshwater, and depending on how and where they melt, this inflow of melted freshwater can really affect the ocean; it even dominates the freshwater budget in some Greenland fjords (Enderlin et al., 2016).

Icebergs have traditionally been rather understudied, so we are only now discovering how important they are and how they interact with the rest of the climate system: increasing sea ice production (A. Mazur, PhD thesis, 2017), biological activity (Vernet et al., 2012), and even carbon storage (Smith et al., 2011). And sometimes, they have penguins on them!

All eyes in the CryoTeam are now turned to the Antarctic Peninsula, where a giant iceberg may detach from the Larsen C ice shelf soon. To learn how we know that, check this video made by ESA. And of course, continue reading us – we’ll be reporting about the birth of this monster berg!

An iceberg by Antarctica [Credit: C. Heuzé]

Edited by Sophie Berger

Further reading

  • Enderlin et al. (2012), Iceberg meltwater fluxes dominate the freshwater budget in Greenland’s iceberg-congested glacial fjords, Geophysical Research Letters, doi:10.1002/2016GL070718

  • Mazur et al. (2017), An object-based SAR image iceberg detection algorithm applied to the Amundsen Sea, Remote Sensing of Environment, doi:10.1016/j.rse.2016.11.013

  • Rackow et al. (2017), A simulation of small to giant Antarctic iceberg evolution: Differential impact on climatology estimates, Journal of Geophysical Research: Oceans, doi: 10.1002/2016JC012513
  • Smith et al. (2011), Carbon export associated with free-drifting icebergs in the Southern Ocean, Deep Sea Research, doi: 10.1016/j.dsr2.2010.11.027
  • Vernet et al. (2012), Islands of Ice: Influence of Free-Drifting Antarctic Icebergs on Pelagic Marine Ecosystems, Oceanography, doi:10.5670/oceanog.2012.72

Image of the Week — Glowing Ice

Image of the Week — Glowing Ice

Two weeks ago, the EGU General Assembly was coming to an end in Vienna. With over 16,500 participants, this year’s edition was bigger and more varied than ever (e.g check out this good overview of the science-policy short course, published 2 days ago on geolog). The week was particularly fruitful for the cryospheric sciences and to mark this we have cherry-picked one of the winning picture of the EGU photo contest 2016 as our image of this week. It’s great that an image of the cryosphere is a winner in this competition and we are pleased to see that it isn’t only us that go bananas for pictures of ice!

What do we see?

The beautiful shot shows a stranded block of ice on the shore the glacial lagoon Jökulsárlón, south-east Iceland. Ice calves off Breiðamerkurjökull, an outlet glacier which flows out from Vatnajökull, the ice cap which makes up the largest ice body of Iceland. Jökulsárlón developed as Breiðamerkurjökull retreated away from the Atlantic ocean (into which it flows) and the lagoon continues to grow in size as the glacier continues to retreat (see image below).

Panorama of the Jökulsárlón glacial lake, Iceland, 2010. [Credit: Ira Goldstein (via wikimedia commons)]

Panorama of the Jökulsárlón glacial lake, Iceland, 2010. [Credit: Ira Goldstein (distibuted via wikimedia commons)]

The image comes from imaggeo, what is it?

You like this image of the week? Good news, you are free to re-use it in your presentation and publication because it comes from Imaggeo, the EGU open access image repository.

(Edited by Emma Smith)