Cryospheric Sciences


Image of the Week — Into Iceberg Alley

Tabular iceberg, Ross Sea, Antarctica [Credit: Marlo Garnsworthy]

Crew in hardhats and red safety gear bustle about, preparing our ship for departure. A whale spouts nearby in the Straits of Magellan, a fluke waving in brief salute, before it submerges again. Our international team of 29 scientists and 2 science communicators, led by co-Chief Scientists Mike Weber and Maureen Raymo, is boarding the JOIDES Resolution, a scientific drilling ship. We’re about to journey on this impressive research vessel into Antarctic waters known as Iceberg Alley for two months on Expedition 382 of the International Ocean Discovery Program.

Not only are these some of the roughest seas on the planet, it is also where most Antarctic icebergs meet their ultimate fate, melting in the warmer waters of the Antarctic Circumpolar Current (ACC), which races unimpeded around the vast continent. And there, in the Scotia Sea, we will drill deep into the sea floor to learn more about the history of the Antarctic Ice Sheet.

The Drilling Ship

The JOIDES Resolution, our scientific drilling ship [Credit: William Crawford and IODP]

The JOIDES Resolution is a 134-meter-long research vessel topped by a derrick towering 62 meters above the water line. It can drill hundreds of meters into the sea floor to retrieve long cylinders of mud called cores. Analyzing this sediment can tell scientists much about geology and Earth’s history, including the history of Climate Change.

“Sediment cores are like sedimentary tape recorders of Earth’s history,” says Maureen Raymo. “You can see how the climate has changed, how the plants have changed, how the temperatures have changed. Imagine you had a multilayer cake and a big straw, and you just stuck your straw into your cake and pulled it out. And that’s essentially what we do on the ocean floor.”

Our drilling sites in the Scotia Sea. [Figure modified from Weber, et al (2014)]

Our expedition is “going to a place that’s never really been studied before,” adds Maureen Raymo. “In fact, we don’t even know what the age of the sediment at the bottom will be.” Nevertheless, we hope to retrieve a few million years’ worth of sediment, perhaps even more. The sediment cores will provide a nearly continuous history of changes in melting of the Antarctic Ice Sheet.

What can these cores tell us?

As icebergs melt, the dust, dirt, and rocks they carry—known as “iceberg rafted debris”—fall down through the ocean and are deposited as sediment on the seafloor. Analyzing this sediment can tell us when the icebergs that deposited it calved from the ice sheet, and even where they came from. At times when more debris was deposited, we know more icebergs were breaking away from the Antarctic Ice Sheet, which tells us the ice sheet was less stable.

Much shorter cores previously collected at our drilling sites reveal high sedimentation rates, allowing us to observe changes in the ice sheet and the climate on short timescales (from just tens to hundreds of years).

We now know that rapid discharge of icebergs—caused by rapid melting of Antarctic ice shelves and glaciers—occurred in the past, and that episodes of massive iceberg discharge can happen abruptly, within decades. This has huge implications for how the Antarctic Ice Sheet may behave in the future as our world warms.

Where do icebergs come from?

Ok, let’s back up a little—back to where these icebergs were born. Icebergs break off or “calve” from the margins (edges) of ice shelves and glaciers. Ice shelves are floating sheets of ice around the edges of the land. They are important because they have a “buttressing” effect—that is, they act as a wall, holding back the ice behind them. Glaciers are great flowing rivers of ice that grind their way across the land, picking up the rocks and dirt that become iceberg-rafted debris.

Thwaites velocity map animation [Credit: Kevin Pluck, Pixel Movers & Maker]

Most Antarctic icebergs travel anti-clockwise around Antarctica and converge in the Weddell Sea, then drifting northward into the warmer waters of the Antarctic Circumpolar Current.

Iceberg flux 1976-2017  [Credit: Kevin Pluck & Marlo Garnsworthy, Pixel Movers & Makers]

As our planet warms due to our greenhouse gas emissions, warmer ocean currents are melting Antarctica’s massive glaciers from below, thinning, weakening, and destabilizing them. In fact, the rate of Antarctic ice mass loss has tripled over the last decade alone.

Polar researchers predict that global sea level will rise up to one meter (around 3.2 feet) by the end of this century, and most of this will be due to melting in Antarctica. And if vulnerable glaciers melt, the West Antarctic Ice Sheet is more likely to collapse, raising sea level even further.

Blue is old ice, Mc Murdo Sound, Antarctica [Credit: Marlo Garnsworthy]


A Hazardous Voyage

We face several hazards on this journey. We are hoping we won’t encounter sea ice, as our vessel is not ice-class, but it’s something we must watch for, especially later in the cruise as winter draws nearer. It is certain that, at times, we’ll experience a sea state not conducive to coring—or to doing much but swallowing sea-sickness medication and retiring to one’s bunk. In heave greater than 4–6 meters, operations must stop for the safety of the crew and equipment.

Of course, our highly experienced ice observer will be ever on the lookout for our greatest hazard—icebergs, of course! We are likely to encounter everything from very small “growlers” to larger “bergy bits” to massive tabular bergs. In fact, it is the smaller icebergs that present the most danger to the ship, as large icebergs are both visible to the eye and are tracked by radar, while smaller ones can be more difficult to detect, especially at night. Nevertheless, we are intentionally sailing into the area of highest iceberg concentration and melt.

“My hope,” says Mike Weber, “is that our expedition will unravel the mysteries of Antarctic ice-sheet dynamics for the past, and this may tell is something about its course in the near future.”

“Bergy bit”, Ross Sea, Antarctica [Credit: Marlo Garnsworthy]

Edited by Sophie Berger

The JOIDES Resolution is part of the International Ocean Discovery Program and is funded by the US National Science Foundation.

Marlo Garnsworthy is an author/illustrator, editor, science communicator, and Education and Outreach Officer for JOIDES Resolution Expedition 382 and previously NBP 17-02. She and Kevin Pluck are co-founders of science communication venture, creator of the animations in this article.

Image of the Week – Seven weeks in Antarctica [and how to study its surface mass balance]

Figure 1 – Drone picture of our field camp in the Princess Ragnhild coastal region, East Antarctica. [Credit: Nander Wever]

After only two months of PhD at the Laboratoire de Glaciologie of the Université libre de Bruxelles (ULB, Belgium), I had the chance to participate in an ice core drilling campaign in the Princess Ragnhild coastal region, East Antarctica, during seven weeks in December 2018 – January 2019 for the Mass2Ant project. Our goal was to collect ice cores to better evaluate the evolution of the surface mass balance in the Antarctic Ice sheet. Despite the sometimes-uncomfortable weather conditions, the ins and outs of the fieldwork and the absence of friends and family, these seven weeks in Antarctica were a wonderful experience…


Mass2Ant is the acronym of the project: “East Antarctic surface mass balance in the Anthropocene: observations and multiscale modelling”. This project aims to better understand the processes controlling the surface mass balance in East Antarctica, its variability in the recent past and, ultimately, improve the projections of mass balance changes of the East Antarctic ice sheet.

What exactly is the surface mass balance?

The mass balance of an ice sheet (see Fig. 2) is the net balance between the mass gained by snow accumulation and the loss of mass by melting (either at the surface or under the floating ice shelves) and calving (breaking off of icebergs at the ice shelves fronts).

The surface mass balance on the other hand only considers the surface of the ice sheet. It is thus, for a given location, the difference between:

  • incoming mass: snowfall, and
  • outgoing mass, due to melting processes (fusion and sublimation), meltwater runoff and transport or erosion by wind at the ice sheet interface.

Figure 2 – Representation of the mass balance of an ice sheet [Credit: Figure adapted from NASA, Wikimedia Commons].

Overall, the ice sheet mass balance – the principal indicator of the “health state” of an ice sheet – is the balance between the surface mass balance, iceberg calving and basal melt under the ice shelves. A good evaluation of these three factors is thus essential to better quantify the evolution of the Antarctic mass balance under anthropogenic warming and therefore its contribution to future sea level rise.

However, the surface mass balance is characterized by strong temporal and spatial variations (see Figure 3) and is poorly constrained. In order to improve future projections for Antarctica, it is essential to better assess the variability of the Antarctic surface mass balance by directly collecting data in the field. Within this framework, the goal of the Mass2Ant project is to study the surface mass balance in the Princess Ragnhild coastal region (marked in the Figure 3).

Figure 3 – Surface mass balance (1989-2009) from RACMO2 (a regional climate model) of Antarctica (left) and Greenland (right) in kg/m².yr. Contour levels (dashed) are shown every 500 m. Black dot is the approximative position of the drilling site on the Tison Ice Rise. [Credit: adapted from Figure 1 of van den Broeke et al. (2011)].

Collecting the data [or how can we use ice cores to infer surface mass balance?]

Surface mass balance can be determined by analyzing ice core records. As a part of our expedition, ice cores were collected on the summit of the so-called “Tison Ice Rise” (a non-official name) – 70°S 21°E, near the Belgian Princess Elisabeth Station. We drilled to a depth of 260.1 m, which we expect to date back to the 15th century.
The drilling system, named the Eclipse drill, contains a motor on top of a drill barrel – which is composed of an inner barrel that cuts the ice core with 3 knives and collects it and an outer barrel (a tube) that collects the chips created. Due to the overlaying ice, pressure increases very quickly with depth. Deep ice cores are thus subject to much higher pressure than the atmospheric pressure. In order to reduce these strong pressure differences as the ice core is brought to the surface, drilling fluid was poured in the boreholes, a technique called “wet-drilling”. This was the first time the wet-drilling technique was used by our team, and it significantly improved the quality of our ice cores compared to the traditional method used during the previous campaigns!

Figure 4 – A part of our team in the drilling tent. An ice core can be observed in the inner barrel of the drilling system. A wooden box is placed on top of the trench, under the drill barrel to collect the chips contained in the outer barrel. [Credit: Hugues Goosse]

The 329 collected ice cores will be analyzed in our lab in Brussels. More specifically, we will focus on

  • the water stable isotopes: the seasonal cycle of stable isotopes of water in ice will be used for relative dating of the ice core;
  • the major ions (Na+, nssSO4, Na+/SO42-, NO3…) present in the ice: the reconstruction of the seasonal cycle of these ions allows us to refine the isotopic dating and therefore infer the annual snow/firn/ice thickness.
  • the conductivity of the ice, which also shows a clear seasonal signal used for dating. Moreover, the conductivity signal is also reacting to localized extra inputs – for example from past volcanic eruptions – therefore providing an absolute dating, which reduces our dating method uncertainties.

The seasonality of these signals will allow us to infer the yearly ice thicknesses (see this post). By taking into account the deformation of the ice, we will then be able to reconstruct the evolution of the surface mass balance in the Princess Ragnhild Coast region since the 15th century.

Life in the field

What was a typical day like for us? In fact, it strongly depended on the team to which you belonged as we were divided into two groups:

  • The “day group” was working on measurements such as snow density and radar analyses and worked roughly between 8 AM and 8 PM.
  • The second group – the drilling team, including me – worked during nights (between 9 PM and 9 AM) because of the too high temperatures during day, which would lead to ice core melt.

The drilling team adapted quite easily to this timing as the sun was shining 24 hours a day. In order to spend a common moment, a joint meal was organized every day at 8.30 AM, with some of us having their dinner while others were having breakfast.
The everyday life mainly occurred in two equipped containers. The first container was our living space, which we used as kitchen, dining room and working space. The second container consisted of a cloakroom, the toilets and the bathroom (with a real shower, a luxury in the field!). Each of us had a tent to sleep, with adapted sleeping bag, making it quite comfortable. As we stayed 5 weeks at the drilling site, we spent Christmas and New Year’s Eve on the field. It was a good occasion to eat fondue while sharing some fun stories and jokes (Fig. 5).

Figure 5 – Christmas time spent together, giving presents and eating fondue. [Credit: Nander Wever]

Why should you too go to Antarctica?

I’ll keep many memories of the time we all spent together, but also of the amazing landscapes and the calm and peacefulness of this white immensity… Despite the sometimes-uncomfortable weather conditions (a full week of whiteout days, lucky us!), this unique experience was wonderful! I’ve learned so much, from a scientific but also personal point of view. It was also a chance to participate in the collection of the samples that I will study during the next four years of my PhD. Before I left for Antarctica, someone told me that “When you went to Antarctica once, you usually want to go again”. Well, that’s definitely true for me!

Many thanks to belspo for funding this project, to the International Polar Foundation and Princess Elisabeth Antarctica staffs for the work both in Cape Town and in the station, and last but not least, thanks to the Mass2Ant team in the field that made this experience an amazing adventure.

Further reading

Edited by Violaine Coulon

Sarah Wauthy is a PhD student at Laboratoire de Glaciologie, Université Libre de Bruxelles, Belgium. Her PhD is part of the Mass2Ant project and aims at determining paleo-accumulation in the region of the Princess Ragnhild Coast (Dronning Maud Land, East Antarctica) as well as the paleo-extension of sea ice before and across the Anthropocene transition (ca. last 3 centuries), by performing high-resolution multiparametric analyses on ice cores collected during field campaigns.

Image of the Week – Drilling into a Himalayan glacier

Image of the Week – Drilling into a Himalayan glacier

How water travels through and beneath the interior of debris-covered glaciers is poorly understood, partly because it can be difficult to access these glaciers at all, never mind explore their interiors. In this Image of the Week, find out how these aspects can be investigated by drilling holes all the way through the ice…

Hydrological features of debris-covered glaciers

Debris-covered glaciers can have a range of hydrological features that do not usually appear on clean-ice valley glaciers, such as surface (supraglacial) ponds. These features are produced as a result of the variable melting that occurs across the glacier surface, depending on the thickness of the debris layer on the surface. Melting is reduced where the debris layer is thick (e.g. near the terminus), which leads to mass loss primarily by thinning, rather than terminus retreat like clean-ice glaciers (read more about this process in this previous blog post). This produces a low-gradient surface covered by hummocks and depressions in which ponds can form, often with steep bare ice faces (ice cliffs) surrounding them. The occurrence of ice cliffs and ponds also affects the surface melt rate, as glacier ice in/on/under these features melts considerably faster (up to 10 and 7 times more, respectively) than that of the debris-covered areas surrounding them (Sakai et al., 2000). Consequently, these hydrological features are an important contributing factor to the general trend of surface lowering of debris-covered glaciers (Bolch et al., 2012).

As a result, most hydrological research on debris-covered glaciers to date has focused on the (more accessible) supraglacial hydrological environment, as well as measuring the proglacial discharge of meltwater from these glaciers, which is a vital water resource for millions of people (Pritchard, 2017). Below the debris-covered surface of these glaciers, next-to-nothing is known about their hydrology; do drainage networks exist within (englacial) or beneath (subglacial) these glaciers, can they exist, and how can they be observed in such challenging environments?

A limited amount of direct research has been carried out in attempt to answer some of these questions, such as speleological techniques to investigate shallow englacial systems on a few glaciers (e.g. Gulley and Benn, 2007; Narama et al., 2017). However, all other inferences of subsurface drainage through debris-covered glaciers have come from hydrogeochemical analyses of water samples taken from the proglacial environment (e.g. Hasnain and Thayyen, 1994) or interpretation of observed glacier dynamics from satellite imagery (e.g. Quincey et al., 2009). While relict englacial features can be observed on the surface of many debris-covered glaciers (Figure 2), studying these systems while they are still active is more difficult.

Fig. 2: A relict englacial feature in the centre of an ice cliff on Khumbu Glacier (looking downglacier), through which the associated supraglacial pond is thought to have drained in the past. Following the drainage event, the pond water-level would have dropped, exposing the ice cliffs around its edge and resulting in the pond water-level being too low to sustain a water flow through the channel. The inset shows the same feature from the far side (looking upglacier): on this side, a vast amount of surface lowering of the ice surface has occurred and the previously englacial channel is now visible from the surface. For scale, the feature is approximately 10 metres in height. [Large image credit: Evan Miles; Inset image credit: Katie Miles]

Hot-water drilling to investigate subsurface hydrology

One way in which potential hydrological systems beneath the surface of debris-covered glaciers can be investigated is through the use of hot-water drilling, as was carried out on Khumbu Glacier, Nepal Himalaya this year by the EverDrill team. A converted car pressure-washer was used to produce a small jet of hot, pressurised water, which was sent through a spool of hose into the drill stem to melt the ice below as it was slowly lowered into the glacier (our Image of the Week). The result (if all went well!) was a borehole 10-15 cm in width, that penetrated the ice all the way to the glacier bed (Figure 3). During the field campaign, we managed to drill 13 boreholes at 3 different drill sites across Khumbu Glacier, ranging in length from 12 to 155 metres.

Once the borehole has been drilled, it can be used to investigate the hydrology of the glacier in a number of ways. If the water level suddenly drops while drilling is in progress, it is possible that the borehole has cut through an englacial conduit, through which the excess drill water has drained. If it drops at the base of a borehole drilled to the bed, it can be assumed that some form of subglacial drainage network exists at the base of the glacier, and the excess water drained through this system. Such features can be examined further through the use of an optical televiewer (360° camera that is lowered slowly through the length of the borehole, taking hundreds of images to give a complete picture of the internal surface of the borehole), or by installing a variety of sensors along the hole’s length to collect various types of data.

Fig. 3: A borehole drilled into Khumbu Glacier during the EverDrill field season in Spring 2017. The borehole was approximately 10 cm in width. A small channel (to the left of the borehole) was formed during the drilling process to drain away the excess water as the borehole was drilled. [Credit: Katie Miles]

During the EverDrill fieldwork in Spring 2017, we televiewed three of the drilled boreholes. These boreholes were then instrumented with sensors to measure the temperature of the ice and, where the boreholes reached the bed, a subglacial probe to measure electrical conductivity, temperature, water pressure and suspended sediment concentration (turbidity). We have left these probes in the boreholes, so that we have measurements both through our field season and additionally through the monsoon summer months. This will allow us to see whether any subsurface hydrological drainage systems develop when there is an additional source of water contributing to the melting of these glaciers. We will return in October to collect this data, and hopefully find out a little more about the englacial and subglacial drainage systems of this debris-covered glacier!

Further reading

Edited by Morgan Gibson, Clara Burgard and Emma Smith

Katie Miles is a PhD student in the Centre for Glaciology, Aberystwyth University, UK, studying the internal structure and subsurface hydrology of high-elevation debris-covered glaciers in the Himalaya by investigating boreholes and measurements that can be made within them. She is also interested in the potential of Sentinel-1 SAR imagery in detecting lakes on the surface of the Greenland Ice Sheet. Katie tweets at @Katie_Miles_851, contact email: