GeoLog

Imaggeo on Mondays

Imaggeo on Mondays: The breath of our Earth

Imaggeo on Mondays: The breath of our Earth

This picture was taken in the Myvatn geothermal area in southeast Iceland. Seeing the geothermal steam vent in this area while the temperature was -22 degrees Celsius is the best experience in Myvatn. The difference between Iceland’s cold ambient temperature and the released heat from inside the Earth is a really stunning event to see.

Iceland is situated in the middle of two tectonic plates (the Eurasian and North American plates) that, through their movement, have led to more than a hundred active and inactive volcanoes in this country. Due to the region’s high volcanic activity and shallow magma chambers, the temperature below Iceland’s surface is generally higher than that of continental areas without volcanoes. These conditions are responsible for the country’s high production of geothermal energy.

This heat can reach the surface in one of two ways. First, heat can naturally escape from the heart of Earth through cracks on the Earth’s surface itself. Second, geothermal powerplants can insert pipes far below the Earth’s surface to capture this heat.

Iceland is known for its geothermal spas, like the famous Blue Lagoon,  but additionally, Icelanders use geothermal energy as their main source of heating; in winter, almost 100 percent of the nation’s heating comes from geothermal energy. In the country’s capital Reykjavik, much of the city’s main roads are heated by this source, keeping the streets free from ice and snow. Geothermal energy also accounts for about 25 percent of the island’s electricity.

How is geothermal energy produced? As a heating source, geothermal power plants use a heat exchanger, a pipe that converts the hot water inside the earth into heat. It is then distributed within the steam pipe to residential areas. As an electricity source, power plants capture steam or hot water from geothermal areas to drive electricity generators. The machines convert the heat into electricity, which is then shared with Icelandic neighborhoods.

Because of its investment in a renewable energy source, Iceland is well known as a global leader in sustainability.

By Handriyanti Diah Puspitarini, University of Padova, Italy

Imaggeo on Mondays: Hints of an eruption

Imaggeo on Mondays: Hints of an eruption

The photograph shows water that accumulated in a depression on the ice surface of Vatnajökull glacier in southeastern Iceland. This 700m wide and 30m deep depression [1], scientifically called an ‘ice cauldron’, is surrounded by circular crevasses on the ice surface and is located on the glacier tongue Dyngjujökull, an outlet glacier of Vatnajökull.

The photo was taken on 4 June 2016, less than 22 months after the Holuhraun eruption, which started on 29 August 2014 in the flood plain north of the Dyngjujökull glacier and this depression. The lava flow field that formed in the eruption was the largest Iceland has seen in 200 years, covering 84km2 [2] equal to the total size of Manhattan .

A number of geologic processes occurred leading up the Holuhraun eruption. For example, preceding the volcanic event, a kilometre-wide area surrounding the Bárðarbunga volcano, the source of the eruption, experienced deformation. Additionally, elevated and migrating seismicity at three to eight km beneath the glacier was observed for nearly two weeks before the eruption [3]. At the same time, seven cauldrons, like the one in this photo, were detected on the ice surface (a second water filled depression is visible in the upper right corner of the photo). They are interpreted as indicators for subglacial eruptions, since these cauldrons usually form when geothermal or volcanic activity induces ice melt at the bottom of a glacier [4].

Fracturing of the Earth’s crust led up to a small subglacial eruption at the base of the ice beneath the photographed depression on 3 September 2014. This fracturing was further suggested as the source of long-lasting ground vibrations (called volcanic tremor) [5].

My colleagues and I studied the signals that preceded and accompanied the Holuhraun eruption using GPS instruments, satellites and seismic ground vibrations recorded by an array of seismometers [2, 5]. The research was conducted through a collaboration between University College Dublin and Dublin Institute for Advanced Studies in Ireland, the Icelandic Meteorological Office and University of Iceland in Iceland, and the GeoForschungsZentrum in Germany.

The FP7-funded FutureVolc project financed the above mentioned research and further research on early-warning of eruptions and other natural hazards such as sub-glacial floods.

By Eva Eibl, researcher at the GeoForschungsZentrum

Thanks go to www.volcanoheli.is who organised this trip.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: A Colombian myth with geologic origins

Imaggeo on Mondays: A Colombian myth with geologic origins

This photograph shows El salto del Tequendama, a natural waterfall of Colombia, located in the Department of Cundinamarca at an altitude of 2400 metres above sea level and approximately 30 kilometres southwest of the country’s capital, Bogotá.

The Salto del Tequendama is a space of transit and connectivity between the warm lands of the Magdalena river basin and the cold lands of the Sumapaz paramo, a Neotropical alpine tundra located at 4,000 metres above sea level.

Dutch-Colombian geologist Thomas Van der Hammen concluded that approximately 60,000 years ago the entire savannah of Bogota (populated today by 9 million people) was covered by a large lake, known as the Humboldt Lake, and the associated wetland plants instead of the paramo vegetation seen today.

Over time, the climate became warmer and the bottom of the Humboldt Lake began to rise. 30,000 years ago, the lake’s waters were channelled through the Bogota River and led to the Salto del Tequendama, a real climate event that we Colombians received through the myth of Bochica, a legendary hero to the Colombian indigenous group the Muisca. Here is the summarised myth of Bochica and the Tequendama jump:

“… As the Muiscas had lost respect for the gods, they offended Chibchacum, who had previously been the most beloved of their gods. He decided to punish them by flooding the savanna, for which he gave birth to the Sopo and Tivito rivers, which joined their rivers to the Funza (former name of the Bogotá River). The flood ended with many crops and human lives, until the people clamored with fasting and sacrifices to Bochica to free them from that calamity. The sage Bochica appeared on the rainbow and with his golden scepter, hit the rocks allowing the water to form a gigantic waterfall. So Bochica created the Tequendama jump.”

The large lake was partially dried and separated into smaller wetlands, where Andean plants, deer, foxes, weasels and more than 100 bird species made their home.

The waterfall, famous for its size, surrounding vegetation and vapourous waters, has been widely studied since 1668, when the Bishop of Panamá, Lucas Fernández de Piedrahíta made the first written record of its mythical origin story.

During the 18th and 19th centuries in particular, the Salto was one of the most famous natural attractions both locally and worldwide, due to the waterfall’s 157-metre drop onto a circular rocky abyss in a wooded region of permanent haze.

In the 19th century, large estates, also known as haciendas, were built on the region’s wetlands, and the natural environment was converted into places for fishing, hunting and logging. Through drainage channels, communities dried up the land to establish livestock and agricultural systems. In the last century, as the city of Bogota grew in population and size, the wetlands were filled to build neighborhoods, streets and avenues.

Like many Bogotanos, on a family weekend trip to relieve the stress generated by the chaos of the city and in search of clean air, I took this picture. The Salto was and always has been a fundamental part of the Bogota family mythology.

By Maria Cristina Arenas Bautista, National University of Colombia, Department of Civil Engineering and Agricultural (Bogotá)

Imaggeo On Mondays: Reservoir in the Italian Alps

Imaggeo On Mondays: Reservoir in the Italian Alps

Mountain natural streams and reservoirs have a relevant hydrological and ecological importance since they represent reliable sources of freshwater supply to lowland regions and high-quality habitats for fish and cold-water communities. Moreover, streams in mountain environments are of significant importance for users in several socio-economic sectors, such as agriculture, tourism and hydropower.

Given the vulnerability of mountain streams and catchments to the impact of climate changes and the increasing concern about water supply in mountain regions, there is the urgent need for scientists to face integrated, multidisciplinary catchment-scale studies addressing implications of climate change on water resources management and flow regimes.

Description by Daniele Penna, as it first appeared on imaggeo.egu.eu

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.