This guest post was contributed by a scientist, student or a professional in the Earth, planetary or space sciences. The EGU blogs welcome guest contributions, so if you’ve got a great idea for a post or fancy trying your hand at science communication, please contact the blog editor or the EGU Communications Officer Laura Roberts Artal to pitch your idea.

Imaggeo on Mondays: A spectacular rainbow

Imaggeo on Mondays: A spectacular rainbow

Back in February 2005, François Dulac and Rémi Losno worked in the field in the very remote Kerguelen Islands (also known as the Desolation Islands). Located in the southern Indian Ocean they are one, of the two, only exposed parts of the mostly submerged Kerguelen Plateau.

Our work consisted in sampling atmospheric aerosols and their deposition by rain on the island, which is a meeting point for the roaring fourties (strong westerly winds found in the Southern Hemisphere between 40 and 50 degrees latitude) and the equally turbulent furious fifties (which occur at more southerly latitudes still).

The aim of the study was to evaluate the input of chemical elements (in very low concentrations) derived from continental soil dust, to the remote surface waters of the Southern Ocean. Given the scarcity of land areas at this latitude, the particles were expected to have travelled long distances before arriving at Kerguelen.

For example, iron – one of the major elements in the Earth crust and soils – is of particular interest in this oceanic area because it is a micro-nutrient that limits the productivity (and related CO2 sink) of the Southern Ocean.

The island’s air was often very clear and the horizontal visibility unusually high, as can be seen in the photo. It highlights that atmospheric aerosol concentrations (the mixture of solid and liquid particles from natural and anthropogenic sources) are very low in this environment. Field sampling and subsequent chemical analyses require constraining protocols adapted to ultra-traces in order to minimize contamination of samples and blank levels.

The unique atmospheric conditions also meant we had problems estimating distances: we often found ourselves underestimating the stretch between two points during our long walks between the base and our remote sampling stations. In addition, the combination of very clean air, low sun and fast running atmospheric low-pressure systems carrying water clouds at low-level over the cold ocean make rainbows relatively frequent.

Walking back to the base after changing samples, we were caught in a rain shower. Raindrops were almost falling horizontally due to the high wind speed, leaving the soil dry downwind of the stones and rocks lying on the ground. A few minutes later clouds had passed and sunlight reflecting and diffracting in the cloud droplets offered us a spectacular semi-circular rainbow.

It was particularly special because it displayed an infrequent combination of (i) the main, classic, bright rainbow that shows up at 138-140 degrees from the direction of the sunlight, (ii) a secondary rainbow due to double reflection of sunlight in droplets that appears higher on the horizon at an angle of about 127-130 degrees and with an inversion of colours compared to the main bow (red inside), and (iii) one supernumerary rainbow with pastel green, pink and purple fringes on the inner side of the primary bow.

This stacked rainbow is caused by interferences and was first explained in 1804 by Thomas Young. It indicates the presence of small, uniformly sized droplets.  The dark area visible here on the right-hand side between the primary and secondary rainbows is called the Alexander’s band, after the ancient Greek philosopher Alexander of Aphrodisias comments on Aristotle’s Meteorology treatise, published in the early 3rd century. It is due to a lack of light resulting from the fact that diffracted rays are either reflected back inside the primary rainbow (causing this area to be brighter) or outside the secondary rainbow.

By François Dulac, Laboratoire des Sciences du Climat et de l’EnvironnementCEA/LSCE, Gif-sur-Yvette, France

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at

GeoSciences Column: Don’t throw out that diary – medieval journals reveal the secret of lightning

GeoSciences Column: Don’t throw out that diary – medieval journals reveal the secret of lightning

When 17th century Japanese princess Shinanomiya Tsuneko took note of an afternoon storm in her diary one humid Kyoto summer, she could not have imagined her observations would one day help resolve a longstanding scientific conundrum. Statistical analysis of her journals has revealed a link between lightning strikes and the solar wind – proving that your teenage diary could contain good science, as well as bad poetry.

The mystery of lightning

Lightning has amazed and alarmed weather-watchers since time immemorial. So it may come as a surprise that we still have little idea what sets off one of nature’s most thrilling spectacles.

Any school child will tell you lightning is caused by a difference in electrical charge. Up- and downdrafts cause molecules of air and water to bump against each other, exchanging electrons. When the potential difference is big enough, all those separated charges comes rushing back in one big torrent, superheating the air and turning it into glowing plasma – that’s what we call lightning.

So far, so sensible. But there’s a problem. Air is an insulator – and a very good one at that. To get the current flowing, charged particles need some sort of bridge to travel across. And it’s this bridge that has vexed lightning scientists – fulminologists – for decades.

The most prominent theory points the finger at cosmic rays – heavy, fast-moving particles that impact the Earth from space. Packing energy roughly equivalent to a fast-bowled cricket ball into one tiny atom-sized package, a cosmic ray can shred electrons from their nuclei with ease. The spectacular Northern Lights reveal the effect this can have on the atmosphere: columns of ionised air, perfect conductors for charges to travel along.

Most cosmic rays originate in deep space, hurled at close to the speed of light from distant supernovae. The extreme heat of the sun’s surface also sends more than a few our way – the so-called ‘solar wind’ – but because these particles are more sluggish than galactic cosmic rays, researchers at first doubted they could have much effect on the atmosphere. Lightning’s time in the sun was yet to come.

27 days of summer

Anyone who has lived a year in Japan will be familiar with the country’s long, sultry summers – and its famously methodical Met Agency. It’s a good place to go looking for lightning.

Inspired by some tantalising work out of the UK, Hiroko Miyahara and colleagues across Japan went sifting through their own Met data for patterns that might suggest a connection between solar weather and lightning strikes. They had their eye out for one pattern in particular – the 27-day cycle caused by the sun’s rotation. This is just short enough that the solar wind streaming from any given region of the sun is fairly constant, limiting the impact of solar variability on the data. It’s also short enough to fit comfortably within one season, which helped the authors compare apples with apples over long timespans.

Armed with the appropriate controls, and a clever method they developed for counting lightning strikes that smooths over patchy observations, Miyahara and the team got stuck into the data for Japan circa 1989–2015. Early in 2017, in a paper published in Annales Geophysicae, they presented their results. The 27-day signal stood out to four standard deviations: a smoking-gun proof that solar weather and lightning strikes are connected.

But how is the relatively sluggish solar wind able to influence lightning strikes? The key, according to Miyahara, is the effect the solar wind has on the Earth’s magnetic field – sometimes bolstering and sometimes weakening it, allowing the more potent galactic cosmic rays to wreak their mayhem.

A window into the past

Of course, the 27-day cycle is only the shortest of the major solar cycles. It is well known that the intensity of the sun varies on an 11-year cycle, related to convection rates in the solar plasma. Less understood are the much longer centurial and millennial cycles. The sun passed through one such cycle between the late Middle Ages and now. The so-called Little Ice Age, coinciding with a phase of low sunspot activity known as the Maunder Minimum, precipitated agricultural collapse and even wars across the world – and solar physicists believe we may be due for another such minimum in the near future, if it hasn’t begun already.

Understanding these cycles is a matter of no small importance. Unfortunately, pre-modern data is often scattered and unreliable, hampering investigations. A creative approach is called for – one that blends the disciplines of the human historian and the natural historian. And this is exactly what Miyahara and the team attempted next.

Shinanomiya Tsuneko was born in Kyoto 1642 – just before the Maunder Minimum. A daughter of the Emperor, Shinanomiya became a much-respected lady of the Imperial Court, whose goings-on she meticulously recorded in one of the era’s great diaries. Luckily for Miyhara and his colleagues in the present day, Shinanomiya was also a lover of the weather, carefully noting her observations of all things meteorological – especially lightning.

Figure and text from Miyahara et al, 2017b: “a) Group sunspot numbers around the latter half of the Maunder Minimum. b) Solar cycles reconstructed from the carbon-14 content in tree rings. The red and blue shading denotes the periods of solar maxima and minima, respectively, used in the analyses. c) Periodicity of lightning events during the solar maxima shown in panel (b). The red dashed lines denote 2 and 3 SD during the solar maxima, and the red shaded bar indicates the 27–30-day period. d) Same as in panel c) but for solar minima.”

Shinanomiya’s diary is one of five Miyahara and the team consulted to build a continuous database of lightning activity covering an astonishing 100 years of Kyoto summers. Priestly diaries, temple records, and the family annals of the Nijo clan were all cross-referenced to produce the data set, which preserves a fascinating slice of Earth weather during the sun’s last Grand Minimum.
Analysis of this medieval data revealed the same 27-day cycle in lightning activity observed in more recent times – proof of the influence of the solar wind on lightning frequency. The strength of this signal proved to be greatest at the high points of the sun’s 11-year decadal sunspot cycle. And the signal was almost completely absent between 1668 and 1715 – the era of the Maunder Minimum, when sunspot numbers are known to have collapsed.

Put together, the data provide the strongest proof yet that solar weather can enhance – and diminish – the occurrence of lightning.

Lightning strikes twice

Miyahara and the team now hope to expand their dataset beyond the period 1668 – 1767. With a little luck – and a lot of digging around in dusty old archives – it may be possible to build a record of lightning activity around Japan from before the Maunder Minimum all the way up to the present day. A record like this, covering a grand cycle of solar activity from minimum to maximum and, perhaps soon, back to a minimum again, would help us to calibrate the lightning record, providing a powerful new proxy for solar activity past and future. It may even help us to predict the famously unpredictable – lightning strikes injure or kill a mind-boggling 24,000 people a year.

As for the rest of us, the work of Miyahara and his colleagues should prompt us to look up at the sky a little more often – and note down what we see. Who knows? Three hundred years from now, it could be your diary that sets off a climate revolution – though it may be best to edit out the embarrassing details first.

by Rohan S. Byrne, PhD student, University of Melbourne


Miyahara, H., Higuchi, C., Terasawa, T., Kataoka, R., Sato, M., and Takahashi, Y.: Solar 27-day rotational period detected in wide-area lightning activity in Japan, Ann. Geophys., 35, 583-588,, 2017a.

Miyahara, H., Aono, Y., and Kataoka, R.: Searching for the 27-day solar rotational cycle in lightning events recorded in old diaries in Kyoto from the 17th to 18th century, Ann. Geophys., 35, 1195-1200,, 2017b.

Imaggeo on Mondays: Angular unconformity

Imaggeo on Mondays: Angular unconformity

It is not unusual to observe abrupt contacts between two, seemingly, contiguous rock layers, such as the one featured in today’s featured image. This type of contact is called an unconformity and marks two very distinct times periods, where the rocks formed under very different conditions.

Telheiro Beach is located at the western tip of the Algarve; Portugal’s southernmost mainland region and the most touristic too.

The area, famous for its famous rocky beaches and great seefood, shows a spectacular Variscan unconformity between the highly-folded greywackes and shales of the Brejeira Formation (Moscovian-Carboniferous) and the horizontally placed red sandstones and mudstones of the Group Grés de Silves (of Late Triassic age: 237 and 201.3 million years old). There is a hiatus of about 100 million years between the two formations.

The Variscan period ranges from 370 million to 290 million year ago and is named after the formation of a mountain belt which extends across western Europe, as a result of the collision between Africa and the North American–North European continents.

The imposing sea cliffs produce a privileged place to observe the end of the Variscan Cycle and the beginning of the Alpine Cycle.

It is possible to visit the outcrop on foot, from the top of the cliffs to the beach, although the path is of high degree of difficulty. When going down to the beach one can begin to visualise the typical lithologies of the Grés de Silves. Toward its top you can see red to green Mudstones (dominant) intercalated with rare dolomites and immediately above the unconformity plane it is possible to observe the red sandstone with cross stratification. The highly-folded turbidites (a type of sediment gravity flow responsible for distributing vast amounts of clastic sediment into the deep ocean) of the Brejeira Formation are located below the unconformity.

The folds feature chevron geometries (where the rocks have well behaved layers, with straight limbs and sharp hinges, so that they look like sharp Vs). The folding is the result of the final deformation phase of the Variscan compression.

The beds of sedimentary rocks show sedimentary structures attributed to sedimentation in a turbidic environment (turbititic currents), namely the Bouma sequence and sole marks like flute, groove and load casts.

                                                                                                     By André Cortesão, Environmental Engineer and Geoscientist collaborator of the University of Coimbra Geosciences Centre

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at

Imaggeo on Mondays: Bird’s eye view of Trebecchi Lakes

Imaggeo on Mondays: Bird’s eye view of Trebecchi Lakes

Among many other environmental impacts, human activities have introduced a range of animal and plant species to areas where they do not naturally belong. The introduction of alien species, as these translocated taxa are known, has wide ranging implications for native biota, ecosystem functioning, human health and the economy. Research published earlier this year found that during the last 200 years, the number of new established alien species has grown continuously worldwide, with 37% of all first introductions reported between 1970 and 2014. And their geographic reach is staggering too… you’ll even find them in the high peaks of the Italian Alps, as described in today’s post.

Above the tree line, small lakes punctuate the vegetated, rocky landscape of the Nivolet high plain in the Gran Paradiso National Park, Italy, at an altitude of about 2600 meters above sea level.

Geologically, this area is composed mainly of gneiss (a high-grade metamorphic rock), with relevant emergences of carbonatic rocks and extended cover of glacial deposits.

In several lakes, an alien fish (brook trout, Salvelinus fontinalis) was introduced in the sixties and seventies, drastically changing the lake ecosystems. A recent EU Life project on active ecosystem management succeeded in eradicating the alien fish in an ensemble of test lakes, restoring the original conditions. The Nivolet is now one of the pilot sites of the European H2020 Project ECOPOTENTIAL, devoted to assessing the state and changes of ecosystems and geosphere-biosphere interactions  in Protected Areas by Remote Sensing, in-situ measurements and conceptual modelling. In particular, the Nivolet watershed has now been established as an Earth Critical Zone and Ecosystem Observatory.

By, Antonello Provenzale, researcher at the Institute of Geosciences and Earth Resources in Pisa, Italy, and collaborator of the Gran Paradiso National Park.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at