GeoLog

Guest

This guest post was contributed by a scientist, student or a professional in the Earth, planetary or space sciences. The EGU blogs welcome guest contributions, so if you've got a great idea for a post or fancy trying your hand at science communication, please contact the blog editor or the EGU Communications Officer to pitch your idea.

Imaggeo on Mondays: The ash cloud of Eyjafjallajökull approaches

Imaggeo on Mondays: The ash cloud of Eyjafjallajökull approaches

This photo depicts the famous ash cloud of the Icelandic volcano Eyjafjallajökull, which disrupted air traffic in Europe and over the North Atlantic Ocean for several days in spring 2010. The picture was taken during the initial phase of the eruption south of the town of Kirjubæjarklaustur, at the end of a long field work day. Visibility inside the ash cloud was within only a few metres.

The eruption was preceded by years of seismic unrest and repeated magma intrusions. A first effusive fissure opened outside the ice shield of the volcano at the end of March 2010, followed by an explosive eruption in the main crater of the volcano in April 2010.

Iceland was well prepared for the eruption – the rest of the world obviously was not. The region around Eyjafjallajökull is sparsely populated, residents were prepared days before the eruption and the evacuation went smoothly. However, the grain size of the ejected volcanic ash was fine enough so that the unfavourable and unusual wind direction during these days transported the ash all the way to Europe and led to air space closures almost all over the continent.

By Martin Hensch, Nordic Volcanological Center, University of Iceland (now at Geological Survey of Baden-Württemberg, Germany)

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Exploring ice in the deep

Imaggeo on Mondays: Exploring ice in the deep

The occurrence of sporadic permafrost in the Alps often needs challenging fieldwork in order to be investigated. Here in the high altitude karstic plateau of Mt. Canin-Kanin (2587 m asl) in the Julian Alps (southeastern European Alps) several permanent ice deposits have been recently investigated highlighting how also in such more resilient environments global warming is acting rapidly. Important portions of the underground cryosphere are actually rapidly melting, loosing valuable paleoarchives contained in the ice.

Description by Renato R. Colucci, as it first appeared on imaggeo.egu.eu.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Watching the world from space with EarthKAM

Imaggeo on Mondays: Watching the world from space with EarthKAM

This photo was taken from the International Space Station (ISS), approx. 400 km above the Earth, in the NASA-led educational project Sally Ride EarthKAM (www.earthkam.org), Mission 58, April 2017. The image was requested by a team of 10th and 11th grade students from the National College of Computer Science, Piatra-Neamț, Romania, coordinated by me. The lenses used on the digital camera mounted on the ISS are 50 mm focal length. The area photographed is a region of 185.87 km wide and approx. 123.5 km long, from Utah, USA. The view is spectacular, a perfect equilibrium between mountains, canyons, lakes and bays.

It’s just one of the pictures that my students had the opportunity to get from the ISS. Even though we weren’t there on the ISS to trigger the camera, all the locations in which the photographs were taken were chosen by us, on the track of the ISS.

The project activities were very complex. The students learned about the Earth, its rotation and gravity, and about the space station and its orbit. They completed their knowledge of physics, understanding how from the ISS orbit we can have another perspective of the Earth. They chose the places on the Earth to be photographed, studied these regions and monitored the weather conditions for better photo opportunities. They identified the places on Google Earth, analysed the photos and then created QR codes for some of them.

Below are the QR codes for the photo “Awesome trip above the Earth”:

 

The ISS became an innovative learning environment for the students. The astronauts’ availability for engaging in educational programmes, sharing their extraordinary experiences of becoming aware of the beauty and fragility of the Earth from the ISS orbit, has increased the attractiveness of learning about space. As Sally Ride, the first American astronaut woman on the ISS, said:

“When I was orbiting Earth in the space shuttle, I could float over to a window and gaze down at the delicate white clouds, brilliant orange deserts, and sparkling blue water of the planet below. I could see the coral reefs in the oceans, fertile farmlands in the valleys, and twinkling city lights beneath the clouds. Even from space, it is obvious that Earth is a living planet.”

The photo was integrated into a photo exhibition called “The Earth’s Colors” that I realised with my students at my college, which led the viewer on a global trip, discovering how beautiful and fascinating the Earth viewed from Space is. Satellite photography offered my students a new world perspective, encouraging them to ask questions and to search for the answers. It was a new and exciting way to travel and discover our planet.

The project was a great opportunity, not only for my students but also for thousands of other students around the globe, to study the Earth in a way that complements different subjects in order to better understand our world. It also has strengthened my conviction that, as the teacher and Challenger astronaut Christa McAuliffe said:

“…space is for everybody. It’s not just for a few people in science or math, or for a select group of astronauts. That’s our new frontier out there, and it’s everybody’s business to know about space.”

By Diana Cristina Bejan, physics teacher, The National College of Computer Science, Piatra-Neamț, Romania

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

NASA’s InSight mission: detecting ‘earthquakes*’ on the surface of Mars

NASA’s InSight mission: detecting ‘earthquakes*’ on the surface of Mars

In three days’ time, NASA’s InSight Lander is expected to plunge through Mars’ atmosphere before parachuting down to a controlled landing on the flat plains of the Elysium Planitia.

Once the dust has settled, a solar powered robotic arm will painstakingly unload the precious instruments stored onboard onto the planet’s surface, carefully guided by scientists back on Earth.

This is an illustration showing a simulated view of NASA’s InSight about to land on the surface of Mars. (Credit: NASA/JPL-Caltech)

These instruments are designed to penetrate further into Mars’ subterranean secrets than any mission before. While previous Martian landers have monitored the planet’s surface and atmosphere, the goal of InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is to explore Mars’ interior using three specialised tools.

These include a heat probe which will measure the heat flow near to the surface, a radio science instrument which will measure how Mars wobbles on its axis, and a seismometer which will tell us about Mars’ deep interior. Scientists hope this will lead to new information on the formation of the planets in our solar system, perhaps even illuminating more detail on how our own planet came about.

Seismometers detect seismic waves, vibrations that travel through the ground after an event such as fault movement or meteorite impact. The type of wave and the speed at which it travels can provide important details about the material through which it moves. On Earth, a global network of seismometers has provided vital information about the structure of the planet’s core and mantle.

Robert Myhill, a seismologist at the University of Bristol, is part of a large international team of scientists who have been preparing for data returned by InSight’s seismometers (known as SEIS). Until recently, Myhill has been investigating how SEIS will be affected by Mars’ regolith (its shallow soil surface)[1].

Now that SEIS is en route to its Martian home however, Myhill and colleagues are getting ready for the next phase: receiving the data. “We hope to be able to use the waveforms from marsquakes and/or impacts to image the interior structure of the planet for the first time, including the thickness and structure of the crust, and the composition of the mantle and core,” Myhill explains.

“We’ve also been investigating how we can combine the geophysical data returned by InSight with existing geochemical data to tell us about the history of Mars and the continuing evolution of the planet’s deep interior.”

The data they will receive comes from two different types of sensors, a ‘very-broad-band’ (known as ‘VBB’) seismometer and three tiny short-period seismic sensors which are about the size of a Euro coin. The different sensors can detect various types of seismic wave, depending on the size and location of the seismicity.

Animation of InSight deploying it’s seismometer. (Credit: NASA/JPL-Caltech)

Gathering the information needed to achieve the mission’s goals presents numerous challenges. For starters, unlike Earth, which has a network of seismometers that can be used together, InSight will be the only active geophysical station on the Red Planet. Two previous seismometers, mounted on NASA’s Viking Landers in the 1970s, experienced technical faults and design limitations and are no longer in action. As a result, researchers have had to come up with novel ways to gather information from the lone InSight lander [2] [3].

The mission’s designers have also developed new technology to reduce noise and ensure the equipment can operate in Mars’ harsh environment. The seismometer will be mounted on a levelling system close to the Martian surface to minimise tilt and reduce the effect of wind. Once levelled, the lander’s robotic arm will place a wind and thermal shield over the top of the instruments, sheltering the sensitive instruments from extreme temperatures and buffeting by the Martian winds.

Despite the increased protection afforded by the wind and thermal shield, there remain challenges for InSight. “We hope that during the lifetime of the mission, we don’t have a prolonged dust-storm. Although InSight would not be damaged by such an event, it does need solar energy for all its instruments and for data transmission,” said Myhill.

NASA’s InSight mission tests an engineering version of the spacecraft’s robotic arm in a Mars-like environment at NASA’s Jet Propulsion Laboratory. (Credit: NASA/JPL-Caltech)

From 26 November, he and the others involved must wait with bated breath to see their hard work come to fruition. “We should receive the first data from the instrument deck not long after landing, but full deployment of SEIS (including the wind and thermal shield) is not scheduled until early January 2019,” he explains.

“The timing of first results really depends on the level of seismicity, which is currently very poorly known. In fact, determining the rate of seismic energy generation is one of the primary goals of the InSight Mission. But of course, we’re all hoping to see something soon after deployment.”

For the most up to date information on the mission, as well as more details in the lander’s other exciting capabilities see NASA’s InSight website.

*Astute readers of this blog may have noticed the error in the title. There is no such thing as an earthquake on Mars… instead InSight will be monitoring ‘marsquakes’.

By Keri McNamara, freelance science writer

Keri McNamara is a freelance writer with a PhD in Volcanology from the University of Bristol. She is on twitter @KeriAMcNamara and www.kerimcnamara.com.

References

[1]                      https://link.springer.com/article/10.1007/s11214-018-0514-5

[2]                      https://www.sciencedirect.com/science/article/abs/pii/S001910351400582X

[3]                      https://www.sciencedirect.com/science/article/pii/S0031920116300875?via%3Dihub