Cryospheric Sciences

Ice Dynamics

Image of the Week – Karthaus Summer School 2018

Beautiful and cozy Golden Rose hotel on the left; blissful and small Italian village, Karthaus, on the right [Credit: Rohi Muthyala].

Nearly every year since the late 90s, during the summer, the picturesque Karthaus has hosted 10-day glaciology course. This school is a platform for glaciologists to explore, learn and expand their knowledge base. This helps researchers become multi-faceted: to view glaciology from the perspective of those specializing in other backgrounds such as hydrology, geomorphology, oceanography, etc. which complement one another in defining glaciology. Along with the intense course work, one can wholeheartedly cherish the exotic food, cozy resort, spellbinding views and delicious wine!

Time to learn

Day used to start at 8 am with a healthy breakfast and then we head out to Katharinaberg to attend the lectures. Morning session of the course composed of four lectures with coffee breaks in between to keep us alert. These lectures were on a gamut of topics including numerical and analytical modeling, continuum mechanics, glacier hydrology, mass balance of the ice sheets, thermodynamics of ice, geophysical methods, geodynamics, ice core analysis, polar oceanography and geomorphology, etc. Lectures began with basics in every topic and gradually evolved into complex concepts, enabling students understand the subject better, irrespective of their specialization. After four hours of lectures, we, surrounded by lustrous green hills, enjoyed a delicious three-course lunch.

Afternoon session was all about application of the concepts learned in the morning into numerical exercises and group projects. We were divided into 12 groups to work as a team for a group project. Each group was assigned a topic and a teacher to work with. Results from the group projects presented on the last day of the course, astonished me by the level of research we could accomplish in 10 days, showing the amount of knowledge gained through the program.

Outdoor afternoon session in Kartharinaberg [Credit: F. Pattyn]

After school

School ended at 5 pm, leaving us with ample time to relax before dinner. While some students enjoyed it hiking, trail running and chilling in the sauna, I spent this time exploring Karthaus with a bunch of friends I made at the school and tried to capture the beauty of nature with my camera. Then was the best part of the evenings – a five-course dinner with lots of wine and stories from our fellow glaciologists. I have never had such an exotic five-course meal, which was so tasty that I couldn’t help but overeat. To top the delicious food, we had musical performances by Frank Pattyn and Johannes Oerlemans. I was amazed to know that most of the teachers have their own specialty with an instrument and that it’s a tradition at Karthaus to enjoy the evenings with their performances. After a two-hour long dinner, we moved to the bar next to the restaurant and continued our entertainment with games, wine and chatting. I wished there were more than 24 hours in a day to spend at Karthaus. This summer school is a complete package of education and entertainment.

Dinners at karthaus, with 5-course meal, wine and music (Frank Pattyn on Piano and Johannes Oerlemans on Bass) [Credit: Rohi Muthyala]

Entertainment after dinner with wine, games, chatting and as you can see, some map reading as well. Apparently, this year students are the most solemn group ever [Credit: Rohi Muthyala].

Adding to the fun, in the middle of the course, we had a day-off that most of us spent by going on an excursion to the Otztal Alps. A bus ride to Kuzras, a cable car to the top of Hochjochferner and hike down into the valley led us to the edge of the glacier where some stepped onto a glacier and/or entered an ice cave for the first time in their life. We stopped by Bellavista (Schonne Aussicht hut) for a hot meal and drinks before hiking higher onto the Italian Alps. Though we had been lucky with perfect clear skies throughout the course, we got a cloudy weather on our day-off to the Alps. Nonetheless, the experience of going well above the clouds in the cable car was the best start for the day.

Hiking on a cloudy day from the top of Hochjochferner gletscher to bellavista [Credit: Rohi Muthyala].

All in all

This summer school would be an intense and beneficial experience for students in all stages of education. Be it a beginner in glaciology or an experienced final year Ph.D. student, I think the course has a lot to offer to every student. Especially to the students with no glaciology background, this could be a place to learn the basics and understand how to look for answers you are trying to find. With three years of experience going to Greenland for research as an Arctic hydrologist, I was still ignorant in some concepts (such as geomorphology, geodynamics, thermodynamics, etc) that are not directly related to my dissertation. This program opened paths for understanding those concepts in a productive way. I highly recommend this summer program to every graduate student studying glaciology and especially to those who are not from Europe, with few opportunities such as this to learn the basics in wide range of topics from glaciology.

Another best outcome of this course was the opportunity to interact with fellow students and build a network for future collaborations. AGU and EGU have been mostly exclusive, and this provided an opportunity for me (from an American university) to get to know my fellow researchers from other parts of the world. I would also like to highlight the women participation in this course (roughly 50%) and appreciate the organizing committee’s effort to encourage more women in this field. Huge thanks to the organizing committee and all the teachers for their effort in making this an incredible experience. Special thanks to the convener, Johannes Oerlemans, for coordinating such a quintessential summer school.

Class photo in Katharinaberg [Credit : W.J. van de Berg]

Edited by Violaine Coulon

Rohi Muthyala is a PhD candidate from Rutgers University (New Jersey, USA), working with Asa Rennermalm. Muthyala comes from a multidisciplinary background of atmospheric, environmental sciences and geography, and currently focuses her research on Arctic hydrology and hydrological modeling. Objective of her dissertation is to model surface hydrological processes influencing the transport of meltwater over the surface of Greenland ice sheet.

Image of the Week – Karthaus Summer School 2017

Gloriously cloudless day for the fieldtrip to the Ötztal Alps [Credit: C. Reijmer].

Glaciologists often undertake fieldwork in remote and difficult to access locations, which perhaps explains why they happily travel to similar locations to attend meetings and workshops. The Karthaus Summer School, which focuses on Ice Sheets and Glaciers in the Climate System, is no exception. The idyllic village of Karthaus, located in the narrow Schnalstal valley in Südtirol (Italy), has been hosting this 10-day glaciology course nearly every year since 1995. In September, an international crowd of some 30+ PhD students and postdocs, and 11 lecturers assembled in Karthaus for the 2017 edition of this famous course, for an intensive program of lectures, food, some science, more food (with wine!), and lots of socialising.

The lecture theatre with a backdrop of green hills, on the day the cows came down from the hills [Credit: D. Medrzycka].

The morning sessions

A typical morning of the course involved four hours of lectures, which covered a wide range of topics including continuum mechanics, thermodynamics, ice-ocean interactions, ice cores, geophysics, and geodynamics, with a special focus on numerical modelling and its applications for investigating ice-climate interactions. The lectures covered fundamentals processes, their applications and limitations, and current knowledge gaps for a wide range of complex concepts related to ice dynamics. All our lecturers happily answered our (many) additional questions during the coffee and cake breaks, enjoyed in the fresh mountain air outside the lecture theatre.


The biggest challenge was not the group work itself, but trying to not get distracted by the sun and the hills surrounding us [Credit: V. Zorzut].

The afternoon sessions

After a three-course lunch, we spent the afternoon sessions applying the theory learned in the morning lectures. The group projects were designed to get us to go into more detail on certain topics, and work on real-world applications for specific research problems. We presented the results of our work at the end of the course during a 15 minute group presentation. For those who could afford a bit of free time after these sessions, the rest of the afternoon could be spent either hiking or trail running in the steep hills overlooking the village (trying to beat I. Hewitt’s time up Kruezspitze), playing football, chilling in the sauna, or catching up on some sleep before dinner.


The evenings

Everyone who has ever attended the Karthaus course mentions the food, complementing both the quality and (legendary) quantity of it. Every evening, we were served a memorable five course meal accompanied by generous amounts of local wine. Dessert was followed by musical entertainment, with inspired performances by Frank Pattyn on the piano. On the last evening, Frank was accompanied by Johannes Oerlemans who treated us to two of his original tango arrangements on the guitar, followed by a passionate rendition of Jacques Brel’s Le port d’Amsterdam by our own Kevin Bulthuis (vocals). We wrapped up each day of the course in the local bar, socialising, playing card games, sampling the local beers, and making our way through the many different flavours of schnaps and grappa. Big thanks to the owners, Paul and Stefania Grüner, and staff (with a special shout-out to Hannes) of the Goldene Rose Hotel, and the village of Karthaus, for taking great care of us!

Frank Pattyn (piano) and Johannes Oerlemans (guitar) performing an original tango arrangement [Credit: D. Medrzycka].


Out and about

On the penultimate day of the course the group headed to a number of glaciers in the Ötztal Alps. The excursion, which happened to take place on a perfectly cloudless day, gave us the opportunity to observe first hand the changes affecting glaciers in the region, and the impact of these retreating ice masses on the landscape and humans inhabiting it. It also provided a much needed break from the intense week! After walking down the ski slopes of the Hochjochferner, a small valley glacier accessible by cable car from Kurzras, we stopped to enjoy the sun and have lunch at the Schöne Aussicht (Bellavista) hut (2845 m a.s.l.). Those with more energy scrambled up to the ridge running along the Italian/Austrian border (3270 m a.s.l.), through at times knee-deep snow, to take a peak at the Hintereisferner, a valley glacier on the Austrian side of the border. Four of us continued on along the ridge, and by chance visited the laser scanner (LiDAR) system operated by researchers from the University of Innsbruck, used to monitor changes in surface elevation on the glacier.

Standing on the ridge running along the Italian/Austrian border. View onto the Hintereisferner [Credit: D. Medrzycka].


Final thoughts

The 10 day course was certainly an intensive (and intense) experience, and I would recommend it to all glaciology students without reservations, whether they are looking for a basic introduction to ice dynamics, or aiming to fill a few knowledge gaps. Whilst some of the topics covered in the course were only remotely related to my own PhD research (and far out of my comfort zone!), the lectures and project work forced me to think in alternate ways. Although I may have finished the course with more questions than I had at the start, I now know where to go look for the answers!

A big part of the experience was without a doubt the social aspect of the course. Between the never ending and excellent food (as a result of which some of us developed “food babies”), and the long evenings at the local bar (resulting in increasing amounts of sleep deprivation), there were plenty of opportunities to talk science, gain new insights into our ongoing research, and discuss ideas for future projects. As with all great Summer Schools, one of the major perks was the opportunity to hang out with fellow students, expand our network of fellow researchers, and establish the groundwork for continued professional collaborations. Huge thanks to the convenor, Johannes Oerlemans, the village of Karthaus, and all the lecturers and fellow students for a memorable 10 days! I am looking forward to working with all of you in the future.

The crowd of the Karthaus summerschool: 2017 edition [Credit: C. Reijmer].

Edited by Morgan Gibson and Clara Burgard

Dorota Medrzycka is a PhD candidate at the University of Ottawa (Canada), working with Luke Copland. Her research focuses on the dynamics of glaciers and ice caps in the Canadian High Arctic, with a focus on ice flow instabilities (including glacier surging). Her project combines field studies and remote sensing techniques to monitor ice motion, and gain insight into the factors controlling the variability in ice dynamics in the Canadian Arctic. Contact:

Image of the Week – A new way to compute ice dynamic changes

Fig. 1: Map of ice velocity from the NASA MEaSUREs Program showing the region of Enderby Land in East Antarctica [Credit: Fig. 1 from Kallenberg et al. (2017) ].

Up to now, ice sheet mass changes due to ice dynamics have been computed from satellite observations that suffer from sparse coverage in time and space. A new method allows us to compute these changes on much wider temporal and spatial scales. But how does this method work? Let us discover the different steps by having a look at Enderby Land in East Antarctica, for which ice velocities are shown in our Image of the Week…

Mass balance of ice sheets

The mass balance of an ice sheet is the difference between the mass gain of ice, primarily through snowfall, and the mass loss of ice, primarily via meltwater runoff and ice dynamic processes (e.g. iceberg calving, melting below ice shelves). When the mass gain is equal to the mass loss, the ice sheet is in balance. However, if one exceeds the other, the ice sheet either gains or loses mass.

Measuring mass balance changes of ice sheets is crucial due to their potential contribution to sea level rise (see previous post). You can have a look at this nice review for further details about the recent changes in the mass balance of the two biggest ice sheets on Earth, i.e. Antarctica and Greenland.

Ice mass changes from snowfall and meltwater runoff (what we call ‘surface mass balance’ changes) are reasonably well simulated by regional climate models, which give good agreement with observations (see this study for Antarctica and this one for Greenland). Mass changes from ice dynamics are more complex to obtain. They are commonly estimated by combining ice velocity and ice thickness. Ice velocity is measured via satellite radar interferometry, while ice thickness is obtained thanks to airborne radar. Unfortunately, these measurements have sparse temporal and spatial coverage, especially in Antarctica, which makes the computation of mass changes from ice dynamics challenging.

A new method to estimate ice dynamic changes

Kallenberg et al. (2017) conducted a study focussing on Enderby Land in East Antarctica (see our Image of the Week) in which they use a novel approach to estimate ice dynamic changes. This region of Antarctica has experienced a slightly positive mass balance in past years, meaning that the ice sheet has slightly thickened in this region.

Kallenberg et al. (2017) first used satellite observations to compute the total changes in ice sheet mass. They took advantage of two high-technology datasets. The first one, “Gravity Recovery And Climate Experiment” (GRACE), measures changes in the Earth’s gravity field, from which ice mass changes can be derived. A summary explaining how GRACE works can be found in this previous post. The second satellite dataset, “Ice, Cloud, and land Elevation Satellite” (ICESat), measures changes in ice surface elevation, from which changes in ice mass can be computed by using ice density.

However, Kallenberg et al. (2017) were not interested in the total ice mass changes, as obtained from GRACE and ICESat satellites, but rather in ice dynamic changes. They subtracted two quantities from the total mass changes in order to obtain the remaining dynamic changes:

  1. Surface mass balance changes: changes from processes happening at the surface of the ice sheet (e.g. snow accumulation, meltwater runoff). These changes were obtained from model simulations using the Regional Atmospheric Climate Model (RACMO2), for which details can be found in this previous post.
  2. Glacial Isostatic Adjustment: changes in land topography due to ice loading and unloading. These changes were computed from Glacial Isostatic Adjustment models.

What does this study tell us?

The results of this study show that it is possible to compute changes in ice mass resulting from ice dynamics with higher spatial and temporal coverage than before, using a combination of satellite observations and models.

Also, the use of two different satellite datasets (GRACE and ICESat) shows that they agree quite well with each other in the region of Enderby Land (see Fig. 2). This means that using one or the other dataset does not make a big difference.

Finally, this new method also shows that differences between GRACE and ICESat reduce when using the newer version of RACMO2 for computing surface mass balance changes. This tells us that comparing results of ice dynamics from both satellites with different models is a good way to identify which models correctly simulate surface processes and which models do not.

Fig. 2: Ice dynamic changes (dH/dt, where H is ice thickness and t is time) computed from (a) GRACE and (b) ICESat and expressed in meters per year [Credit: Fig. 5 from Kallenberg et al. (2017) ].

Further reading

Edited by Clara Burgard and Emma Smith

David Docquier is a post-doctoral researcher at the Earth and Life Institute of Université catholique de Louvain (UCL) in Belgium. He works on the development of processed-based sea-ice metrics in order to improve the evaluation of global climate models (GCMs). His study is embedded within the EU Horizon 2020 PRIMAVERA project, which aims at developing a new generation of high-resolution GCMs to better represent the climate.

Image of the Week – How geometry limits thinning in the interior of the Greenland Ice Sheet

Image of the Week –  How geometry limits thinning in the interior of the Greenland Ice Sheet

The Greenland ice sheet flows from the interior out to the margins, forming fast flowing, channelized rivers of ice that end in fjords along the coast. Glaciologists call these “outlet glaciers” and a large portion of the mass loss from the Greenland ice sheet is occurring because of changes to these glaciers. The end of the glacier that sits in the fjord is exposed to warm ocean water that can melt away at its face (a.k.a. its “terminus”) and force the glacier to retreat. As the glaciers retreat, they thin and this thinning can spread into the interior of the ice sheet along the glacier’s flow, causing glaciers to lose ice mass to the ocean as is shown in our Image of the Week. But how far inland can this thinning go?

Not all glaciers behave alike

NASA’s GRACE mission measures mass changes of the Earth and has been used to measure ice mass loss from the Greenland ice sheet (see Fig. 1a). The GRACE mission has been extremely valuable in showing us where the largest changes are occurring: around the edge of the ice sheet. To get a closer look, my colleagues and I use a technique called photogrammetry.

Using high-resolution satellite photos, we created digital elevation models of the present-day outlet glacier surfaces. The imagery was collected by the WorldView satellites and has a resolution of 50 cm per pixel! When we compared our present-day glacier surfaces with surfaces from 1985, with the help of an aerial photo survey of the ice sheet margin (Korsgaard et al., 2016), we found that glacier thinning was not very uniform in the West Greenland region (see our Image of the Week, Fig. 1b). Some glaciers thinned by over 150 meters at their termini but others remained stable and may have even thickened slightly! Another observation is that, of the glaciers that have thinned, some have thinned only 10 kilometers into the interior while others have thinned hundreds of kilometers inland (Felikson et al., 2017).

But atmospheric and ocean temperatures are changing on much larger scales – they can’t be the cause of these huge differences in thinning that we observe between glaciers. So what could be the cause of the differences in glacier behaviour? My colleagues and I used kinematic wave theory to help explain how each glacier’s unique shape (thickness and steepness) can control how far inland thinning can spread…

A kinematic wave of thinning

As a glacier’s terminus retreats, it thins and this thinning can spread upglacier, into the interior of the ice sheet, along the glacier’s flow. This spreading of thinning can be modeled as a diffusive kinematic wave (Nye, 1960). This means that the wave of thinning will diffuse in the upglacier direction while the flow of ice advects the thinning in the downglacier direction. An analogy for this process is the spreading of dye in a flowing stream. The dye will spread away from the source (diffusion) and it will also be transported downstream (advection) with the flow of water.

The relative rates of diffusion and advection are given by a non-dimensional value called the Peclet number. For glacier flow, the Peclet number is a function of the thickness of the ice and the surface slope of the ice. Where the ice is thick and flat, the Peclet number is low, and thinning will diffuse upglacier faster than it advects downglacier. Where the ice is thin and steep, the Peclet number is high, and thinning will advect downglacier faster than in diffuses upglacier.

Let’s take a look at an example, the Kangilerngata Sermia in West Greenland

Figure 2: Thinning along the centreline of Kangilerngata Sermia in West Greenland. (a) Glacier surface profile in 1985 (blue), present-day (red), and bed (black). (b) Dynamic thinning from 1985 to present along the profile with percent unit volume loss along this profile shown as colored line. (c) Peclet number along this profile calculated from the geometry in 1985 with Peclet number running maxima highlighted (red). [Credit: Denis Felikson]

There, dynamic thinning has spread from the terminus along the lowest 33 kilometers (see Fig. 2). At that location, the glacier flows over a bump in the bed, causing the ice to be thin and steep. The Peclet number is “high” in this location, meaning that any thinning here will advect downglacier faster than it can spread upglacier. Two important values are needed to further understand the relationship between volume loss and Peclet number. On the one hand, we compute the “percent unit volume loss”, which is the cumulative thinning from the terminus to each location normalized by the total cumulative thinning, to identify where most of the volume loss is taking place. On the other hand, we identify the “Peclet number running maxima” at the locations where the Peclet number is larger than all downglacier values. These locations are critical because if thinning has spread upglacier beyond a local maximum in the Peclet number, and accessed lower Peclet values, then thinning will continue to spread until it reaches a Peclet number that is “large enough” to prevent further spreading. But just how large does the Peclet number need to be to prevent thinning from spreading further upglacier?

Figure 3: (a) Percent unit volume loss against Peclet number running maximum for 12 thinning glaciers in West Greenland. (b) Distances from the termini along glacier flow where the Peclet number first crosses 3. Abbreviations represent glacier names [Credit: Denis Felikson]

If we now look at the percent unit volume loss versus Peclet number running maxima for not only one but twelve thinning glaciers in the region, we see a clear pattern: as the Peclet number increases, more of the volume loss is occurring downglacier (see Fig. 3). By calculating the medians of the glacier values, we find that 94% of unit volume loss has occurred downglacier of where the Peclet number first crosses three. All glaciers follow this pattern but, because of differences in glacier geometry, this threshold may be crossed very close to the glacier terminus or very far inland. This helps explaining the differences in glacier thinning that we’ve observed along the coast of West Greenland. Also, it shows that the Peclet number can be a useful tool in predicting changes for glaciers that have not yet retreated and thinned.

Further reading

Image of the Week – Supraglacial debris variations in space and time!

Image of the Week – Supraglacial debris variations in space and time!

There is still a huge amount we don’t know about how glaciers respond to climate change. One of the most challenging areas is determining the response of debris-covered glaciers. Previously, we have reported on a number of fieldwork expeditions to debris-covered glaciers but with this Image of The Week we want to show you another way to investigate these complex glaciers – numerical modelling!

Debris-covered glaciers

Debris-covered glaciers occur globally, with a great many being found in the Himalaya-Karakoram mountain range. For example, in the Everest Region of Nepal 33% of glacier area is debris covered (Thakuri et al., 2014). The response of debris-covered glaciers to future climate change in such regions has huge implications for water resources, with one fifth of the world’s population relying on water from the Himalayan region for their survival (Immerzeel et al., 2010).

Debris-covered glaciers respond to climate change differently to debris-free glaciers as the supraglacial debris layer acts as a barrier between the atmosphere and glacier (Reznichenko et al., 2010). The supraglacial debris layer has several key influences on the glacier dynamics:

  • Glacier ablation (loss of mass from the ice surface) is enhanced or inhibited depending on debris layer thickness and properties – see our previous post.
  • Supraglacial debris causes glaciers to reduce in volume through surface lowering rather than terminus retreat (typical of debris free mountain glaciers).

Understanding the influence of a supraglacial debris layer on mass loss or gain is, therefore, key in determining the future of these glaciers. The properties of supraglacial debris layers can vary in time and space both in debris layer thickness and distribution, as well as properties of the rocks which make up the debris (e.g. albedo, surface roughness, porosity, size and moisture content). It is these characteristics of the debris-cover which control the heat transfer through the debris and therefore the amount of thermal energy that reaches the underlying ice causing melting (Nicholson and Benn, 2006). In order to better predict the future of debris-covered glaciers we needs to be able to numerically model their behaviour. This means we need a better understanding of the variations in debris cover and how this affects the ice dynamics.

How does a supraglacial debris layer vary in time and space?

Our Image of the Week (Fig. 1) shows a schematic of how debris distribution can vary spatially across a glacier surface and also this can change through time. The main inputs of debris are:

  • Upper regions: snow and ice avalanches in the upper reaches of the glacier.
  • Mid and Lower regions: rock avalanches and rock falls (Mihalcea et al., 2006).

These irregular mass movement events vary in frequency and magnitude, and therefore affect debris distribution across the glacier surface but also through time. The irregularity of them makes it really hard to predict and simulate! Luckily, debris transport is a little more predictable.

Figure 2: An ice cliff emerging out of the supraglacial debris layer on Khumbu Glacier, Nepal, with Nuptse in the background. [Credit: M. Gibson]

Debris is initially transported along medial moraines (glacially transported debris)  in the upper and mid-sections of the glacier, this is known as entrained debris. The various sources of entrained debris combine to form a continuous debris cover in the lower reaches of the glacier (Fig. 1). As a supraglacial debris layer is forming, such as for Baltoro glacier (Fig. 1), the boundary between the continuous debris layer and entrained debris sections progresses further upglacier over time.

Eventually transported debris will reach the terminus of the glacier and be deposited (Fig. 1), mainly due to a decrease in surface velocity of the glacier towards the terminus. However, once debris is deposited it doesn’t just sit there; debris is constantly being shifted around as ablation (surface melting) occurs. As ablation occurs the debris surface ablates unevenly, as the thickness of the debris layer is spatially variable. Uneven ablation, otherwise known as differential surface lowering, causes the glacier surface to be made up of topographic highs and lows, the latter of which sometimes become filled with water, forming supraglacial ponds (Fig. 1) . Another product of debris shifting is that ice cliffs, such as the one seen in Fig. 2, are exposed. These features are initially formed when englacial channels collapse  or debris layers slide (Kirkbride, 1993). All this movement and shifting means that not only do glacier models have to consider variation in debris layers across the glacier and through time, but also the presence of ice cliffs and supraglacial ponds. They are important as they have a very different surface energy balance to debris-covered ice. To complicate things further the frequency and area of ice cliffs and supraglacial ponds also vary through time! You see the complexity of the problem…

Modelling spatially and temporally varying debris layers

Numerical modelling is key to understanding how supraglacial debris layers affect glacier mass balance. However, current numerical modelling often either omits the presence of a supraglacial debris layer entirely, or a debris layer that is static in time and/or space (e.g. Collier et al., 2013; Rowan et al., 2015; Shea et al., 2014). However, as outlined earlier, these supraglacial debris layers are not static in time or space. Understanding the extent to which spatiotemporal variations in supraglacial debris distribution occur could aid identification of when glaciers became debris-covered, glaciers that will become debris-covered glaciers in the future, and the timescales over which supraglacial debris layers vary. The latter is particularly relevant to numerical modelling as it would result in total glacier ablation being calculated more precisely throughout the modelling time period. Understanding the interaction between glacier dynamics and debris distribution is therefore key to reconstructing debris-covered glacier systems as accurately as possible.

Edited by Emma Smith

Morgan Gibson is a PhD student at Aberystwyth University, UK, and is researching the role of supraglacial debris in ablation of Himalaya-Karakoram debris-covered glaciers. Morgan’s work focuses on: the extent to which supraglacial debris properties vary spatially; how glacier dynamics control supraglacial debris distribution; and the importance of spatial and temporal variations in debris properties on ablation of Himalaya-Karakoram debris-covered glaciers. Morgan tweets at @morgan_gibson, contact email address:

Image of the Week – How ocean tides affect ice flow

Image of the Week – How ocean tides affect ice flow

Ice streams discharge approximately 90% of the Antarctic ice onto ice shelves , and ultimately into the sea into the sea (Bamber et al., 2000; Rignot et al., 2011). Whilst flow-speed changes on annual timescales are frequently discussed, we consider here what happens on much shorter timescales!

Previous studies have shown that ice streams can respond to ocean tides at distances up to 100km inland (e.g. Gudmundsson, 2006 ; Murray et al., 2007; Rosier et al, 2014); new high-resolution remotely sensed data provide a synpoptic-scale view of the response of ice flow in Rutford Ice Stream (West Antarctica), to ocean tidal motion.

These are the first results to capture the flow of an entire ice stream and its proximal ice shelf in all three spatial dimensions and in time.

The ocean controls the Antarctic ice sheet

The ice-ocean interface is very important as nearly all ice-mass loss occurs directly into the ocean in Antarctica (Shepherd et al., 2012). Many areas terminate on ice shelves (the floating ice that connects with the land ice), which are fed by the flow of ice from the ice sheet. Any changes to the floating ice shelf alter the forces acting on the grounded ice upstream, therefore directly affecting the ice sheet evolution (e.g. Gudmundsson, 2013; Scambos et al, 2004).

Because ocean tides are well-understood, we can use the response of grounded ice streams to ocean tidal uplift over the ice shelf to better understand how ice sheets respond to ocean-induced changes.

An ice stream and ice shelf respond to forcing by ocean tides

Floating ice shelves are directly affected by tides, as their vertical displacement will be altered. These tidal variations are on short timescales (hourly to daily) compared to the timescales generally associated with ice flow (yearly). The question therefore is, how much can the tides affect horizontal flow speeds, and how far inland of the ice shelf are these effects felt?

The movie below, by Brent Minchew et al, shows the significant response of Rutford Ice Stream and its ice shelf to forcing by the tides. Using high-resolution synthetic aperture radar data they are able to infer the significant spatio-temporal response of Rutford Ice Stream in West Antarctica to ocean tidal forcing. The flow is modulated by the ocean tides to nearly 100km inland of the grounding line. These flow variations propagate inland at a mean rate of approximately 30 km/day and are sensitive to local ice thickness and the mechanical properties of the ice-bed interface. Variations in horizontal ice flow originate over the ice shelf, indicating a change in (restraining force) over tidal timescales, which is largely attributable to the ice shelf lifting off of shallow bathymetry near the margins. Upstream propagation of ice flow variations provides insights into the sensitivity of grounded ice streams to variations in ice shelf buttressing.

Horizontal ice flow on Rutford Ice Stream inferred from 9 months of continuous synthetic aperture radar observations. (a) Total horizontal flow. Colormap indicates horizontal speed and arrows give flow direction. (b) Detrended horizontal flow variability over a 14.77-day period. Colormap indicates the along-flow component (negative values oppose flow) while arrows indicate magnitude and direction of tidal variability. Contour lines give secular horizontal speed in 20 cm/day increments. (c) Modelled vertical tidal displacement over the ice shelf. (Credit : Brent Minchew)


B. M. Minchew, M. Simons, B. V. Riel, and P. Milillo. Tidally induced variations in vertical and horizontal motion on Rutford Ice Stream, West Antarctica, inferred from remotely sensed observations. submitted to JGR, 2016

(Edited by Sophie Berger and Emma Smith)


Teresa Kyrke-Smith is a postdoctoral researcher at the British Antarctic Survey, on the iSTAR grant. She works on using inversion methods to learn about the nature of basal control on the flow of Pine Island Glacier in West Antarctica. She completed her PhD two years ago in Oxford; her thesis focused on the feedbacks between ice streams and subglacial hydrology.

Brent Minchew is an National Science Foundation Postdoctoral Fellow also now based at the British Antarctic Survey.



Image of the Week: Icequakes! Stick-Slip motion under Western Greenland

Image of the Week: Icequakes! Stick-Slip motion under Western Greenland
The Greenland Ice Sheet contains enough fresh water to raise global sea level by around 6 m, therefore it is very important to understand how the ice moves from the interior of the ice sheet towards the oceans. Processes that happen at the base of the ice sheet, where the ice meets the bed, are known to be a key control on how the ice moves. Geophysical techniques, such as recording tiny icequakes that happen as the ice moves over it’s bed, can be used to investigate the basal dynamics that accommodate this movement.

[Read More]