Cryospheric Sciences


Image of the Week – We walked the Talk to Everest

Fig. 1: Group photo with Mount Everest backdrop following presentations at the Sagarmatha National Park office in Namche Bazar (3,500 m a.s.l) with 60 participants (wrapped up against the cold temperatures). [Credit: Dhananjay Regmi].

The 12 day “Walk the Talk” Field Conference and Community Consultation through Sagarmatha National Park, Nepal, discussed a wide range of research outputs with local communities, tourists, and officials. Topics covered glaciers, mountains, environmental and landscape change, Sherpa livelihoods, tourism, and natural hazards. The conference, organised by Himalayan Research Expeditions, was the first of its kind, designed to receive community input into research topics and pursue applied benefits. Scott and Katie were two of the participants, presenting work from their PhDs in the Everest region and the NERC-funded EverDrill project.

Presentations and discussions

The team of international and Nepali scientists gave presentations every evening, trekking each day between six different villages along the Everest Base Camp trail. We were also joined by officials from the Nepal Department of Tourism and the Mountain Institute. The highest destination for the conference was Imja Glacial Lake, at over 5,000 m elevation, where we viewed first-hand the results of a recent $7 million project to lower the lake water level, aiming to reduce the risk of an outburst flood.

The Sagarmatha National Park has been a focus for scientists of many disciplines for decades. As well as thousands of tourists trekking to Everest Base Camp each year, it is also frequented by those hoping to summit Mount Everest (Sagarmatha). The park has therefore experienced significant change over a relatively short timescale as it copes with this huge influx of people. Presentations for the “Walk the Talk” conference ranged from impacts of tourism (for example, on local people, yak breeding and waste disposal) to natural hazards such as glacial lake outburst floods and landslides.

Katie presented ongoing work from her PhD and the “EverDrill” project (Fig. 2), for which she has conducted several field seasons on Khumbu Glacier in the Sagarmatha National Park. Fieldwork has included hot-water drilling of boreholes into the glacier and installing sensors to measure ice temperature at various depths to investigate the glacier’s thermal regime. She discussed how these measurements showed that Khumbu’s ice is warmer than expected, potentially putting the glacier at risk of more rapid melting as air temperatures rise. The warmer ice towards the terminus also allows subsurface meltwater drainage, about which very little is known. Katie has also carried out fluorescent dye tracing experiments to work out how meltwater travels through Khumbu Glacier, including storage within (englacial) and on the surface (supraglacial). As Khumbu and similar glaciers retreat in the future, meltwater storage and runoff will have implications for the downstream communities who depend on such water sources.

Fig. 2: Katie presenting measurements of Khumbu Glacier’s thermal regime and hydrology at the Sagarmatha National Park headquarters in Namche Bazar (3,500 m a.s.l.). [Credit: Dhananjay Regmi].

Scott presented results from his PhD investigating melt processes and water storage on Khumbu Glacier (Fig. 3). Areas of Khumbu Glacier have thinned by up to 80 m over the last three decades and glacier flow is slowing down, which allows meltwater to pond on the glacier surface. The rugged glacier surface is pitted with ice cliffs and ponds, which act as hot-spots of melt in areas of the glacier otherwise insulated by a thick layer of rocks and sediment (debris-cover). The rapid formation, persistence, and drainage of meltwater stored on glaciers across the Himalaya is a growing concern due to the potential for outburst floods and increased rates of glacier melt. An outburst flood event that occurred in the Everest region in 2017 destroyed trekking trails and a bridge.

Fig. 3: Scott presenting a study of glacier thinning at the Sagarmatha National Park office in Namche Bazar (3,500 m a.s.l). [Credit: Dhananjay Regmi].

After the final day of trekking, an extra night was spent in the village of Lukla, before flying back to Kathmandu. Each presentation was summarised in a few slides, and collated into a full talk that was given in Nepali by Dr. Dhananjay Regmi, organiser of the conference and head of Himalayan Research Expeditions. By presenting all our research in Nepali, more local people attended and were able to hear about and suggest new directions for research in the valley. This presentation was given again two days later, also in Nepali, at the Department of Tourism in Kathmandu, for locals who had already travelled back to the city to avoid the high-elevation winter chill.

Outreach activities

Fig. 4: The projection augmented relief model shown after presentations in the village of Phortse. The inset shows glacier velocity data projected onto the glaciers in the Everest region. [Credit: Gu Changjun and Scott Watson].

We designed outreach activities and leaflets to enhance the PowerPoint presentations given at each village by providing interactive demonstrations of key research concepts and results. Scott used an AGU Celebrate 100 grant to design a projection augmented relief model (PARM) of the Everest region (Fig. 4). The PARM system projected research results including glacier velocity, mass loss, ice thickness, temperature, and animations of glacier flow, onto a 3D model, which stimulated discussion of the research. The 3D model allowed the local communities to easily visualise the data in the context of well-known mountain peaks and glaciers, and to observe the changing environment (such as the expansion of Imja Lake) from a projected time-lapse animation.

Fig. 5: Katie demonstrating glacier thermal regime and hydrology using a 3D model to conduct example dye tracing experiments. The lower panel is a GIF showing the dye tracing. [Credit: Scott Watson and Katie Miles].

Katie’s interactive outreach was to demonstrate dye tracing experiments on a 3D model of Khumbu Glacier (Fig. 5). Food colouring was used to “dye” the water, which was “injected” into a supraglacial stream, then “disappeared” into the glacier. The side view into the glacier showed this water flowing through and beneath the ice, before emerging back at the surface, flowing through surface ponds and exiting the glacier at its terminus. The side view also showed the approximate ice temperatures measured by the EverDrill project, which actively showed where (and why) the glacier is experiencing more melt.

The model was very well received by scientists and locals – while the water was being injected, we would explain what was happening in both English and Nepali, and there were always plenty of questions. While the dye tracing experiments didn’t work perfectly every time, surface floods offered an opportunity to talk about other hazards that have been recently observed on Khumbu Glacier.


The “Walk the Talk” Field Conference and Community Consultation was a new style of conference, aiming to communicate a wide range of research topics in the Everest region of Nepal and the Sagarmatha National Park. The combination of high-elevation trekking and presentations was sometimes tiring, but the trek facilitated discussions about the landscape we were immersed in and was a fantastic learning experience. It is hoped that the conference will travel to different locations in the future to share research and understand the priorities of other communities in Nepal.

Further reading

Edited by Violaine Coulon

Scott Watson is a Postdoc at the University of Arizona, USA, studying glaciers in the Everest region and the surface interactions of supraglacial ponds and ice cliffs. He also investigates natural hazards and glacial lake outburst floods. Tweets @CScottWatson. Website:




Katie Miles is a PhD student at the Centre for Glaciology, Aberystwyth University, UK, studying the internal structure and subsurface hydrology of high-elevation debris-covered glaciers in the Himalaya through borehole-based investigations and dye tracing experiments. Tweets @Katie_Miles_851. EverDrill website:

Image of the Week – Climbing Everest and highlighting science in the mountains

Image of the Week – Climbing Everest and highlighting science in the mountains

Dr Melanie Windridge, a physicist and mountaineer, successfully summited Mount Everest earlier this year and has been working on an outreach programme to encourage young people’s interest in science and technology. Read about her summit climb, extreme temperatures, and the science supporting high-altitude mountaineering in our Image of the Week.

It’s bigger than it looks! Experiencing the majesty of Everest

In April/May this year I climbed Mount Everest. To the top. It was two months of patient toil but in surroundings so majestic, impressive and inspiring. The Western Cwm (an amphitheatre-like valley shaped by glacial erosion) is vast, the summit ridge is steep and Khumbu Glacier was fascinating in itself. Our base camp was on the glacier and it changed daily in subtle ways – the ice melted, the rocks moved, the paths morphed. And the icefall was slightly different each time I passed through – the route changing through a collapsed area, a crevasse widening, or the rope buried by ice-block debris fallen from above. It’s a wonderful, interesting place and I am grateful to have experienced it. You can read more about the climb on my personal blog.

Fig.2: The view up the Western Cwm from Camp 1. Lhotse can be seen in the distance and the summit of Everest mid-left. [Credit: Melanie Windridge].

Everest, of course, is extreme. It is steep almost everywhere, so you barely get a let-up anywhere beyond the Western Cwm. The temperature differences are extreme too – it is extremely hot or extremely cold. I took a couple of temperature loggers with me to the summit (one in a base-layer pocket under my down suit and one in an outer pocket of my rucksack). You can see from the graph of summit night (the climb from Camp 4 to the summit of Everest) (Fig. 3) how the temperature varied by tens of degrees.  Since climbers dress for the coldest temperatures, this can be quite uncomfortable when the sun comes out.  The temperature on summit night got down to about -25°C, but during the day it rose to 10 degrees or more so that we were sweating into our down suits.


Fig.3: Graph showing the readings from two separate temperature loggers on summit night – one in a base-layer pocket under the down suit (Down suit temperature) and one in an outer pocket of the rucksack (Air temperature). The temperature rises quickly after sunrise, which was experienced on the summit [Credit: Melanie Windridge and Scott Watson].

Sharing the Science of the Summit

It was science that really got me interested in Everest, when I realised that the main reason the British had succeeded in 1953 but hadn’t in the 1920s and 30s was because of scientific understanding and the state of technology. But so often we don’t talk about the science that supports us in these great endeavours; instead we put it all down to the strength of the human spirit. I think we need to talk about both.

As part of my climb, I have been working on an outreach project to highlight how science and technology have improved safety and performance on Everest. I have made Science of Everest videos for the Institute of Physics YouTube channel and will be giving public talks. I wanted to show how science supports us and what has improved in recent decades to contribute to the falling death rate on Everest.

In the video series I look at changes in weather forecasting, communications, oxygen, medicine and clothing. We also consider risk and preparation – videos that went out before I left for Everest – because, as a scientist, I looked into past data to see how I could give myself the best chance of reaching the summit and returning safely.



Communication has improved not only because we have a greater variety than was available to the first ascentionists or the early commercial climbers (we have satellite phones, mobile/cell-phones and WiFi now), but also because everything is a lot smaller. Electronic components have greatly reduced in size so that radios used on the mountain now are small and handheld in comparison to the bulky sets of the 1950s (see video above).



Of course, the implication of the project is wider than just Everest. I am interested in the importance of science and exploration in general. For me, Everest is an icon of exploration – the way that human curiosity, ingenuity, determination and endurance come together to drive us forward. Reaching into the unknown is good for us, on a societal level and on a personal level. I hope to give an appreciation of the value of science in our lives, give students an insight into interesting careers that use science, and show the value of doing things that scare us!


Further reading

Edited by Scott Watson and Clara Burgard

Dr Melanie Windridge is a physicist, speaker, writer… with a taste for adventure. She is Communications Consultant for fusion start-up Tokamak Energy, author of “Aurora: In Search of the Northern Lights” and is currently working on a book about Mount Everest.
Website: (see the Science & Exploration blog to read about the Everest climb)
Twitter @m_windridge, Facebook /DrMelanieWindridge, Instagram @m_windridge
Science of Everest videos on the Institute of Physics YouTube channel

Image of the Week – Making waves: assessing supraglacial water storage for debris-covered glaciers

Fig. 1: Deriving the bathymetry and temperature of a large supraglacial pond on Khumbu Glacier, Everest region of Nepal. The sonar-equipped unmanned surface vessel nicknamed ‘BathyBot’ (left), and kayak retrieval of temperature loggers (right) [Credit: Scott Watson].

A creeping flux of ice descends Everest, creating the dynamic environment of Khumbu Glacier. Ice and snow tumble, debris slumps, ice cliffs melt, englacial cavities collapse, ponds form and drain, all responding to a variable energy balance. Indeed, Khumbu Glacier is a debris-covered glacier, meaning it features a layer of sediment, rocks and house-sized boulders that covers the ice beneath. Recent advances in understanding debris-covered glacier hydrology come from combining in situ surveys with remotely sensed satellite data.

Khumbu Glacier

The dramatic beauty of Nepal’s Everest region attracts a mix of trekkers, climbers, and scientists. Flowing down from the slopes of Mount Everest, the debris-covered Khumbu Glacier has drawn scientists from the mid-1900s, and offers temporary residence for research teams and a myriad of climbers. In some locations, Khumbu Glacier has thinned by up to 80 m in the last three decades, leading to moraines overlooking the glacier with impressive topographic relief and providing an instant visualisation of glacier mass loss for trekkers heading to Everest Base Camp.

Melt at the surface of this glacier is moderated by an undulating debris layer, which insulates the ice beneath,   and enhanced locally by dynamic surface features such as supraglacial ponds and ice cliffs thinly veiled by debris. These features contribute disproportionately to melt and lead to the development of hummocky, pitted surface topography. The resulting variable surface topography and melt rates complicate meltwater runoff and flow routing across the glacier. To better understand them, in situ surveying (Fig. 1) is increasingly combined with fine spatial-temporal resolution satellite imagery to reveal the hydrological evolution of debris-covered glaciers, which is closely linked to their mass loss.

Hydrology of Khumbu Glacier

As with debris-free glaciers, water may be routed through supraglacial, englacial, and subglacial pathways, which are conceptually distinct but physically link to one another.

At Khumbu Glacier, surface channels collect and rapidly convey meltwater generated in the upper ablation area (Fig. 2), just below the treacherous Khumbu Icefall, incising at a faster rate than the surface melt. In the middle of the debris-covered area, such streams disappear into the glacier’s interior through cut-and-closure and/or hydrofracture.

Fig.2: The upper ablation area of Khumbu is drained by supraglacial channels which enter the glacier’s interior through hydrofracture and cut-and-closure, while the lower portion is characterised by pitted surface depressions and an increasing density of ponds. Right panel looking east to west shows the hummocky topography and ponding on Khumbu Glacier. [Credit: Evan Miles (left), Ann Rowan (right)].

In areas of low surface gradient , and particularly throughout the hummocky lower reaches of the glacier, supraglacial ponds collect water in surface depressions. These features haveregulate the runoff of debris-covered glaciers by seasonally storing meltwater. The annual melt cycle thus leads to pond expansion and contraction, or their disappearance when the protecting debris layer thaws and relict meltwater conduits become avenues for drainage (Fig 3). The areal fluctuation of ponds can be quantified using  satellite images at different times, but cloud cover during the summer monsoon season limits useable imagery at a time when the ponds are most dynamic. Therefore, field-instrumented ponds provide valuable insights into their active melt season behaviour.

Fig. 3: A small 4.5 m deep pond that drained over the course of a year [Credit: Watson et al., 2017a].

Turbid ponds associated with debris influx from ice cliffs are often ephemeral but some can grow to hold vast quantities of water (Fig. 1). Stored water absorbs and transmits solar energy to melt adjacent ice, which generates additional meltwater and leads to pond expansion. The ponds also thermally undercut ice cliffs, leading to both subaqueous and subaerial  retreat (Fig. 4). Khumbu Glacier has been developing a growing network of ponds in recent years, which means meltwater is increasingly stored on the surface of the glacier before contributing to downstream river discharge. Ponds that coalesce into larger and more persistent lakes behind unstable deposits of sediment can in some cases pose a hazard  to downstream communities. Field and satellite-based techniques are therefore used simultaneously to monitor lake development.


Fig. 4. Supraglacial ponds often exist alongside ice cliffs. These ‘hot spots’ of melt can be observed with repeat point cloud differencing [Credit: Watson et al., 2017b]. An interactive view of the drained pond basin (right) is available here.

What lies beneath?

Ephemeral ponds drain into the ‘black box’ glacier interior, where relatively little is known about the internal structure and hydrology. Scientists have occasionally ventured into the subsurfac e realm through networks of englacial conduits that become exposed as the glacier thins (Fig. 5); such conduits often re-emerge at the glacier surface but may also lead to the bed. The conduits carry meltwater through the glacier but can become dormant if blocked by falling debris or creeping ice, or when the meltwater that sustains them finds a route of lesser resistance. Whilst satellite data can be used to infer the presence of conduits, field-based methods are required for hydrological budgeting and quantifying meltwater transit times. For example, dye tracing can detect the subsurface passage of meltwater where strategically placed fluorometers measure the receipt and dilution of the dye upon re-emergence. Such methods are crucial for developing an improved understanding of the links between, for example, flow in the supraglacial channels up-glacier and discharge at the outlet.

Fig. 5: An exposed conduit on Lirung Glacier (left) [Credit: Miles et al., 2017] and researchers inside a conduit on Ngozumpa Glacier (right) [Credit: Benn et al., 2017].



Multiple teams working across the Himalaya are advancing our understanding of debris-covered glacier hydrology, which is essential to forecast their future and quantify their downstream impact. With the ready availability of increasingly high temporal resolution satellite imagery (e.g. Sentinel-2, Planet Labs), the link between field and spacebourne observations will become increasingly complementary. Developing these links is crucial to upscale observations from specific sites more broadly across the Himalaya.

Further reading

Edited by Violaine Coulon and Sophie Berger

Scott Watson is a Postdoc at the University of Arizona, USA. He studies glaciers in the Everest region and the surface interactions of supraglacial ponds and ice cliffs. He also investigates natural hazards and the implications of glacial lake outburst floods.
Tweets @CScottWatson. Website:



Evan Miles is a Research Fellow at the University of Leeds, UK, where he is a part of the EverDrill project’s hot-water drilling at Khumbu Glacier. His recent work has examined the seasonal hydrology and dynamics of debris-covered glaciers, with a focus on the melt associated with dynamic surface features such as supraglacial ice cliffs and ponds.
Tweets @Miles_of_Ice

EverDrill website:

Image of the Week – Far-reaching implications of Everest’s thinning glaciers

Fig. 1: Surface lowering on the debris-covered Khumbu Glacier, Nepal derived from differencing two digital elevation models. (a) The debris-covered surface looking down-glacier. (b-d) Surface elevation change 1984−2015. [Credit: Scott Watson and Owen King]

From 1984 to 2015, approximately 71,000 Olympic size swimming pools worth of water were released from the melting Khumbu Glacier in Nepal, which is home to Everest Basecamp. Find out how Himalayan glaciers are changing and the implications for downstream communities in this Image of the Week.

Himalayan glaciers supply freshwater

Himalayan glaciers supply meltwater for ~800 million people, including for agricultural, domestic, and hydropower use (Pritchard, 2017). They also alleviate seasonal variations in water supply by providing meltwater during the dry season. This freshwater resource is rapidly depleting as glaciers thin and glacial lakes begin to form (Bolch et al., 2008; Watson et al., 2016; King et al., 2017). Additionally, outburst floods from these lakes (see those previous posts on the topic) threaten downstream impacts for communities and infrastructure (Rounce et al., 2016).

Debris-covered glaciers thin, rather than retreat

Erosion in the rugged mountain topography leads to high quantities of rocky debris accumulating on the glacier surface, which changes the glacial response to climatic warming. The debris-layer (which can be several metres thick at the lower terminus) insulates the ice beneath, leading to highest melt rates up-glacier of the terminus. Therefore these debris-covered glacier thin, rather than retreat up-valley.

This thinning is actually a complex process of sub-debris melt, and mass loss associated with supraglacial ponds and ice cliffs, which form pits on the glacier surface and are ‘hot-spots’ of mass loss. Since the highest rates of surface lowering are up-glacier from the terminus, the surface slope of the glacier reduces and meltwater increasingly ponds on the surface, which can ultimately form a large glacial lake.

Khumbu Glacier

Fig 2 : Khumbu Icefall viewed from Kala Patthar. [Credit: Scott Watson]

The image of this week (Fig 1) shows surface elevation change on Khumbu Glacier, which flows down from Everest and is home to Everest Base Camp in Nepal. Parts of the glacier surface have thinned by up to 80 m 1984−2015 and over 197,600,000 m³ of ice melted over study period, which is approximately 71,000 Olympic size swimming pools worth of water! The thinning is clearly visible in the vertical offset between the contemporary glacier surface and the Little Ice Age moraines (a) and is highest in the mid-section of the glacier (b).

Mountaineers ascending Mount Everest climb the Khumbu icefall (Fig 2) and camp on the glacier surface. Additionally, popular trekking routes also run alongside and across the glacier, which are used by thousands of tourists every year. The accessibility of both these mountaineering and trekking routes is changing in response to glacier mass loss.

Stagnating glaciers are unhealthy glaciers

Accumulation of snowfall in the highest reaches of the glacier would typically compress to form new ice and replenish mass loss on the lower glacier as the glacier flows downstream. However, trends of reduced precipitation (Salerno et al., 2015) and decreasing glacier surface slopes promote a reduction in glacier velocity. Figure 3 shows glaciers stagnating in their lower reaches, where water is also visibly ponding on the glacier surface. For Khumbu and Ngozumpa glaciers, this contributes to the development of large glacial lakes. If these lakes continue to grow, once fully established they can rapidly increase glacier mass loss as a calving front develops (e.g. at Imja Lake).

Fig. 3: Surface velocity of glaciers in the Everest region derived from feature tracking on ASTER satellite imagery. [Credit: Scott Watson]

Edited by Sophie Berger

References/further reading

  • Bolch, T Buchroithner, MF Peters, J Baessler, M and Bajracharya, S. 2008. Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Nat. Hazards Earth Syst. Sci. 8: 1329-1340. 10.5194/nhess-8-1329-2008
  • King, O Quincey, DJ Carrivick, JL and Rowan, AV. 2017. Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015. The Cryosphere 11: 407-426. 10.5194/tc-11-407-2017
  • Pritchard, HD. 2017. Asia’s glaciers are a regionally important buffer against drought. Nature 545: 169-174. 10.1038/nature22062
  • Rounce, DR McKinney, DC Lala, JM Byers, AC and Watson, CS. 2016. A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya. Hydrol. Earth Syst. Sci. 20: 3455-3475. 10.5194/hess-20-3455-2016
  • Salerno, F Guyennon, N Thakuri, S Viviano, G Romano, E Vuillermoz, E Cristofanelli, P Stocchi, P Agrillo, G Ma, Y and Tartari, G. 2015. Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013). The Cryosphere 9: 1229-1247. 10.5194/tc-9-1229-2015
  • Watson, CS Quincey, DJ Carrivick, JL and Smith, MW. 2016. The dynamics of supraglacial ponds in the Everest region, central Himalaya. Global and Planetary Change 142: 14-27.

Scott Watson is a PhD student at the University of Leeds, UK. He studies glaciers in the Everest region and specifically the surface interactions of supraglacial ponds and ice cliffs, which act as positive feedback mechanisms to increase glacier mass loss. He also investigates glacial lake hazards and the implications of glacial lake outburst floods.

Tweets @CScottWatson. Outreach: