CR
Cryospheric Sciences

Antarctica

Image of the Week — Greetings from Antarctica

Image of the Week — Greetings from Antarctica

Christmas greetings from people at Rothera Research Station, Adelaide Island, Antarctica.

Rothera, which is the British Antarctic Survey’s largest base in Antarctica, is a centre for marine biology and gateway for getting scientists into their deep field camps.

Christmas Day is a regular working day for the staff of around 90. However the chefs will be getting everyone into the festive spirit with a traditional turkey dinner with all the trimmings

Image of the Week: Atmospheric CO2 from ice cores

Image of the Week: Atmospheric CO2 from ice cores

The measurements of atmospheric CO2 levels at Manu Loa, Hawaii read 401.01ppm on the 7th of December this year. To understand the significance of this number, you just need to look at the figure above from the 4th IPCC report. It shows the changes in CO2 concentrations during the past 800,000 years based on ice core measurements. Values have fluctuated between 190ppm and 280ppm. In other words, both the level of present-day atmospheric CO2 and the rapidity of the increase is unprecedented.

The figure also shows the projections from the IPCC AR4 report for different emission scenarios. Which scenario will turn out to be the most likely might be determined at COP21 in Paris right now.

Read more:

Measurements at Manu Loa, Hawaii

Image of the Week: Under the Sea

Image of the Week: Under the Sea

Always wondered how it looks like under the sea ice?
Getting an answer is simpler than you might think: Just go out to the front of McMurdo ice shelf in Antarctica and drill a tube into the sea ice. Then let people climb down and take pictures of the ice from below.
More information:
– Photo taken by Marcus Arnold, Gateway Antarctica, University of Canterbury during his November 2015, Antarctic Expedition.
– More photos of their expedition on https://instagram.com/the_ross_ice_shelf_programme/

Sunshine, ice cores, buckets and ALE: Antarctic Fieldwork

Sunshine, ice cores, buckets and ALE: Antarctic Fieldwork

My Antarctic adventure started from Punta Arenas at the bottom of Chile, opposite Tierra del Fuego, on New Years Eve 2014 after a long journey from Heathrow via São Paulo and Santiago.

Punta Arenas

Punta Arenas is even quieter than usual on New Year's Day. (Credit: M. Millman)

Punta Arenas is even quieter than usual on New Year’s Day. (Credit: M. Millman)

Punta Arenas is where Shackleton organised the rescue of his men from Elephant Island after his voyage to South Georgia in the James Caird. It is also where I met my PhD supervisors Chris Fogwill and Chris Turney for the first time, along with ancient-DNA expert Alan Cooper. Punta is the base for Antarctic Logistics & Expeditions (ALE), who are part funding my PhD and supporting me and my supervisors in the field.

Off to Antarctica…

Arriving at Union Glacier on the Ilyushin. (Credit: H. Millman)

Arriving at Union Glacier on the Ilyushin. (Credit: H. Millman)

After a couple of days in Punta Arenas, when the weather was right, we boarded an Ilyushin and flew the 4.5 hours to ALE’s base at Union Glacier in the Ellsworth Mountains. The Ilyushin is a big, rough-and-ready Russian transport plane equipped with an emergency rope instead of inflatable slides. We sat in the front half of the cabin and the back was packed with fuel and supplies for the base.

Union Glacier is a hub for an assortment of mountaineers, explorers, tourists and scientists. By Antarctic standards the base is very luxurious, with toilet blocks and even showers. Our bags were taken from the Ilyushin and were waiting for us outside our clamshell tent: “Scott”. All the tents are named after polar explorers and they have proper camp beds and solid floors inside. With regular Ilyushin flights, there is plenty of fresh food and the chefs cook fabulous breakfasts, lunches and suppers. The mix of people coming and going means that there are plenty of interesting stories to hear at mealtimes.

Union Glacier base. (Credit: H. Millman)

Union Glacier base. (Credit: H. Millman)

There was an American military man who had parachuted out of an Ilyushin to the North Pole, a cancer survivor who was trekking to the pole to raise millions of pounds for Cancer Research and lots of people who had climbed six of the seven summits and were in Antarctica to climb Mt Vinson, the last of the seven.

The fieldwork

Map showing the Patriot Hills and Union Glacier. It took about 20 minutes for the Twin Otter to reach the Patriot Hills from Union Glacier base. (Credit: H. Millman)

Map showing the Patriot Hills and Union Glacier. It took about 20 minutes for the Twin Otter to reach the Patriot Hills from Union Glacier base. (Credit: H. Millman)

Good weather meant that we couldn’t enjoy Union Glacier for long and soon the Twin Otter was loaded with all our equipment and the four of us were flown out to our field site: the Patriot Hills in the Horseshoe Valley.

The deep blue colour of the ice is visible looking down the core hole. (Credit: H. Millman)

The deep blue colour of the ice is visible looking down the core hole. (Credit: H. Millman)

The Horseshoe Valley is at the end of the Heritage Range, close to the grounding line in the Weddell Sea. Katabatic winds blowing down the side of the Patriot Hills have caused a blue ice area to form. The chance to sample the old ice, which comes to the surface in these areas, is what brought us to Antarctica. Over the next few weeks we drilled a snow/firn core, and ice cores in the blue ice area. Surface samples were collected by Professor Chris Turney, crawling 1.6 km on his knees as though trying to appease the God of the Glacier, with a cordless drill from a DIY store.

Once we get back to the lab, the samples will be analysed for trace gases, isotopes, tephra and ancient DNA. From this data we are hoping to extract a climate record reaching back to the Last Interglacial (~135 – 116 ka). I will then use this record, along with other proxy records and GCM outputs, to drive the PISM-PIK ice sheet model. This will help to answer the main question of my PhD, which is: What was the Antarctic contribution to sea level rise during the Last Interglacial? Global average temperatures during the Last Interglacial were 1-2°C warmer than pre-industrial times. As we move into a similar climate today, the past can be used as a process analogue for what might happen in the coming decades.

Drilling using a Kovacs corer. Here I'm wearing 3 coats: a light down jacket, a soft windproof shell, and my big down jacket on the top. I'm also wearing down trousers over my salopettes. It's quite windy on the blue ice, so it can feel very cold. (Credit: H. Millman)

Drilling using a Kovacs corer. Here I’m wearing 3 coats: a light down jacket, a soft windproof shell, and my big down jacket on the top. I’m also wearing down trousers over my salopettes. It’s quite windy on the blue ice, so it can feel very cold. (Credit: H. Millman)

A digression on “everyday” life in Antarctica…

Our small camp in the Horseshoe Valley. (Credit: H. Millman)

Our small camp in the Horseshoe Valley. (Credit: H. Millman)

We set up our camp a little way away from the blue ice to avoid the worst of the katabatic winds. Camp consisted of a big mess tent and 3 sleeping tents. Fogwill and me had our own tents, but Turney and Cooper had to share. Turney and Cooper were struck down with colds and we took extra care to disinfect or quarantine anything the infected had touched because having a cold in Antarctica is a thoroughly miserable experience. Fortunately, we had lots of hot, hearty meals because ALE had sent us off with excellent frozen meals cooked by their chefs. We had curries, lasagna, stews, bread rolls and cake, and we only had to eat de-hy for lunch. The only food I missed was raw carrots.

Women - Pee here! (Credit: H. Millman)

Women – Pee here! (Credit: H. Millman)

For obvious reasons, snow for drinking water was collected up-glacier of the camp, and the latrine was located down-glacier. We took it in turns to collect and melt snow for drinking water. Our toilet tent had about 3 or 4 different incarnations as storms buried our previous efforts. By the end, we found the best design was dug down about 1 m, with snow blocks and fuel barrels around it supporting a wooden board and a sheet of tarpaulin. This stopped snow getting in during a storm, but the tarpaulin could also be wrapped around your neck so that one’s body could appreciate the warmth rising up from the latrine, while keeping one’s nose out in the fresh air. All waste is collected in containers so that it can be flown out to Chile on the next Ilyushin- all human waste has to be removed from Antarctica. Since the men have the advantage of being able to wee straight into the pee barrel, ALE kindly supplied me with my very own wee bucket, which I was extremely grateful for, particularly after an unpleasant incident with a SheWee at 3am, during a storm.

The good weather meant that we were able to work most days. We had a couple of stormy days which allowed us to rest, read, listen to music, tidy down the camp, and recharge our batteries (literally). Electrical things aren’t at their happiest in the Antarctic cold. My iPod wiped itself in the last week and we had to hug our laptops inside our jackets to keep them warm enough to hold some charge.

…back to reality

Once we’d collected all of our samples, it was time to leave the Patriot Hills and return to Union Glacier. We started packing things away while we were waiting for the Iridium call from the base, not knowing whether the Twin Otter would arrive that afternoon or tomorrow or the day after, or the day after that. We got the call and the Twin Otter was already on its way. A mad rush followed as we had to quickly but carefully dig out all of our tents from weeks’ worth of icy snow and pack them away. The plane landed less than 30 minutes later with the ALE guides who were going to take our skidoos back. With their help, we soon had everything loaded onto the plane, with just enough room for the four of us to squeeze in like sardines.

Quickly packing up our camp because the Twin Otter has just arrived to take us back to Union Glacier base. (Credit: H. Millman)

Quickly packing up our camp because the Twin Otter has just arrived to take us back to Union Glacier base. (Credit: H. Millman)

Returning to the civilisation of Union Glacier was very exciting, especially seeing other people for the first time. I’m usually quite a shy and quiet person, but all reserve vanished in my first hours back on the base as I enthusiastically bounded up to strangers and asked to hear their life stories. The first wash was also fantastic. My hair had been a solid greasy mass of nastiness for weeks and having it back to its fluffy state was a joy. While we waited for a weather window so that the Ilyushin could come and collect us, we sub-sampled our snow/firm core, mended our tents and organised which equipment would be staying in Antarctica and what we’d be taking back. While we were doing this, ALE were starting to pack away Union Glacier base for the winter.

We flew back to Punta on the penultimate Ilyushin of the season, so most of the other passengers were the staff. Everyone was sad to leave, but looking forward to seeing family and friends at home after months away. On returning from Antarctica, even the quiet town of Punta was an assault on the senses. The only smells in Antarctica are cooking, skidoo fumes and the latrine, so when we arrived back the smell of soil and vegetation seemed really strong. It took a few days to readjust to cars, dark nights, proper beds, baths, flushing toilets, running water, central heating, mobile signal, internet, televisions and unlimited electricity. Leaving civilisation was easier than returning to it.

Ice cores waiting for check-in at Punta Arenas airport. We wouldn't see them again until we landed in Sydney. (Credit: H. Millman)

Ice cores waiting for check-in at Punta Arenas airport. We wouldn’t see them again until we landed in Sydney. (Credit: H. Millman)

Our ice cores were stored in a refrigerated lorry back until our flight to Sydney via Santiago and Auckland. Although the cores were in special insulated boxes, the long flight with connections to the heat of a Sydney summer was very stressful. The previous season a box had been left behind at Auckland airport, resulting in a very expensive puddle. This year we were lucky and all boxes arrived at the other end and the unscathed cores were transferred to the freezers at UNSW. Now the hard work begins!

Chris Turney at the end of the 1.6 km transect. (Credit: H. Millman)

Chris Turney at the end of the 1.6 km transect. (Credit: H. Millman)

More information:

Project website: http://ellsworthmountains.com/index.html

Short videos from the field can be viewed on Chris Turney’s Vine page:
https://vine.co/u/1021019438360739840

Edited by Sophie Berger and Nanna Karlsson


About Helen Millman: 
After completing a BSc in Geography at Swansea University and a Glaciology MSc at Aberystwyth University, Helen moved from her native Devon in south-west England to Australia to start her PhD at the University of New South Wales in Sydney. Her research focuses on modelling Antarctic ice sheet dynamics during the Last Interglacial using data from ice cores, as well as outputs from the CSIRO Mk3L GCM to drive the Potsdam Parallel Ice Sheet Model (PISM-PIK). She is supervised by Chris Fogwill and Chris Turney at UNSW, Steven Phipps at the University of Tasmania and Nick Golledge at Victoria University in Wellington. You can follow Helen on Twitter @helenmillman (https://twitter.com/helenmillman).

Image of the Week: Antarctic ice-shelf thickness

Image of the Week: Antarctic ice-shelf thickness

Thickness of floating ice shelves in Antarctica. Ice thickness is greatest close to the grounding line where it can reach 1000 meters or more (red). Away from the grounding line, the ice rapidly thins to reach a few hundreds of meters at the calving front. Ice thickness varies greatly from one ice shelf to another. Within ice shelves, “streams of ice” can be spotted originating from individual tributary glaciers and ice streams.

This dataset was used to compute calving fluxes and basal melt rates of Antarctic ice shelves (see Depoorter et al, 2013). This ice thickness map was derived from altimetry data (ERS and ICESat) acquired between 1994 and 2009 and corrected for elevation changes during this period.

Follow this link to download the georeferenced map and see Depoorter et al (2013)‘s paper for more information.

Image of the week : formation of an ice rise

Image of the week : formation of an ice rise

Deglaciation and formation of an ice rise with the ice-sheet model BISICLES.  The simulation starts with an ice sheet in steady state that overrides a topographic high in the bed, close to the calving front. The sea level is then forced to rise steadily with 1 cm per year during 15 thousand years, and the simulation goes on until the ice sheet reaches steady state.
The animation below shows that the formation of an ice rise delays the grounding line retreat.

For more information see Favier and Pattyn (2015)‘s recent paper.

movieicerise

The  movie shows the ice sheet retreat and the ice rise formation and evolution in between the two steady states. The movie starts after 5 thousands years of sea level rise. The ice upper surface is colored as a function of the velocity magnitude. The ice lower surface is colored either in light gray for floating ice or dark gray for grounded ice. Credit: L. Favier.

 

Ice Nomads: The iSTAR traverse of Pine Island Glacier, West Antarctica

A typical iSTAR field camp with the living ‘caboose’ on the left (credit: Damon Davies).

A typical iSTAR field camp with the living ‘caboose’ on the left (credit: Damon Davies).

It’s the 2nd December 2013 and I find myself in one of those rare occasions in life where I feel I need to pinch myself to see if I’m dreaming. Why? Somehow I’m in control of a British Antarctic Survey De Havilland Twin Otter aircraft flying over the white featureless expanse of the West Antarctic Ice Sheet. I’m part of a team of 12 heading to Pine Island Glacier, a remote ice stream 75°S and around 1500 km from Rothera Research Station on the Antarctic Peninsula.

The journey so far has taken four flights from London to Punta Arenas on the Southern tip of Chile and across the Drake Passage to Earth’s southernmost continent. Our pilot, John is having some lunch and keeping a close eye on my erratic attempts to hold a constant bearing and altitude as I ‘co-pilot’ the final leg of our journey. On the horizon I spot a thin strip of bright white snow that marks the groomed ski-way of our landing site.

John takes back the controls and eases the throttle down for a perfectly smooth landing. I step down from the plane with a familiar squeak and crunch of cold dry snow underfoot in an unfamiliar environment like nothing I’ve experienced before. I squint as my eyes adjust to the bright white desert of flat ice sharply contrasted by a crystal clear blue sky spanning the distant horizon in every direction. This will be my home for the next few months as I embark on my first Antarctic field season as part of the first iSTAR science traverse of Pine Island Glacier.

The iSTAR research programme

iSTAR (ice sheet stability and research programme) is a £7.4 million research programme funded by the UK Natural Environment Research Council (NERC) involving 11 UK universities and the British Antarctic Survey (BAS). Its aim is to improve understanding of ice-ocean interaction and ice dynamic response of Amundsen Sea sector of the West Antarctic.

Over the past few decades this region has been undergoing the greatest rates of ice loss on the planet causing concern over its potential future contribution to rising global sea-level. Pine Island Glacier (PIG) drains around 10% of the West Antarctic Ice sheet (WAIS) which contains enough ice if melted to raise global sea-level by approximately 3.3 metres.

In order to make accurate predictions about how this region will respond to environmental change requires good physical observations and measurements. Through scientific ocean cruises and an over-ice traverse spanning two field seasons combined with satellite remote sensing and numerical modelling, iSTAR aims to provide the data necessary to improve the accuracy of projections for the contribution of the WAIS to future sea level.

The iSTAR traverse of Pine Island Glacier

Traditionally the UK has conducted glaciological investigations in remote regions of Antarctica using small field units typically consisting of one scientist and a field assistant. For larger drilling projects equipment has to be flown by aircraft at great expense and fuel consumption.

For iSTAR, a new approach was undertaken using two ‘tractor trains’. These consist of two Pisten Bully snow tractors towing two long poly sleds with fuel bladders and three metal cargo sledges including a living ‘caboose’; a converted shipping container with a cooking and living space (essentially a caravan fit for polar travel!). All this equipment was delivered by the RRS Ernest Shackleton to the Abbot Ice Shelf in February 2012 and driven to Pine Island Glacier ready for the first traverse the following season.

iSTAR tractor train (credit: Alex Taylor).

iSTAR tractor train (credit: Alex Taylor).

This infrastructure provided a means to meet the ambitious science aims of the iSTAR traverse making it possible to collect more ground measurements over a wider area than ever previously possible and with greater fuel efficiency.

The traverse follows a 900 km route visiting the trunks and tributaries of PIG to conduct a range of measurements on the ice.

The route of the iSTAR traverse of Pine Island Glacier, West Antarctica (credit: www.istar.ac.uk).

The route of the iSTAR traverse of Pine Island Glacier, West Antarctica (credit: www.istar.ac.uk).

So what about the science?

iSTAR science

The iSTAR programme is split into four science projects, with iSTAR A and B making measurements from scientific ships and iSTAR C and D collecting data during the overland traverse of Pine Island Glacier. It is the overland traverse that we were involved in.

iSTAR C: Dynamic Ice project:

This project aims to understand the internal dynamic processes responsible for transmitting the effect of thinning of PIG’s floating ice shelf caused by melting of warm ocean currents upstream into the trunk and tributaries of the ice stream. Of particular interest is how the underlying geology of the ice influences its flow.

Over the course of two field seasons the traverse collected over 2000 km of radar data and over 40 km of seismic surveys were completed. The team used skidoos to tow radar equipment across the ice making the most of the 24 hours of daylight of the Antarctic Summer to provide detailed images of the ice thickness and bed topography. The geology of the subsurface was also investigated by analysing the seismic energy returned from small explosive charges buried in the surface of the ice.

Operating the ice penetrating radar (left) and firing explosives for seismic surveys (right) (credit: Damon Davies).

Operating the ice penetrating radar (left) and firing explosives for seismic surveys (right) (credit: Damon Davies).

iSTAR D: Ice Loss project

Satellite measurements over the past two decades have revealed rapid thinning (up to 1.5 metres per year) and acceleration of PIG’s ice flow. The iSTAR D project aims to take measurements to extend the record of past snow accumulation and ice density to improve estimates of ice loss that cannot be determined from satellite measurements.

To determine past accumulation and understand surface processes such as snow density changes and compaction, we drilled 10 shallow (50 metre) ice cores. These ice cores had to be kept frozen and shipped back to the UK where their chemistry is being analysed to enable us to quantify how much snow has fallen onto the ice sheet in the past. Over 20 snow density profiles were recorded using a device called a ‘Neutron Probe’ which uses a radioactive source to measure neutron scattering from within the snowpack to calculate ice density. This might sound dangerous but to my disappointment after spending many hours operating this equipment I have yet to develop super powers!

Rob, Becky and Emma inside the ice core drilling tent (left), Damon and Andy working at a Neutron Probe site (right) (credit: Alex Taylor).

Rob, Becky and Emma inside the ice core drilling tent (left), Damon and Andy working at a Neutron Probe site (right) (credit: Alex Taylor).

Surface radars operating at the same frequency as satellites that orbit the earth measuring ice surface changes were also deployed. These ground radar measurements enable us to improve the accuracy of satellite derived estimations of ice volume loss from West Antarctica.

Anna operating the surface radar (credit: Jan De Rydt).

Anna operating the surface radar (credit: Jan De Rydt).

Now you know all about iSTAR science but what’s it like to live and work in one of the most remote regions of the coldest, highest, driest and windiest continent on Earth?

Life in the field

Life on the iSTAR traverse is perhaps similar to a travelling circus, only instead of jugglers and gymnasts we have scientists and mechanics and rather than a ‘Big Top’ we had the ice core drilling tent. At each of the 22 sites on the traverse route the circus would set up camp for a few days to a week. Tents would be pitched, sledges un-hitched and science equipment unloaded, the whole process of setting up camp taking just an hour or two.

Setting up the drilling tent (left). iSTAR accommodation (right) (credit: Alex Taylor).

Setting up the drilling tent (left). iSTAR accommodation (right) (credit: Alex Taylor).

This region of Antarctica has a reputation for wild weather. Temperatures can drop below -30°C and winds can reach hurricane speeds reducing visibility to within a few metres. However, on calm days it can be so silent you can hear your own heartbeat and the strength of the summer sun provides welcome warmth. Good weather means working long hours as you never know how long it might last. When the weather takes a turn for the worse, all you can do is shelter from the elements and wait patiently for the storm to pass, though patience can be tested when the storm lasts for a week!

iSTAR team members battling a storm (left) (credit: Alex Taylor). Tent damage after a big storm (right) (credit: Damon Davies).

iSTAR team members battling a storm (left) (credit: Alex Taylor). Tent damage after a big storm (right) (credit: Damon Davies).

The living ‘caboose’ offers a warm shelter away from the elements. This is also where the team gathers at meal times with everyone taking turns to cook for the rest of the group. The iSTAR menu normally consists of a porridge breakfast, soup and bread for lunch, some form of carbohydrate with meat slop for dinner followed by tinned fruit/pudding with powdered custard for dessert. The labels of some meal packages such as ‘chicken own juice’ and ‘sausages in lard’ aren’t particularly enticing but generally the food is good by Antarctic field standards.

Dinner-time in the caboose (left) (credit: Alex Taylor). James finishing off a cottage pie with a blow torch (right) (credit: Damon Davies).

Dinner-time in the caboose (left) (credit: Alex Taylor). James finishing off a cottage pie with a blow torch (right) (credit: Damon Davies).

The iSTAR traverse was an incredible experience that allowed me to learn a range of data acquisition techniques as well as learning how to work in the often hostile Antarctic weather. I was one of 9 PhD students and post-doctoral researchers involved in the traverse seasons who were able to work alongside highly experienced scientists in the field. Our success is a testament to the hard work and good spirit of everyone involved.

Left photo, 2013/14 traverse participants. Left to right, Anna Hogg (Leeds), Rob Bingham (Edinburgh), Andy Smith (BAS), Damon Davies (Edinburgh), Johnny Yates (back row, BAS), Tim Gee (middle, BAS), Jan De Rydt (front, BAS), Steph Cornford (Bristol), James Wake (BAS), Peter Lambert (Reading), Thomas Flament (front, Leeds), David Vaughan (BAS) (credit: David Vaughan). Right photo, 2014/15 traverse participants. Left to Right, James Wake (BAS), Mark Baird (BAS), Tim Gee (BAS), Emma Smith (BAS), Isabelle Nias (Bristol), Robert Mulvaney (BAS), Andy Smith (BAS), Alex Brisbourne (back row, BAS), Rebecca Tuckwell (middle, BAS), Alex Taylor (front, BAS), Sebastian Rosier (BAS), Damon Davies (Edinburgh) (credit: Alex Taylor).

Left photo, 2013/14 traverse participants. Left to right, Anna Hogg (Leeds), Rob Bingham (Edinburgh), Andy Smith (BAS), Damon Davies (Edinburgh), Johnny Yates (back row, BAS), Tim Gee (middle, BAS), Jan De Rydt (front, BAS), Steph Cornford (Bristol), James Wake (BAS), Peter Lambert (Reading), Thomas Flament (front, Leeds), David Vaughan (BAS) (credit: David Vaughan). Right photo, 2014/15 traverse participants. Left to Right, James Wake (BAS), Mark Baird (BAS), Tim Gee (BAS), Emma Smith (BAS), Isabelle Nias (Bristol), Robert Mulvaney (BAS), Andy Smith (BAS), Alex Brisbourne (back row, BAS), Rebecca Tuckwell (middle, BAS), Alex Taylor (front, BAS), Sebastian Rosier (BAS), Damon Davies (Edinburgh) (credit: Alex Taylor).

For more information about the iSTAR research programme visit www.istar.ac.uk and the ‘stories from the field’ blog posts to read more tales from traverse fieldwork.

Acknowledgments: A huge thanks to James Wake, Tim Gee, Johnny Yates, Mark Baird and Alex Taylor for their tireless support in the field. The traverse could not have succeeded without support from the staff at Rothera Research Station. Also thanks to Emma Smith for helpful comments on this blog.

Edited by Sophie Berger


Damon Davies is a PhD researcher at the University of Edinburgh, School of Geosciences Glaciology and Cryosphere research group. His research uses geophysics to investigate the dynamics of ice stream beds and their control on ice stream flow.

My first journey to Antarctica – Brice Van Liefferinge

My first journey to Antarctica – Brice Van Liefferinge
(Credit B. Van Liefferinge)

(Credit B. Van Liefferinge)

19 November 2014, the Iliuchine 76 gently lands on the runway of the Russian Antarctic station, Novolazarevskaya, in Dronning Maud Land. For the first time, I’m in Antarctica! It is 4 o’clock in the morning and we need to hurriedly offload 2 tons of material intended for our field mission near the Belgian Princess Elisabeth Station. I’m deeply impressed by the landscape although it is dotted with containers, people and machines. I am impressed by the fuzz. I am impressed by the novelty. I am impressed by the icescape. It is cold, but I don’t feel it.

(Credit B. Van Liefferinge)

(Credit B. Van Liefferinge)

I take part in an expedition lasting five weeks and led by the Laboratoire de Glaciologie of the Université Libre de Bruxelles (ULB) in the framework of the Icecon project.The project aims at constraining past and current mass changes of the Antarctic ice sheet in the coastal area of Dronning Maud Land (East Antarctica) to better understand past and present ice volumes and the extension of the Antarctic ice sheet across the continental shelf during the last glacial period. This year we are a team of 5 to do the job: GPS measurements, ice-core drilling, high- and low-frequency radar measurements (GSSI and ApRES), televiewer measurements … The ApRES radar is a new phase-sensitive radar developed by British Antarctic Survey (BAS), capable of detecting internal structures in the ice and changes in the position of internal layering over time.

After a couple of hours at the Russian base, it’s time to fly to the Princess Elisabeth Station (the Belgium base, PEA). The arrival in a Bassler (a former DC3 re-equipped with turbo-props) with stunning views of the Sor Rondane Mountains and the Princess Elisabeth station on the Utsteinen rim is simply magnificent. Alain Hubert, the base manager, gives us the first security rules and shows us the different parts of the base.

(Credit B. Van Liefferinge)

(Credit B. Van Liefferinge)

 

After following the various field training and especially an exercise that aims at pulling yourself out of crevasses, it’s time to inspect, to set up, and to test our equipment. While one part of the team sets up the drill, Frank Pattyn and I test the GPS and radar equipment, mainly the ApRES that is a new “toy” for us. The first results are promising, we can clearly identify the bed topography and internal layers. The two GPS systems sponsored by the “10km of the ULB”, a run organised by the students of our Faculty, are also tested next to the L1L2 GPS systems for precise positioning. As our departure is imminent, I’m excited (even though my level of Coca-cola are getting low – I ‘m an avid consumer of this “evil drink” and Frank was afraid that I wouldn’t survive without sufficient sugar intake).

(Credit B. Van Liefferinge)

(Credit B. Van Liefferinge)

On 27 November, we leave PEA in the evening for one night and one day across the Roi Baudouin Ice Shelf to Derwael ice rise. We are 6 scientists, 2 field guides and 1 technician. After 25 hours of travel, we set up the camp on the top of the divide. We start immediately with the radar measurements to locate potential drill sites. However, we get caught in a storm the following day and as Frank says “not a nice one”.

(Credit F. Pattyn and B. Van Liefferinge)

(Credit F. Pattyn and B. Van Liefferinge)

 

The snow drift is just amazing and the atmospheric pressure drops frighteningly (“can this still go lower?”). The whiteboard installed in the living container is not wide enough to draw the graph of pressure change, nor is it high enough to accommodate the lowest values. Furthermore, it’s quite warm, meaning that snow melts in contact with persons and goods. Despite efforts of everyone to clear away the snow, we leave our tents and sleep in the containers for 2 days. Not the most comfortable nights, because we share a two-bunk space with three people, and despite a container it remains very shaky! After three days of amazing experience, we clean up the camp and the science restarts. For one week Frank and I perform radar and GPS measurements in a 10km radius around the camp. These measurements will be repeated in 2015-2016 to provide new data on ice compaction, density and flow. While Frank thoroughly checks the collected data, I have some time to get familiar with the drill, which should prove to be very useful thereafter. The “drill part” led by Jean-Louis Tison and Morgane Philippe aims at drilling two 30 m deep ice cores on Derwael Ice Rise, 2 km on each side of the divide. We want to investigate the spatial variability of snow accumulation induced by this ice rise that sticks approximately 300 m above the surrounding flat ice shelf and therefore perturbs the surface mass balance distribution (Lenaerts et al., 2014).

Blog_EGU (12)_mod

(Credit B. Van Liefferinge)

(Credit F. Pattyn and B. Van Liefferinge)

I use this week to improve my knowledge on other scientific techniques, such as the coffee-can method (will complement the results from the ApRES) or geodetic GPS measurements with Nicolas Bergeot. I also learn the basics of snowmobile mechanics (it’s surprising to see the amount of snow that can be put in an engine!). Unfortunately we get stuck for another 2 days by a new storm event. We use this time to have a look on the first radar profiles and to prepare the second part of the expedition.

 

 

On 9 December, we leave the camp on Derwael ice rise and move towards the Roi Baudouin Ice Shelf, 40km to the west. We set up the camp in a longitudinal depression (like a trench) on the ice shelf that stretches from the grounding line to the coast.

The purpose of this part of the field work is twofold: first of all, determine the mass budget of ice shelves. To do that, we need to map carefully the flow speed of the ice-shelf. Secondly, understand the formation of the trench in evaluating if under the ice-shelf, the ice is melting or accreting (formation of marine ice) and analyze the surface melt history by investigating near-surface melt layers.

The first three days are devoted to make radar measurements (ApRES) in the center and on the sides of the trench. The thickness of ice and the reflection at the interface with the ocean is different from the one on the ice rise; we take some time to develop a robust method and determine the best settings of the radar. Together with Frank Pattyn and Jan Lenaerts (InBev Baillet Latour fellowship, http://benemelt.blogspot.be/) I perform a 120km transect with a high-frequency radar towed by a snowmobile to map the near-surface internal structure along the ice shelf and link the drill site with the grounding zone. Driving at 8 km per hour for 8 hours a day, it’s an opportunity for me to think about how lucky I am to be here. Alone in the vastness of the Roi Baudouin ice-shelf, I feel very small. Back in camp, we find out that the drill got stuck at a depth of 54m in the borehole and preparations to free the drill are on their way. During this time I carry out a number of high-frequency radar measurements with Alain Hubert (the base manager) to fine-tune the equipment to potentially detect crevasses near the surface. To our surprise, we stumble upon a crevasse more than 500m long, 10m wide and 20m high. Moreover, we can safely descend through the apex of the crevasse to discover its vastness. Truly a magic moment!

(Credit A. Hubert)

(Credit A. Hubert)

 

Thirty-six hours later, and thanks to antifreeze, the drill restarts. This small technical incident pushes us to work the next couple of days through the day and the night (under the sun at 3am is rather special) and we take turns in operating the drill. We reach a depth of 107m, not far from the 155 meters needed to reach the bottom of the ice shelf, but the brittle ice makes progress very difficult. Nevertheless, this is the third core of the (short) season, and as valuable as the previous ones. We can clearly identify every single ice layer over 200 years as well as the surface melting history.

(Credit A. Hubert)

(Credit A. Hubert)

Before leaving back to the base, we finish the installation of the famous Tweetin’IceShelf project (http://tweetiniceshelf.blogspot.com); a project also presented at the EGU General Assembly in 2015. We deploy two GPSes on the flanks of the trench and one in the center. These are simple GPS systems that record their position every hour. They are named GPS CGEO (from Cercle de Géographie et de Géologie de l’ULB) and GPS CdS (from Cercle des Sciences). In the center of the trench, the ApRES is installed which measures once a day the radar signal through the ice. All systems will be effective throughout the Antarctic winter. Data are sent via Twitter to be followed by a larger community. Just follow the @TweetinIceShelf on Twitter. You will not be disappointed.

(Credit F. Pattyn)

(Credit F. Pattyn)

It’s time to go back to the station, which is reached after 20 hours of travel across the ice shelf and the coastal ice sheet. Over 2 days we will be at Cape Town and we have to clean up everything for the next field season.

(Credit N. Bergeot)

(Credit N. Bergeot)

 

I know it is my first time to Antarctica, and as most first-timers, an unforgettable experience of vastness, whiteness, silence, laughter, hard work and fun. When I board the plane I feel delighted and fulfilled and ready to find back green landscapes and city soundscapes in less than ten hours.

The text is based on the blog that was held during the mission: http://icecon2012.blogspot.be/

Edited by Sophie Berger


Brice Van Liefferinge is a PhD student and a teaching assistant at the Laboratoire de Glaciology, Universite Libre de Bruxelles, Belgium. His research focuses on the basal conditions of the ice sheets.