GeoLog

wildfires

Imaggeo on Mondays: Wildfires leave their mark on Jasper National Park

Imaggeo on Mondays: Wildfires leave their mark on Jasper National Park

Jasper National Park is the largest national park in the Canadian Rocky Mountains, spanning across nearly 11,000 square kilometres of Canadian wilderness. The park is known for its rugged landscape, extensive trails, and abundance of deer, bighorn sheep, wolves, mountain lions and bears. This region is also very susceptible to blazing wildfires, a result of human activity that began more than a century ago.

This black bear came down from the forest on the left side, a few minutes after Ziesch took the photo of the lake. Credit: Jennifer Ziesch

In 1909, just two years after the park was established, the first national park wardens were hired to extinguish wildfires. At the time, all man-made and natural fires were considered threats to the forest and its inhabitants.

However, ecologists now know that fires are in fact a natural part of Canada’s forest dynamics and play an important role in shaping the diversity and ecology of these regions.

By suppressing natural fires, the park wardens had a hand in limiting the diversity of plants and animals in these forests, making the landscape more prone to insect infestation and disease. This in turn increases the chance of sparking large threatening wildfires.

For example, Jasper National Park has for some time been plagued by mountain pine beetles, with foresters reporting a tenfold increase in beetle infection along the park’s perimeter. The insects bore into the wood and after two to three years, leave behind dry dead trees, the perfect kindling for big wildfires.

July 2015, one particularly chaotic wildfire, ignited by a lightning strike, consumed 1,000 hectares of the Maligne Valley area in central Jasper National Park. At one point, the wildfire was only 15 kilometres from the local town Jasper, but fortunately the wind redirected the fire’s path. If not for the fire’s change in direction, 50,000 people would have been forced evacuate their homes. After four days, cooler temperatures and six milimetres of rain gave wildfire management crews the opportunity to control and suppress the flames. Additionally, a small plateau that was unusually moist stopped the fire from burning up the slopes on the west side of Medicine Lake, dramatically reducing the fire’s overall size.

Jennifer Ziesch, a researcher at the Federal Institute for Geosciences and Natural Resources in Germany, took this featured photograph of Medicine Lake last year when road tripping with her husband through the US and Canadian Rocky Mountains.

“It was only after I glanced at the photo twice that I noticed its importance. On the right side, you can see the burnt forest, where the wildfire stopped” said  Ziesch.

“The contrast between the charred black versus the vibrant green and the scorched red tells a powerful story about forest resilience and renewal. Even now, three years later on, you can still see the consequences of the wildfire, but the natural equilibrium is slowly returning.”

References

A look back at Jasper park’s Excelsior wildfire (The Fitzhugh)

Fire and vegetation management in the Mountain National Parks, Parks Canada

Increased wildfire risk in Jasper due to pine beetles, says MP (Global News)

Jasper National Park not prepared for potential forest fire ‘catastrophe,’ researchers say (CBC)

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Record-setting forest fires in 2017 – what is to blame?

Record-setting forest fires in 2017 – what is to blame?

Forest fires have once again seized the public consciousness in both Europe and North America. Extreme drought and temperatures contributed to a tinderbox in many forests, and have led to deadly fires across Europe and record-breaking, highly disruptive fires in the USA and Canada, from where I’m currently writing.

A simple way to understand fire is by thinking about the fire triangle – the three pieces that need to combine to produce fire: heat, oxygen, and fuel. While the concept of the fire triangle offers simple insights into the cause of a fire, each of the three factors are subject to a number of controls.

The availability of fuel in particular is affected by a whole range of influences, from tree species variations, to the impact of pests, to the prior history of wildfires. In many cases there will be a multitude of reasons for both the rate that a given fire spreads, and the spatial extent to which it burns. The extensive media coverage of this year’s record-breaking fire season provides a useful opportunity to explore some of these factors, and how they might have contributed to the fires that we’re seeing this year.

Multi-tiered fires

Not all forest fires are equal. The forestry service in British Columbia defines 6 different levels of fire, ranging from slow burning of peat below the surface of a forest (a ground fire), through the burning of scrub and ground level debris (surface fire), to far harder to control conflagrations that consume the canopy of the trees (a crown fire).

Each type of fire consumes fuel from different levels of the forest, and a transition from a lower to higher level requires at a minimum that there is enough flammable material in the upper layers of the forest. As such, the history of fire in a given stand of woodland will have a significant effect on the potential for future fires; a prior surface fire could remove the under-brush and limit the future fire risk.

Many older trees in a forest can have fire scars from previous, smaller fires that have not burnt them entirely, demonstrating that not all fires make the transition to crown fires. In the US, the largest 2-3% of wildfires contribute 95% of the total area burned annually, and these are generally the largest crown fires. For these large fires, the conditions must be optimal to reach the canopy, but once they make this transition they can be very difficult to stop.

Although the largest fires require a specific set of conditions, the transition to large fire can lag for a long time behind the initial trigger of a fire:

“Once ignited, decaying logs are capable of smouldering for weeks, or even months, waiting the time when prevailing conditions (hot, windy, and dry) are conducive for expansion into a full-blown forest fire,” write Logan & Powell in 2001.

The initial trigger in natural settings for the fire is generally lightning, or in rare cases the intense heat from lava flows. However, a recent study has shown that in the continental US, 84% of fires are started by humans. This can range from discarded cigarettes to prescribed fires that have raged out of control.

So, we now have a simplified understanding of the requirements for a fire, but perhaps the more important question remains: why do they spread?

What fans the flames?

So what are the processes that control the strength and spread of a fire? Certain aspects, like climatic conditions, tend to set a long-term propensity for wildfire, while other short term effects define the local, immediate cause for a fire.

The long-term role of climate is quite diverse. Flannigan and co-authors, in their 2008 paper, summarise the importance of temperature in setting the conditions for fire:

“First, warmer temperatures will increase evapotranspiration, as the ability for the atmosphere to hold moisture increases rapidly with higher temperatures… (Roulet et al. 1992) and decreasing fuel moisture unless there are significant increases in precipitation. Second, warmer temperatures translate into more lightning activity that generally leads to increased ignitions (Price and Rind 1994). Third, warmer temperatures maylead to a lengthening of the fire season (Westerling et al. 2006).”

The importance of temperature at a global scale is demonstrated by studies suggesting that fire outbreaks have systematically increased since the last glacial maximum 21,000 years ago, when average temperatures were several degrees colder.

So once the climatic conditions set a long term likelihood for a fire to break out, as well as the distribution of tree species (and therefore the amount of fuel), short term disturbances can act to further increase susceptibility. We can divide these more immediate factors into weather, ecological, and human influences.

Unsurprisingly, weather conditions that bring hot, dry weather with the chance of thunderstorms will be highly likely to drive fires. A number of studies have shown that this kind of weather is often linked to persistent high pressure systems in the atmosphere, which push away rainfall, and can last for weeks at a time.

This kind of atmospheric conditions can often be linked to longer term weather patterns, in particular El Niño, and the effects can be long-lived. For example, El Niño brings warm, dry weather to the North-western part of North America, driving increased fire. In the South-west, El Niño brings wetter weather, but the increased vegetation growth provides a larger amount of fuel that can then burn in subsequent drier conditions.

Caption: Healthy pines mix with red, decaying trees afflicted with pine beetle infestation in Jasper National Park, Canada (Aug 2017). Credit: Robert Emberson

The growth of plants is just one way that the forest ecosystem can affect the availability of fuel for fire. Many trees are affected by pests. The classic example is the pine beetle, which can kill so many trees that whole swathes of pine forest are left characteristically red as they decay in the aftermath of an infestation. While some studies have shown that this can reduce the chance of a crown fire (since less fuel is available in the canopy), the dead and decaying trees provide a source of drier fuel at ground level that is a concern in many regions.

Elsewhere, we can see cases where trees encourage fire. Eucalyptus trees contain oil that burns strongly; the fire that this produces is suggested to remove the other tree species competing with the Eucalyptus. A strange method, but no doubt effective! The Eucalyptus, introduced to Portugal by humans in the 18th century, has been linked to many of the deadly fires that occurred there this summer. The lodgepole pine, too, has pinecones that require the heat of fire to open and release their seeds.
As such, fire is a natural part of the ecosystem, and in most areas of the boreal forest fire management is limited, with attempts at suppression only made where human settlement is at risk.

Where humans do step in, their actions can have an important role in setting the overall susceptibility to fire. Creating ‘fire breaks’ by felling or controlled burning of woodland in the path of a fire removes fuel and limits the growth of a fire, and a program of controlled burns is an important part of forest management to limit the potential for future fire by clearing scrub vegetation at the surface.

On the other hand, continual suppression of fires can lead to build up of fuel – which can then form a significantly more dangerous fire on a long term basis.

Ken Lertzman, Professor of Forest Ecology and Management at Simon Fraser University, told me that in general, control mechanisms are only useful for smaller surface fires; once the fire reaches the canopy, fire suppression is extremely difficult.

“It’s a combination of a statistical and philosophical problem”, he says. Fire control is expensive, so unless it’s financed by profits from felled lumber, cost benefit analysis is necessary, based in part on the statistical probability of a huge fire breaking out in a given location. Philosophically, though, “management forest stand structure at the boundary conditions [between surface and canopy fires] may be able to keep small fires becoming extreme.” and thus perhaps it’s worth trying to use control mechanisms even if giant canopy fires would ignore them, just to avoid that transition to the canopy.

As with most natural systems, the factors discussed above don’t necessarily act independently. Many can amplify other effects. For example, the geographical range of pine beetle outbreaks could increase under a warming climate. At a smaller scale, giant fires can create their own weather patterns, acting to dry out the surrounding forest even before it ignites. So, is the greater incidence of fire this year down to this kind of combination of factors?

What’s happening in 2017?

The sun at 10.15 in the morning in Chilliwack, BC, 3rd August 2017 – more than 50km from the nearest fire. Credit: Megan Reich.

The summer of 2017 has been brutal for wildfire in many locations. Europe has been hit hard with more fires in one day in Portugal than any previous on record. In British Columbia (BC), the largest single fire on record is currently burning, contributing to the largest total area burned in historical record. The fires released so much particulate matter and haze that the sun was obscured in large parts of BC.

According to Professor Lertzman, in British Columbia at least, this is “a fire year different in degree, not in kind”. The same processes are at play as always, but in overdrive. An early spring thaw combined with a long, hot and dry summer created the ideal antecedent conditions for fire.

Linking individual intense ‘fire years’ to long term climate change in challenging, but it is likely that these kind of conditions would be more likely to occur in a world influenced by anthropogenic climate change. Years like this one, which are clearly exceptional compared to the long term trend for fire, might begin to occur more often; every 5-10 years rather than every 30-50, for example.

In the short term, fire damage and suppression is expensive, both financially and in terms of lives affected. Smoke is a health risk to wide areas in the face of such intense fire, but ecological damage can be more difficult for humans to see.

Mature forest is a different niche for organisms to fill in comparison to fresh surfaces stripped bare by fire. While each ecosystem has its place in the natural forest, an increased prevalence of fire reduces the mature forest available for the species that prefer that ecological zone. These can range from recognisable mammal species such as bears, deer and caribou, to less well-known but still important canopy lichen species, says Professor Lertzman.

While this year’s fire season is beginning to ease off, it is clear that the range of factors, both natural and those driven by humans, will continue to play a role in years to come. More build-up of infrastructure in developed countries puts more human settlement at risk, so a clear understanding of how fire interacts with the climate, weather, and forest management strategies will be vital to allow us to live alongside fire in the future with fewer problems.

By Robert Emberson, freelance science writer

 

Further reading and resources

August GeoRoundUp: the best of the Earth sciences from around the web

August GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, as well as unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major Stories

On August 25th Hurricane Harvey made landfall along the southern coast of the U.S.A, bringing record breaking rainfall, widespread flooding and a natural disaster on a scale not seen in the country for a long time. In fact, it’s the first time since 2005 a major hurricane has threatened mainland U.S.A. – a record long period.

But Harvey’s story began long before it brought destruction to Texas and Louisiana.

On August 17th,the National Space Agency (NASA) satellite’s first spotted a tropical depression forming off the coast of the Lesser Antilles. From there the storm moved into the eastern Caribbean and was upgraded to Tropical Storm Harvey where it already started dropping very heavy rainfall. By August 21st, it had fragmented into disorganised thunderstorms and was spotted near Honduras, where heavy local rainfall and gusty winds were predicted.

Over the next few days the remnants of the storm travelled westwards towards Nicaragua, Honduras, Belize and the Yucatan Peninsula. Forecasters predicted that, owing to warm waters of the Gulf of Mexico and favorable vertical wind shear, there was a high chance the system could reform once it moved into the Bay of Campeche (in the southern area of the Gulf of Mexico) on August 23rd. By August 24th data acquired with NASA satellites showed Harvey had began to intensify and reorganise. Heavy rainfall was found in the system.

Harvey continued to strengthen as it traveled across the Gulf of Mexico and weather warnings were issued for the central coast of Texas. Citizens were told to expect life-threatening storm surges and freshwater flooding. On August 25th, Harvey was upgraded to a devastating Category 4 hurricane, when sustained wind speeds topped 215 kph.

Since making landfall on Friday and stalling over Texas (Louisiana is also affected) – despite being downgraded to a tropical storm as it weakened – it has broken records of it’s own. “No hurricane, typhoon, or tropical storm, in all of recorded history, has dropped as much water on a single major city as Hurricane Harvey is in the process of doing right now in Houston (Texas)”, reports Forbes. In fact, the National Weather Service had to update the colour charts on their graphics in order to effectively map it. This visualisation maps Harvey’s destructive path through Texas.

A snaptshot from the tweet by the official Twitter account for NOAA’s National Weather Service.

So far the death toll is reported to be between 15 to 23 people, with the Houston Police Chief saying 30,000 people are expected to need temporary shelter and 2,000 people in the city had to be rescued by emergency services (figures correct at time of writing).

Many factors contributed toward making Hurricane Harvey so destructive. “The steering currents that would normally lift it out of that region aren’t there,” J. Marshall Shepherd, director of the atmospheric sciences program at the University of Georgia, told the New York Times. The storm surge has blocked much of the drainage which would take rainfall away from inland areas. And while it isn’t possible to say climate change caused the hurricane, “it has contributed to making it worse”, says Michael E Mann. The director of the Earth System Science Center at Pennsylvania State University argues that rising sea levels and ocean water temperatures in the region (brought about by climate change) contributed to greater rainfall and flooding.

A man carries his cattle on his shoulder as he moves to safer ground at Topa village in Saptari. Credit: The Guardian.

While all eyes are on Houston, India, Bangladesh and Nepal are also suffering the consequences of devastating flooding brought about a strong monsoon. The United Nations estimates that 41 million people are affected by the disaster across the three countires. Over 1200 people are reported dead. Authorities are stuggling with the scale of the humanitarian crisis: “Their most urgent concern is to accessing safe water and sanitation facilities,” the UN Office for the Coordination of Humanitarian Affairs (OCHA) said earlier this week, citing national authorities. And its not only people at risk. Indian authorities reported large swathes of a famous wildlife reserve park have been destroyed. In Mumbai, the downpour caused a building to collapse killing 12 people and up to 25 more are feared trapped.Photo galleries give a sense of the scale of the disaster.

Districts affected by flooding. Credit: Guardian graphic | Source: ReliefWeb. Data as of 29 August 2017

What you might have missed

In fact, it’s highly unlikely you missed the coverage of this month’s total solar eclipse over much of Northern America. But on account of it being the second biggest story this month, we felt it couldn’t be left out of the round-up. We particularly like this photo gallery which boasts some spectacular images of the astronomical event.

This composite image, made from seven frames, shows the International Space Station, with a crew of six onboard, as it transits the Sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 near Banner, Wyoming. Credit: (NASA/Joel Kowsky)

Since the end of July, wildfires have been raging in southwest Greenland. While small scale fires are not unheard of on the island otherwise known for its thick ice cap and deep fjords, the fires this month are estimated to extend over 1,200 hectares. What started the fires remains unknown, as do the fuel sources and the long-term impacts of the burn.

The U.S.A’s National Oceanic and Atmospheric Administration highlighted that the fires are a source of sooty “black carbon”. As the ash falls on the pristine white ice sheet, it turns the surface black, which can make it melt faster. Greenland police recently reported that unexpected rain haf all but extinguished the massive fires; though the situation continues to be monitored, as smouldering patches run the risk of reigniting the flames.

 

 

 

Links we liked

The EGU story

Do you enjoy the EGU’s annual General Assembly but wish you could play a more active role in shaping the scientific programme? Now is your chance! Help shape the scientific programme of EGU 2018.

From today, until 8 Sep 2017, you can suggest:

  • Sessions (with conveners and description), or;
  • Modifications to the existing skeleton programme sessions
  • NEW! Suggestions for Short courses (SC) will also take place during this period
  • From now until 18 January 2018, propose Townhall and splinter meetings

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

 

GeoSciences Column: Is smoke on your mind? Using social media to assess smoke exposure from wildfires

GeoSciences Column: Is smoke on your mind? Using social media to assess smoke exposure from wildfires

Wildfires have been raging across the globe this summer. Six U.S. States, including California and Nevada, are currently battling fierce flames spurred on by high temperatures and dry conditions. Up to 10,000 people have been evacuated in Canada, where wildfires have swept through British Columbia. Closer to home, 700 tourists were rescued by boat from fires in Sicily, while last month, over 60 people lost their lives in one of the worst forest fires in Portugal’s history.

The impacts of this natural hazard are far reaching: destruction of pristine landscapes, costly infrastructure damage and threat to human life, to name but a few. Perhaps less talked about, but no less serious, are the negative effects exposure to wildfire smoke can have on human health.

Using social media posts which mention smoke, haze and air quality on Facebook, a team of researchers have assessed human exposure to smoke from wildfires during the summer of 2015 in the western US. The findings, published recently in the EGU’s open access journal Atmospheric Chemistry and Physics, are particularly useful in areas where direct ground measurements of particulate matter (solid and liquid particles suspended in air, like ash, for example) aren’t available.

Particulate matter, or PM as it is also known, contributes significantly to air quality – or lack thereof, to be more precise.  In the U.S, the Environment Protection Agency has set quality standards which limit the concentrations of pollutants in air; forcing industry to reduce harmful emissions.

However, controlling the concentrations of PM in air is much harder because it is often produced by natural means, such as wildfires and prescribed burns (as well as agricultural burns). A 2011 inventory found that up to 20% of PM emissions in the U.S. could be attributed to wildfires alone.

Research assumes that all PM (natural and man-made) affects human health equally. The question of how detrimental smoke from wildfires is to human health is, therefore, a difficult one to answer.

To shed some light on the problem, researchers first need to establish who has been exposed to smoke from natural fires. Usually, they rely on site (ground) measurements and satellite data, but these aren’t always reliable. For instance, site monitors are few and far between in the western US; while satellite data doesn’t provide surface-level concentrations on its own.

To overcome these challenges, the authors of the Atmospheric Chemistry and Physics paper, used Facebook data to determine population-level exposure.

Fires during the summer of 2015 in Canada, as well as Idaho, Washington and Oregon, caused poor air quality conditions in the U.S Midwest. The generated smoke plume was obvious in satellite images. The team used this period as a case study to test their idea.

Facebook was mined for posts which contained the words ‘smoke’,’smoky’, ‘smokey’, ‘haze’, ‘hazey’ or ‘air quality’. The results were then plotted onto a map. To ensure the study was balanced, multiple posts by a single person and those which referenced cigarette smoke or smoke not related to natural causes were filtered out. In addition, towns with small populations were weighted so that those with higher populations didn’t skew the results.

The social media results were then compared to smoke measurements acquired by more traditional means: ground station and satellite data.

Example datasets from 29 June 2015. (a) Population – weighted, (b) average surface concentrations of particulate matter, (c) gridded HMS smoke product – satellite data, (d) gridded, unfiltered MODIS Aqua and MODIS Terra satellite data (white signifies no vaild observation), and (e) computer simulated average surface particulate matter. Image and caption (modified) from B.Ford et al., 2017.

The smoke plume ‘mapped out’ by the Facebook results correlates well with the plume observed by the satellites. The ‘Facebook plume’ doesn’t extend as far south (into Arkansas and Missouri) as the plume seen in the satellite image, but neither does the plume mapped out by the ground-level data.

Satellites will detect smoke plumes even when they have lifted off the surface and into the atmosphere. The absence of poor air quality measurements in the ground and Facebook data, likely indicates that the smoke plume had lifted by the time it reached Arkansas and Missouri.

The finding highlights, not only that the Facebook data can give meaningful information about the extend and location of smoke plume caused by wildfires, but that is has potential to more accurately reveal the air quality at the Earth’s surface than satellite data.

The relationship between the Facebook data and the amount of exposure to particular matter is complex and more difficult to establish. More research into how the two are linked will mean the researchers can quantify the health response associated with wildfire smoke. The findings will be useful for policy and decision-makers when it comes to limiting exposure in the future and have the added bonus of providing a cheap way to improve the predictions, without having to invest in expanding the ground monitor network.

By Laura Roberts, EGU Communications Officer

References

Ford, B., Burke, M., Lassman, W., Pfister, G., and Pierce, J. R.: Status update: is smoke on your mind? Using social media to assess smoke exposure, Atmos. Chem. Phys., 17, 7541-7554, https://doi.org/10.5194/acp-17-7541-2017, 2017.