GeoLog

soil system science

Imaggeo on Mondays: Rocks weather, soil takes form

Imaggeo on Mondays: Rocks weather, soil takes form

This image depicts the soil formation, that is weathering of rock. Soil is actually formed by weathering of rock by physical, chemical and biological methods. This image depicts physical and biological weathering. Physical weathering by the action of temperature and biological weathering by the growth of some species of grass through the cracks. Image clicked from Trivandrum district of Kerala, India.

Description by Alwyn Biju, as it first appeared on imaggeo.egu.eu

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

GeoTalk: Severe soil erosion events and how to predict them

GeoTalk: Severe soil erosion events and how to predict them

Geotalk is a regular feature highlighting early career researchers and their work. In this interview we speak to Matthias Vanmaercke, an associate professor at the University of Liège in Belgium who studies soil erosion and land degradation across Europe and Africa. At the EGU General Assembly he received the 2018 Soil System Sciences Division Outstanding Early Career Scientists Award.

Thanks for talking to us today! Could you introduce yourself and tell us about your career path so far?

Hi! So I am Matthias Vanmaercke. I’m from Belgium. I’m studied physical geography at the University of Leuven in Belgium, where I also completed my PhD, which focused on the spatial patterns of soil erosion and sediment yield in Europe. After my PhD, I continued working on these topics but with a stronger emphasis on Africa. Since November 2016, I became an associate professor at the University of Liege, Department of Geography where I continue this line of research and teach several courses in geography.

At the 2018 General Assembly, you received a Division Outstanding Early Career Scientists Award for your contributions towards understanding soil erosion and catchment sediment export (or the amount of eroded soil material that gets effectively transported by a river system).

Could you give us a quick explanation of these processes and how they impact our environment and communities?

We have known for a long time that soil erosion and catchment sediment export pose important challenges to societies. In general, our soils provide many important ecosystem services, including food production via agriculture. However, in many cases, soil erosion threatens the long term sustainabilty of these services.

Several erosion processes, such as gully erosion, often have more direct impacts as well. These include damage to infrastructure and increased problems with flooding. Gullies can also greatly contribute to the sediment loads of rivers by directly providing sediments and also by increasing the connectivity between eroding hill slopes and the river network. These high sediment loads are in fact the off-site impacts of soil erosion and often cause problems as well, including deteriorated water quality and the sedimentation of reservoirs (contributing to lower freshwater availability in many regions).

Matthias Vanmaercke, recipient of the 2018 Soil System Sciences Division Outstanding Early Career Scientists Award. Credti: Matthias Vanmaercke.

What recent advances have we made in predicting these kinds of processes?

Given that we live in an increasingly globalised and rapidly changing world, there is a great need for models and tools that can predict soil erosion and sediment export as our land use and climate changes.

However, currently our ability to predict these processes, foresee their impacts and develop catchment management and land use strategies remains limited. This is particularly so at regional and continental scales and especially in Africa. For some time, we have been able to simulate processes like sheet and rill erosion fairly well. However, other processes like gully erosion, landsliding and riverbank erosion, remain much more difficult to simulate.

Nonetheless, the situation is clearly improving. For example, with respect to gully erosion, we already know the key factors and mechanisms that drive this process. The rise of new datasets and techniques helps to translate these insights into models that will likely be able to simulate these processes reasonably well. I expect that this will become feasible during the coming years.

 

What is the benefit of being able to predict these processes? What can communities do with this information?

These kinds of predictions are relevant in many ways. Overall, soil erosion is strongly driven by our land use. However, some areas are much more sensitive than others (e.g. steep slopes, very erodible soil types). Moreover, many of these different erosion processes can interact with each other. For example, in some cases gully formation can entrain landslides and vice versa.

Models that are capable of predicting these different erosion processes and interactions can strongly help us in avoiding erosion, as they provide information that is useful for planning our land use better. For instance, these models can help determine which areas are best reforested or where soil and water conservation measures are needed.

They also help with avoiding and mitigating the impacts of erosion. Many of these processes are important natural hazards (e.g. landsliding) or are strongly linked to them (e.g. floods). Models that can better predict these hazards contribute to the preparedness and resilience of societies. This is especially relevant in the light of climate change.

However, there are also impacts on the long-term. For example, many reservoirs that were constructed for irrigation, hydropower production or other purposes fill up quickly because eroded sediments that are transported by the river become deposited behind the dam. Sediment export models are essential for predicting at what rate these reservoirs may lose capacity and for designing them in the most appropriate ways.

At the Assembly you also gave a presentation on the Prevention and Mitigation of Urban Gullies Project (PREMITURG-project). Could you tell us a bit more about this initiative and its importance?

Urban mega-gullies are a growing concern in many tropical cities of the Global South. These urban gullies are typically several metres wide and deep and can reach lengths of more than one kilometre. They typically arise from a combination of intense rainfall, erosion-prone conditions, inappropriate city infrastructure and lack of urban planning and are often formed in a matter of hours due to the concentration of rainfall runoff.

Urban gully in Mbuji-Maji, Democratic Republic of Congo, September 2008. Credit: Matthias Vanmaercke

Given their nature and location in densely populated areas, they often claim casualties, cause large damage to houses and infrastructure, and impede the development of many (peri-)urban areas.  These problems directly affect the livelihood of likely millions of people in several countries, such as the Democratic Republic of Congo, Nigeria, and Angola. Due to the rapid growth of many cities in these countries and, potentially, more intensive rainfall, this problem is likely to aggravate in the following decades.

With the ARES-PRD project PREMITURG, we aim to contribute to the prevention and mitigation of urban gullies by better studying this problem. In close collaboration with the University of Kinshasa in the Democratic Republic of Congo (DRC) and several other partners and institutes, we will study this underestimated geomorphic hazard across several cities in DRC. With this, we hope to provide tools that can predict which areas are the most susceptible to urban gullying so that this can be taken into account in urban planning efforts. Likewise, we hope to come up with useful recommendations on which techniques to use in order to prevent or stabilise these gullies. Finally, we also aim to better understand the societal and governance context of urban gullies, as this is crucial for their effective prevention and mitigation.

Interview by Olivia Trani, EGU Communications Officer

Imaggeo on Mondays: Namibia’s mysterious fairy circles

Imaggeo on Mondays: Namibia’s mysterious fairy circles

The grassy Namibian desert is pock-marked with millions of circular patches of bare earth just like these shown in the picture between linear dunes.

Viewed from a balloon, they make the ground look like a moonscape. Commonly known as fairy circles, the patches range from two to 12 metres across and appear in a 2000 kilometre strip that stretches from Angola to South Africa.

For many decades, the fairy circles extending uniformly over vast areas in the landscape, have puzzled laymen and scientists alike. They are subject to a lively debate and contrary hypotheses on their origin exist. Some researchers claim fairy circles were caused by termites, others propose they are the result of vegetation self-organization.

Description by Hezi Yizhaq, as it first appeared on imaggeo.egu.eu.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: The soil in your veg patch

Imaggeo on Mondays: The soil in your veg patch

Do a search for images of dirt in Google and you might be surprised to find that the vast majority of returned images are of a substance that we ought to be protecting and treasuring, rather than dismissing as something unclean and without value: soil. It’s not the first time we’ve featured this precious resource on GeoLog recently, remember that post about soil in art? It’s not without reason either, soils play a key role in the Earth System.

“The hydrological cycle is determined by soil infiltration, the carbon cycle by soil behaviour as sink or source of CO2, rocks are weathered and form soils, fauna and flora live from and in the soil, and so on,” explains Artemi Cerdá, former president of the Soil System Sciences Division and Lecturer at the University of Valencia.

Soils also have a central role in human societies, as they are the source of services, goods and resources. Food is the most important resource we have from soils. Not only that, there is a cultural heritage for human societies related to soils: complex human organisations developed thanks to agriculture. After 12000 BP, humans developed a new strategy to exploit the land by farming, and since then our entire world was modified: welcome to the Neolithic revolution!

Modern day gardens are the best example of agriculture (in its true form, that is); they transform natural soils into man-made ones which produce vegetables and generate cultural landscapes all over the world. Take Mediterranean gardens, for instance, they hold the key to a millennia old tradition of irrigation, soil management and plants which arrived from all over the world. They are a great example of the interaction of humankind and the Earth System.

“There, in the gardens, a mixture of minerals, water, air, and biota, with the wise management of farmers, results in beautiful landscapes. And they produce food! Mediterranean gardens are one of the most productive due to the wisdom of farmers, the warm climate and the water supplied during drought periods by the flood irrigation,” says Artemi, who is passionate that this heritage must be preserved.

Artemi took today’s Imaggeo on Mondays picture, which shows the Gardens of the Celler del Roure in Les Alcusses valley in Eastern Spain. They produce high quality wine through the sustainable management of their soils, and they also produce their own vegetables. At the same time, they are a creating a modern landscape and perpetuating the heritage of Mediterranean vegetable production.

“One of our options, if we wish to have a sustainable society, is to use the knowledge in our gardens in vacant sites in the cities, in urban sprawl, in our balconies, in city gardens, and especially in our schools and colleagues because if the knowledge is lost we lose the most precious commodity we have. Gardens are more than a source of food; they are a source of culture, inspiration and millennia old knowledge,” concludes Artemi.

By Artemio Cerdá, Lecturer at the University of Valencia and Laura Roberts, EGU Communications Officer.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.