GeoLog

soil science

Could beavers be responsible for long-debated deposits?

Could beavers be responsible for long-debated deposits?

Following her presentation at the European Geosciences Union General Assembly in Vienna, I caught up with geomorphologist and environmental detective Annegret Larsen from the University of Lausanne, Switzerland, about beavers, baffling sediments and a case she’s been solving for the past seven years.

Back in 2012 the German geomorphology community was seriously debating the source of buried black soils, a stark black layer of sediment found in floodplain deposits all over Europe. Such dark sediments are usually associated with organic, carbon-rich materials, like peat. But unlike the other dark deposits, these soils are low in organic carbon, leading to a wide spectrum of ideas about their origin.

“They’re almost everywhere, and many people have had big fights about them and where they come from. Fire might have played a role, or human impact, or a rising water table associated with changes in climate,” explains Larsen.

The soils themselves are quite variable. Some deposits are quite muddy, while some trap fragments of long-dead plants. “They look a little like the relic of a swamp, containing grassy vegetation, sticks, leaves and little nuts, and they’re mainly black,” said Larsen. At the University of Lausanne, Switzerland and the University of Manchester, UK, she and her colleagues have been studying the composition and chemistry of black soils in an effort to understand how they formed.

Recently, Larsen has uncovered a possible connection between the black soil deposits and European beaver habitats. She presented her findings at the annual EGU meeting earlier this month.

The accused: a European beaver. Credit: Per Harald Olson via Wikimedia Commons

The idea began to take shape while Larsen was driving within the Spessart region of Switzerland. During her travels, she had found the soil situated in environments where beaver populations had been dwelling for some 25 years.

“There are huge swamps, what we call beaver meadows. And the vegetation communities are just like the ones found in those deposits,” said Larsen.

This discovery led her to develop a field experiment with the aim to determine whether beavers could be responsible for these puzzling black deposits.

“It’s like a big mystery for me. To find out if the black floodplain soil really come from when there was a widespread beaver population, before humans eradicated the beaver, I need to understand what the beaver does nowadays, and that’s how I started the project.”

Larsen thinks the beaver-created landscapes change with age, and she has been keeping a close watch on four sites across Switzerland and Germany, where beaver communities have been established for up to 25 years.

The long-toothed mammals have striking impacts on the landscape, which differ depending on where they build their dam. Upstream architecture results in beaver cascades, a series of closely packed ponds, each separated by a beaver dam. Down river, efforts go into one ‘megadam’ that stretches across a slow, meandering section of the stream and cause it to spill out into a large swampy floodplain.

The cascades, Larsen describes, are pretty dynamic. “Sediment gets trapped behind each dam, then they get strained, breach and break, causing sediment to flush downstream. It’s collected by the next dam and that then overtops and then that breaks” and the process starts all over again.

One of Larsen’s field sites: the Distelbach beaver reach. Credit: Annegret Larsen

Beaver meadows begin as large expanses of water, ponds teeming with semi-aquatic vegetation. Over time, fine sediment gathers in the ponds. As the sediment builds up, the area becomes a swamp – a patchwork of shrubs, trees, running water and tough, grassy plants. “You definitely get an explosion in diversity, but it’s a complete change, the area becomes a wetland,” adds Larsen.

And the wetland contains plants that resemble those found in the buried floodplain soils.

“For me, it’s fascinating to think about how all our streams would have looked with a beaver in there: before humans impacted those streams, before humans eradicated the beaver, and before [humans] settled there. There must have been beavers everywhere. Every stream would have been a beaver stream. And a beaver stream looks totally different [to what we see today].”

With the deposits all over Europe, it isn’t hard to imagine that, in years past, beavers shaped the streams, swamps and landscapes of the continent. It’s feasible that these regions might have been swampy landscapes at one point in history.

So, are the beavers behind the black soils? “I think we’re on a good path to contribute to this discussion. It’s at least as reasonable as fire and climate,” she replies.

Larsen makes a strong case, but the jury, it seems, is still out.

By Sara Mynott, EGU Press Assistant

Imaggeo on Mondays: Namibia’s mysterious fairy circles

Imaggeo on Mondays: Namibia’s mysterious fairy circles

The grassy Namibian desert is pock-marked with millions of circular patches of bare earth just like these shown in the picture between linear dunes.

Viewed from a balloon, they make the ground look like a moonscape. Commonly known as fairy circles, the patches range from two to 12 metres across and appear in a 2000 kilometre strip that stretches from Angola to South Africa.

For many decades, the fairy circles extending uniformly over vast areas in the landscape, have puzzled laymen and scientists alike. They are subject to a lively debate and contrary hypotheses on their origin exist. Some researchers claim fairy circles were caused by termites, others propose they are the result of vegetation self-organization.

Description by Hezi Yizhaq, as it first appeared on imaggeo.egu.eu.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Iceland’s original birch forest

Imaggeo on Mondays: Iceland’s original birch forest

Iceland is a country of dramatically rugged landscapes. The region is home to sweeping valleys and mountain ranges, dotted with lava fields, large glaciers, hot springs and impressive waterfalls.

The territory is also notoriously treeless. As of 2016, forests only made up 1.9 percent of Iceland, according to the Icelandic Forest Service. However, about a thousand years ago the country’s landscape was far more vegetated, and remnants of Iceland’s original woodlands still exist today.

It is a common misconception that Iceland is too cold to sustain a forest. “On the contrary, it has been observed that, at the time of human settlement, birch woods and scrubs have covered large parts of Iceland,” said Marco Cavalli, a researcher at the Research Institute for Geo-Hydrological Protection in Italy and the photographer of today’s featured image. In fact, Iceland’s fossil evidence suggests that, before human settlement, 25-40 percent of the island was dominated by woodlands and thickets.

When humans migrated to the island about 1100 years ago, much of Iceland’s natural forests were chopped down to make way for fields and pastures. In the centuries following human settlement, intensive sheep grazing and volcanic eruptions prevented forests from regenerating. By 1950, less than one percent of the country was covered by trees.

Iceland’s vegetation-devoid state presents an environmental problem to local Icelanders, since the lack of trees, combined with the island’s volcanic activity, has left the land vulnerable to severe soil erosion. Since the soil conditions prevent vegetation from taking root, erosion has limited farming and grazing efforts. Iceland’s loose soil and strong winds are also responsible for damaging sandstorms.

Soil conservation and forestry services have made substantial efforts to repopulate the Icelandic environment with trees, just about doubling Iceland’s tree cover since the mid-20th century. However, there is still a long road ahead to reach the Icelandic Forest Service’s goal to see 12 percent of Iceland afforested by 2100.

This picture was taken by Cavalli while on a field trip in Rangárvellir, a southern region of Iceland near Gunnarsholt, the headquarters of the Soil Conservation Service of Iceland (SCSI). The workshop focused on the area’s severe degradation from both human activities and natural causes, and efforts to restore the ecosystem.

During the workshop he spotted this particular grove of dwarf birch trees. “I was impressed to see a small remnant patch of the Icelandic original birch forest resisting all these adverse conditions,” said Cavalli. “I would say this is a good example of nature fighting to survive.”

References

Forestry in a Treeless Land, Icelandic Forest Service

Changes in vegetation cover from the time of Iceland’s settlement, Icelandic Institute of Natural History

Vikings Razed the Forests. Can Iceland Regrow Them?, The New York Times

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.