GeoLog

risk assessment

GeoPolicy: Bridging the gap between science and decision makers – a new tool for nuclear emergencies affecting food and agriculture

GeoPolicy: Bridging the gap between science and decision makers – a new tool for nuclear emergencies affecting food and agriculture

Amelia Lee Zhi Yi, the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture

The International Atomic Energy Agency (IAEA) has developed an online system to assist in improving the response capabilities of authorities in the event of an emergency caused by natural hazards. The Decision Support System for Nuclear Emergencies Affecting Food and Agriculture (DSS4NAFA), provides a clear overview of radioactive contamination of crops and agricultural lands through improved data management and visualisation, it also assists in decision support processes by suggesting management actions to decision makers. In this interview, we have the pleasure to introduce Ms Amelia Lee Zhi Yi, working at the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture to speak about DSS4NAFA.

Nuclear Emergency Response (NER) for food and agriculture – why is that important and what does it entail?

In the event of a nuclear or radiological emergency, the response should be swift in the interest of human health. After ensuring the well-being of the population, it is necessary to prioritise the assessment of possible radioactive contamination of crops and agricultural lands to avoid ingestion of radioactivity.

Proper data management, data visualisation and risk communication are essential for efficient response to a nuclear emergency. Factors that should be considered for such response include support for sampling and laboratory analysis, optimal allocation of manpower and analytical instruments, and integrated communication between stakeholders.

To make well-informed decisions on for instance planting and food restrictions, food safety authorities need to have a good understanding of the radiological conditions after a fallout event. This is accomplished through the collection of environmental samples such as soil and plants, and food products that are then analysed using consistent methods in qualified laboratories. Further, these data should be displayed in an intuitive manner so that authorities will be able to interpret the data under stressful, time-bound conditions. Finally, to reduce confusion and clearly communicate decisions made to the public, standardised communication protocols of the decisions made by policymakers need to be implemented.

How can technology assist us in this process? What is DSS4NAFA?

Innovative information technology (IT)-based methods can assist in optimising processes in NER. Some examples include streamlining data transfer using cloud-based platforms paired with mobile technologies, facilitating decision making using advanced visualisation tools, and communicating risk to the public using pre-defined correspondence templates.

The Decision Support System for Nuclear Emergencies Affecting Food and Agriculture (DSS4NAFA), is a cloud-based IT-DSS tool developed by the Soil and Water Management & Crop Nutrition Laboratory, under the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. While it was originally developed as a system for nuclear emergency response management and communication, its ability to discern data quality, to provide user-friendly spatio-temporal visualisations for decision makers, and ease in creation of communication materials makes it a good candidate tool for usage in natural hazard risk mitigation.

The beta version of DSS4NAFA is planned to be released in August 2018 for testing by volunteer member states.

General overview of how DSS4NAFA works. After a nuclear or radiological fallout event affecting food and agriculture, the system assists decision makers by allocating samplers and laboratories according to proximity, allows for data to be input into a mobile device and sent to a cloud server immediately, and visualises data for intuitive decision making (Source FAO-IAEA).

How does DSS4NAFA support public authorities in emergencies?

DSS4NAFA contains modules which provide logistical support to decision makers in defining sampling location, sampler allocation and laboratory allocation. It also functions as a powerful visual interpretation tool that brings together multi-dimensional data usually handled to make decisions on planting and food restrictions in a nuclear emergency response situation.  Some of the functionalities of the modules are as below:

Data management:

  • Standardised data input with pre-determined data entry fields and format
  • Data housed within one server to ensure ease of data analysis
  • All data collected in the field using mobile devices and are sent directly to the server

Data visualisation:

  • GIS based visualisation for instinctive understanding of situation on the ground
  • “Logmap” for at-a-glance sampler and laboratory analyses status
  • Comprehensive information, such as current and historical decision actions, intuitively displayed on the Food Restriction Dashboard

Logistics and decision support:

  • Sampling assignments proposed based on crop calendar and land use type
  • Food and planting restrictions suggested based on the movable levels set by authorities
  • Public communication module

 

The Food Restriction Dashboard is a platform in DSS4NAFA whereby radioactivity information is collated considering the spatial distribution and time resolution of the accident, and suggests food and planting restrictions based on the level of risk and the specified tolerance levels (Source FAO-IAEA).

What feedback did you get from real users during the design/development of the DSS?

The development of DSS4NAFA was highly iterative and findings from the process were invaluable. Some lessons learned during its development include the necessity for stakeholder involvement during the design process, the usage of a “one-house approach” for centralised data, and the importance of building a tool that is flexible enough to be used during emergency response and routine monitoring operations.

The system has generated a lot of interest when shown during several IAEA workshops and conferences such as at EGU, indicating the need for this type of system.

What do you think will be the main challenges in the application of the DSS4NAFA?

Two challenges are foreseen in the deployment of DSS4NAFA. The first is to explain the benefits of the system to countries with pre-existing Nuclear Emergency Response systems. We are confident that we can succeed as DSS4NAFA is modular, thus Member States can select and implement the components that suit their needs best.

Secondly, there could be some learning associated with the implementation of DSS4NAFA. To facilitate this process for governmental data analysts, user experience will be one of the major focus for improvement during the beta testing phase. We strive to develop DSS4NAFA such that the system will be intuitive for use to its fullest potential, even with minimal prior training.

The development of DSS4NAFA is part of the Joint FAO/IAEA Division Mandate in Preparedness and Response to Nuclear and Radiological Emergencies Affecting Food and Agriculture to promote the management of intra- and interagency emergency preparedness and response to nuclear accidents and radiological events affecting food and agriculture, including in the application of agricultural countermeasures.

by Jonathan Rizzi, Norwegian Institute of Bioeconomy Research

Jonathan Rizzi is the incoming ECS representative for the EGU’s Natural Hazard division. He has a bachelor in GIS and Remote Sensing and a master and a PhD in Environmental Sciences. He is a researcher at the Norwegian Institute of Bioeconomy Research and has worked in the field of climate change and risk assessment for the last several years.

Editor’s Note: This post first appeared on the EGU Natural Hazards (NH) Division blog. Read the original post here.

GeoPolicy: Assessing environmental and social impact – applying policy in big industry

GeoPolicy: Assessing environmental and social impact – applying policy in big industry

Former EGU Science Communications Fellow Edvard Glücksman is our second guest blogger for the newly established EGUPolicy column. Edvard is a Senior Environmental & Social Specialist at the UK-based consultancy Wardell Armstrong and an External Stakeholder Affiliate at the University of Exeter. He describes his work along the research-policy-industry interface.

The collapse of a wastewater dam at an iron ore mine last November left 19 dead and triggered an environmental crisis in Brazil’s River Doce basin. The mine is a joint venture between Vale SA and Australian-owned BHP Billiton, and the operators are now expected to pay the Brazilian government around USD $7 billion in compensation for environmental and community damages.

Such large-scale industrial accidents devastate entire communities and inflict long-term reputational damage to local and international companies working in the area. In my role at Wardell Armstrong, an independent UK-based consultancy, I work to align project design and operational layout to national policy frameworks and international standards of best practice, such as the World Bank’s IFC Sustainability Framework.

Improving the deal for local communities

Independent Environmental and Social Impact Assessment (ESIA) studies are a fundamental requirement for operators to secure funding from increasingly careful lenders, who are reluctant to invest in projects that threaten to damage their reputation. By identifying, mitigating, and managing negative impacts of industrial projects, I work to reduce a project’s risk to the environment and nearby communities.

Conventional environmental impact assessments focus on a range of variables, such as water use and quality, noise and vibration, air quality, soils, or greenhouse gas emissions. Increasingly, these are complemented by cultural, economic, and demographic variables, as well as ecosystem services, which frame natural ecosystems according to their economic contribution to society. Public participation, known as stakeholder engagement, is a key element of the ESIA process.

Under the broader umbrella of the rapidly emerging notion of Corporate Social Responsibility (CSR), I also liaise with project operators to maximise the short- and long-term positive contribution of industry to local communities. As a result of decades of expensive reputational damage, the mining industry has been particularly proactive in implementing CSR schemes, convening the biggest players under the auspices of the International Council on Mining & Metals (ICMM).

CSR is the idea that companies should positively contribute to society, above and beyond legal and profit-making commitments. Although hardly a new or radical concept, the notion that industry should be socially responsible is brought to the fore by heightened scrutiny of industrial accidents. Negative publicity, amplified by social and conventional media, sways public opinion and investor confidence, translating into financial risk. As CSR progressively enters national and international policy agendas, including across the EU, an increasingly diverse range of companies and industries adopt its tenets as a core part of their business model.

Tools for the next generation

I ended up in this job after several years of juggling primary research and science policy work. My doctoral thesis was in biology but, having studied sociology in an undergraduate degree, I always enjoyed working at the interface of science and society. During my doctoral years, I also took regular breaks from the lab, including on Secondment to the UK Parliamentary Office of Science & Technology (POST).

In my experience, most of today’s science jobs require interdisciplinary thought and keen communication skills. As a consultant, I apply natural and social science concepts across the private sector, bridging the gap between researchers, the policy arena, and profit-driven industrial stakeholders. Having previously worked in science communication roles, including at the EGU, I have a keen appreciation for the role of accessibility within the policymaking arena. In industry, where non-specialists frequently juggle with confusing scientific concepts, compounded by cultural discrepancies and linguistic barriers, the role of communication skills are thus just as vital as technical ability.

When working within and around policy issues, some of the biggest impacts can be achieved by raising awareness to the next generation of policymakers. To that end, I also lecture undergraduates at the University of Exeter about broader sustainability issues, industry-community relations, and the impact assessment process. Some of my students are mining engineers and, although the environmental and social dimensions of industrial projects are increasingly in the limelight, conventional engineering modules rarely highlight the importance of these ‘softer’ dimensions of their trade. As policy requirements become more stringent and the investment community becomes increasingly risk-averse, university courses will steadily shift to reflect the changing landscape.

Edvard Glücksman, Senior Environmental & Social Specialist at Wardell Armstrong

Edvard Glücksman at the Wardell Armstrong's Turo office, built on the site of the Wheal Jane mine in Cornwall, UK

Edvard Glücksman at the Wardell Armstrong’s Truro office, built on the site of the Wheal Jane mine in Cornwall, UK

 

Call for abstracts: The 9th Alexander von Humboldt Conference

The Alexander von Humboldt Conference is part of the EGU’s Topical Conference Series, and will be taking place in Istanbul, Turkey (24 – 28 March 2014). The aim of the meeting is to open a forum on natural hazard events that have a high impact and a large destructive potential, focussing on the Euro-Mediterranean Region in particular.

The theme for the conference can be broken down into nine broad areas:

  • Physical and Probabilistic Approaches to Earthquakes
  • Physics and Characterisation of Tsunamis
  • Monitoring and Risk of Volcanic Hazards
  • Hydro-Meteorological Hazards
  • Other High Impact Mediterranean Hazards (e.g., asteroid impacts, wildfires, terrigenous and submarine landslides, flooding, storm surges)
  • Complexity Analysis Approaches to Natural Hazards
  • Loss Models and Risk Assessment for Natural Catastrophes
  • What constitutes a prediction, what does not? Good Practice when Proposing Predictions of Natural Hazards
  • Communications and Education of Natural Hazard Knowledge  in the Mediterranean Region to Policy Makers, Students and the Public

In addition to the broad scientific topics, the conference will address risk assessment, communicating with the public and policymakers, and what is appropriate good practice when proposing natural hazard “predictions”.

You can submit your abstract to any one of the topics listed above until 31 January 2014. You can  register for the conference here.

Looking out over the Bosphorus from the conference location – great science and a great view! (Credit: Ali Ozgun Konca)

Looking out over the Bosphorus from the conference location – great science and a great view! (Credit: Ali Ozgun Konca)

To find out more about the 9th Alexander von Humboldt Conference: High Impact Natural Hazards Related to the Euro-Mediterranean Region, please see the conference website.

Update (07/01/13): Abstract submission and registration deadline extended to 31 January 2014.