GeoLog

Horizon 2020

GeoPolicy: Horizon Geoscience!

GeoPolicy: Horizon Geoscience!

For the last few months the EGU has been working towards both hosting a dinner debate in Brussels, Belgium, and publishing the Horizon 2020 Geoscience Survey Report which was based on a survey conducted within the geoscience community earlier this year. Both of these endeavours were undertaken together with the European Federation of Geologists (EFG) and had similar aims: to enhance collaboration between policymakers and scientists and to improve the geoscience community’s science-policy engagement.

Horizon 2020 Geoscience Survey Report – key findings

Earlier this year, the EGU together with the EFG, conducted the Horizon 2020 Geoscience Survey to collect feedback on areas of the EU’s Horizon 2020 research funding programme that the geoscience community felt should be continued or extended and those which could be improved upon in the upcoming EU research framework programme, Horizon Europe.

This survey was conducted during the 2018 EGU General Assembly and many of you may remember either completing it or seeing posters around the convention centre advertising the opportunity.

Does this look familiar? Advertisement for the Horizon 2020 Geoscience Survey

Due to its thematic diversity and its size, the geoscience community has a significant representation within European research programmes. The survey aimed to give researchers who have taken part in Horizon 2020, or who plan to take part in Horizon Europe, the opportunity to voice their opinion.

Although the survey asked a wide variety of questions, only those where clear results were found were included in the Horizon 2020 Geoscience Survey Report. However, all of the survey responses (quantitative and qualitative) can be seen online here. Qualitative responses supported by the quantitative answers and cited by numerous survey respondents were also included in the report and give insight into some of the answers from respondents.

The full report was publicly released during the Horizon Geoscience dinner debate (which is summarised below) along with a more condensed 2-page summary. Some of the key results that are outlined in detail in the report include:

    1. 1. Generally, survey respondents felt very positively about the impact that the Horizon 2020 Programme had on collaboration (both across EU countries and between scientific disciplines)

 

 

    1. 2. Despite many areas within the geosciences being used by the private sector, survey respondents generally felt that Horizon 2020 had only been moderately successful in generating private sector investment within the geosciences. 48% of respondents believed that the programme was somewhat generating private sector investment, but only 6% thought it was generating it to a large extent.

    3. 24% of respondents thought that the distribution of projects between applied and fundamental research was not fair at all.

For more details on these results and others, please read the full Horizon 2020 Geoscience Survey Report.

Horizon Geoscience: overcoming societal challenges, creating change

The Horizon Geoscience dinner debate was held on the evening of September 26 in Brussels. Co-organised by the EFG, the event included a mix of scientists, industry leaders and policymakers from a range of different areas within the Commission.

Panel members during the Horizon Geoscience dinner debate. From Left to right: Jonathan Bamber, John Ludden Lieve Weirinck, Jean-Eric Paquet and Vitor Correia

The evening was opened by both the EGU President Jonathan Bamber and the EFG President Vitor Correia. As EGU’s policy officer, I presented some of the key results from the Horizon Geoscience Survey, after which Iain Stewart set the scene for the evening.

One of the highlights of the evening was the high-level panel session which gave the evening’s participant’s the opportunity to hear from respected representatives from the EU Parliament, EU Commission, and geoscience community, namely:

  • Lieve Wierinck, Belgian Member of the European Parliament,
  • Jean-Eric Paquet, Director-General at the European Commission’s DG for Research & Innovation
  • John Ludden, British Geological Survey Chief Executive

The round-table discussions that were held during dinner also sparked a lively debate and highlighted things that need to be addressed to tackle societal challenges

Some of the key things that were mentioned during these round-table discussions included the importance of increasing public trust in both science and policymaking, the need for greater dialogue between the sectors, and the need to integrate early career scientists within industry, academia and policy.

For an extensive summary of the dinner debate please see the EGU news item, EGU and EFG establish dialogue with policy makers on how the geosciences can help overcome Europe’s major societal challenges.

If you have any questions regarding the report of the Horizon Geoscience dinner debate, please don’t hesitate to get in touch via policy@egu.eu.

GeoPolicy: The importance of scientific foresight

GeoPolicy: The importance of scientific foresight

Many of the issues that society currently faces are complex and research on just one angle or area does not provide sufficient information to address the problem. These challenges are compounded when more than one region (or even the entire planet) is impacted. Many of the decisions and legislations passed by governments today will go on to impact how these issues either develop or are resolved years into the future.

How do governments ensure that the decisions they make are sustainable – that they will not only produce short-term benefits but will also go onto benefit our children and grandchildren to come?

Scientific foresight

Scientific foresight informs policymakers about future challenges and opportunities, allowing them to follow a systematic approach to determine where actions and changes in policy are required.

While this may sound simple, it is actually far from it! Foresight requires a comprehensive understanding of what the potential consequences of the decision (or lack thereof) are. This may include: the potential benefits, how severe the issue is likely to be in a business-as-usual scenario, what steps can be taken to minimise the issue, which regions or areas are more likely to be heavily impacted and what the environmental, social and economic costs are likely to be over various time scales.

The information and likely future scenarios that foresight studies provide allow policymakers to:

    • better evaluate current policy priorities
    • assess the impact of upcoming policy decisions in combination with other possible developments or challenges
    • take actions that are able to pre-emptively minimise risks or expand opportunities
    • identify new partners and create new connections (both internally and internationally)
    • anticipate new technologies and societal demands and implement policy that helps to facilitate them

One example of where foresight is particularly useful is climate change. Foresight helps policymakers to understand what the impacts of climate change will be, where they will be the most severe and what legislation can be passed to minimise the risk and long-term costs without burdening the present generation.

What sort of issues do foresight studies research?

The issues that are research in foresight studies are extremely far reaching. Below are just a few examples of themes that have been previously researched.

Just of a few of the areas considered in scientific foresight studies

 

How to get involved with foresight research?

At a European level, foresight processes are integrated with other EU scientific advice processes such as: informal expert groups, the Research, Innovation and Science Expert Group (RISE), the Horizon 2020 Programme, the EU’s Scientific Advice Mechanism (SAM). While it is possible for scientists to become involved through each of these platforms, the most researcher-friendly option is likely to be the Horizon 2020 Programme. You can find out more about Horizon 2020 and how its projects are advertised in our July GeoPolicy blog.

If you are living outside of the EU, knowing which organisations are working on foresight studies in your area is a good start. Almost every national government undertakes some form of foresight research. Not only this, but there are also larger regional or global initiatives undertaken by international organisations, such as the UNDP and ASEAN, as well as a large number of consultancies that undertake foresight studies and develop prioritised action plans.


Why aren’t foresight studies publicised?

Actually, they are! Governments, particularly the EU Commission, love to highlight the various foresight studies that are being used to guide policy decisions because they are generally of interest to the public and demonstrate that much of the legislation enacted is based on research.  The links in the further reading section below will lead you to some of these studies.

Being a policy related blog, this post has naturally focused on the governmental and legislative use of foresight research. However, foresight can and should be used to steer both business and personal decisions. From financial investments to our education, having a greater understanding about what the future holds enables us to make more informed decisions that are more likely to have the outcome we desire! Perhaps this is just another reason to support scientific foresight and its distribution in formats more people are able to read.

Further reading 

 

GeoPolicy: How can geoscientists make the most of the Horizon 2020 programme?

GeoPolicy: How can geoscientists make the most of the Horizon 2020 programme?

As a geoscientist, I’m sure that you have heard of Horizon 2020, an EU programme that is allocating almost €80 billion to research and innovation over 7 years (from 2014 to 2020). This money is distributed throughout various scientific divisions and provides a plethora of opportunities for scientists, not only within the EU but also throughout the world.

Unfortunately, the magnitude of the Horizon 2020 programme has resulted in all the potential opportunities and openings offered to scientists, research institutes and innovators being difficult to navigate.

Luckily for you, this blog will outline some of the most relevant Horizon 2020 geoscience opportunities so that you don’t have to spend hours trying to map out the many existing options!

Horizon 2020: a summary

The Horizon 2020 programme follows the seventh Framework Programme for Research and Technological Development (FP7), which ran from 2007 until 2013 with a budget of just over €50 billion. Research framework programmes were initially established by the EU to coordinate national research, pool research funding, increase knowledge sharing and reduce duplication.

Horizon 2020 aims to generate world-class science and technology to drive economic growth within the EU and be bigger, simpler and smarter than previous programmes. It consists of three primary research and innovation pillars:

In addition to these three pillars, there are two horizontal and three smaller programmes. These pillars and programmes are depicted in the figure below.

 

Horizon 2020 Structure. Credit: http://cerneu.web.cern.ch/horizon2020/structure

 

Each pillar and programme offers funding and opportunities that you may be able to access depending on the focus of your research. This blog will focus on Excellent Science as this is believed to be the most relevant pillar to the geoscience community.

Excellent Science

As you can see in the figure above, the Excellent Science Pillar has four primary components, all of which offer opportunities to researchers.

  1. European Research Council’s frontier research encourages high-risk, high-reward proposals in an attempt to generate revolutionary science and innovation by providing a number of different grants, including:

 

    • ERC Starting Grants: support talented early-career scientists (with 2 – 7 years of experience) who have already shown potential as a research leader
    • ERC Consolidator grants: fund researchers with 7 – 12 years of experience who would like to consolidate their independence or who would like to strengthen a recently established, independent research team
    • ERC Advanced Grants: empower individual researchers who have already established themselves as independent research leaders
    • Proof of Concept Grants: are secondary sources of funding for researchers who have already received an ERC grant for the frontier research project and now want to explore the commercial or societal potential of their work

2. Future and emerging technologies supports the following collaborative research initiatives that aim to extend Europe’s capacity for advanced innovation:

    • FET Open: funds projects that focus on new technologies and that are in the early stages of development
    • FET Proactive: seeks to establish a critical mass of European researchers on emerging, exploratory themes and ultimately build-up a new interdisciplinary research community
    • FET Flagships: fund 10-year initiatives that involve hundreds of European researchers who focus on solving an ambitious scientific and technological challenge e.g. developing uses for new materials such as Graphene

3. Marie-Sklodowska-Curie individual fellowships provide innovative research training, attractive career options and knowledge-exchange opportunities to scientists across all disciplines. Key opportunities within this fellowship that may appeal to geoscientists include:

    • Innovative Training Networks (ITN): provide up to four years of funding for a joint doctoral-level research training programme that is implemented by at least three partners from in and outside academia
    • European Researchers’ Night (NIGHT): is a Europe-wide public event dedicated to the sharing of science and engaging the public. The next NIGHT will take place on the 29thof December 2017 in over 300 EU cities. Find a NIGHT near you!

For information about science-policy fellowships and training opportunities you can also visit last month’s GeoPolicy blog on science-policy placements.

4. Research infrastructure (including e-infrastructures) aims to further European research infrastructure for 2020 and beyond. The primary geoscience related outcome of this Excellent Science component is:

As well as the opportunities within the Excellent Science pillar of the Horizon 2020 programme, there are numerous overarching initiatives, tenders and training courses which may be of interest to some geoscientists

  • Researchers are able to join the Horizon 2020 Database by creating a profile outlining their relevant fields and experience. Once registered, researchers may be called upon to provide expert advice and contribute to various projects, evaluations and policy designs
  • Scientists can also play a more active role by submitting a proposal through the Horizon 2020’s Call for Proposals. These calls are continually updated and require a collaborative approach with at least 3 organisations from different EU Member States or associated countries. Various EU partner search services are available for researchers who want to contribute to a project but who are lacking collaborators
  • The Horizon 2020 programme runs innovation competitions. These competitions revolve around prominent societal problems and offer cash prizes to whoever can find the most effective solution or best meet the defined challenge
  • Research institutes within widening countries may find the Spreading Excellence and Widening Participation scheme particularly beneficial. Primarily focused on Eastern Europe, it has several initiates that aim to ensure the equal division of innovation and subsequent social and economic benefits across the EU

Despite offering so many opportunities to researchers, the Horizon 2020 programme is not without criticism. Like almost all funding programmes, it is highly competitive.

The proposals submitted during the first 100 Calls for Proposals within the Horizon 2020 programme only had a 14% success rate. While not a surprising percentage, it is approximately 6% lower than the overall proposal submission rate success for the previous research Framework Programme (FP7). The grant and proposal style of funding has also been said to fuel the propagation of casual academic contracts. These casual contracts often result in high competition for positions and increased pressure on researchers due to the continuous tendering and application process.

The Horizon 2020 programme has released an Interim Evaluation Report which despite not mentioning the proliferation of casual contracts, did acknowledge the need for additional funding, intensified international cooperation and greater data accessibility. The Interim Report also highlighted the Horizon 2020’s successes including increased efficiency compared with its FP7 predecessor, scientific breakthroughs, the generation of economic growth within the EU and the strengthening of research infrastructure.

Research and innovation funding post 2020 is yet to be secured but potential for continued growth within the sector was discussed during the Research & Innovation – Shaping our Future conference and in the Investing in the European Future We Want publication.

For further information regarding the Horizon 2020 programme and other EU funding instruments, you can email the Research Enquiry Service or Horizon 2020 National Contact Points.

References 

GeoPolicy: Have your say on Horizon 2020

GeoPolicy: Have your say on Horizon 2020

The European Union provides almost 75 billion euros of funding through the Horizon 2020 scheme. This money can fund research projects, studentships, post-doctorates and scientific outreach (to name but a few!). The EU is now calling for feedback and comments about the scheme. This month’s GeoPolicy explains how you can have your say.

 

Are you a PhD student funded by European Research Council (ERC) or have you received grants from the ERC? If so, this money will have come from the Horizon 2020 (H2020) scheme, funded by the European Union (EU).

Essentially, H2020 provides financial support to scientists and businesses wishing to establish projects that overlap with the EU’s policy objectives (promoting excellent science that benefits society). H2020 was introduced in more detail in a previous GeoPolicy post entitled ‘An overview of EU funding for the Earth, atmosphere, and space sciences’. The scheme runs from 2014 to 2020. Now, at this halfway stage, the EU requesting feedback through an online survey.

The objective of the consultation is to collect information from a wide audience on different aspects of the implementation of the Joint Undertakings operating under Horizon 2020.

The survey is open to all and feedback will be used to improve the second half of H2020 and to support discussions currently being conducted on the next EU funding project: FP9 (Framing Programme 9, 2021-2030).

Contributions are particularly sought from researchers, industry, entrepreneurs, innovators and all types of organisations that have participated in Horizon 2020 and in calls for proposals published by the Joint Undertakings in particular.

So, if you have been part of the H2020 process then consider completing the survey. Deadline for complete is the 10th March 2017.

LINK TO SURVEY

 

NB: Applying for ERC research grants is done through the EU Participant Portal. More details about the process can be found here.