GeoLog

hazards

Imaggeo on Mondays: Recreating monster waves in art and science

Imaggeo on Mondays: Recreating monster waves in art and science

Featured in this blog post is a collection of images that gives a picture-perfect example of life imitating art.

The photos in the left column are three consecutive still frames of a breaking wave that scientists generated in a lab environment at the University of Edinburgh in the UK. The pictures in the centre and right columns show the same wave images, but now superimposed with the famous 19th century Japanese woodblock print, The Great Wave off Kanagawa.

While the images were produced on opposite sides of the Earth with a few hundreds of years between their creation, the curves and edges of the waves are very similarly positioned.

“Completely coincidentally, in a strange twist of fate, the wave we created bears striking resemblance to The Great Wave off Kanagawa, painted many years ago by the Japanese artist Katsushika Hokusai,” said Mark McAllister, a researcher at the University of Oxford in the UK. He is part of a team of scientists working to better understand the dynamics of freak waves – waves that are unexpectedly large in comparison to the waves that surround it.

The images also highlight the similarities between artists and scientists that often are overlooked: while art and science are different in many ways, both involve observing and trying to interpret their surroundings. The wave simulation photos and the woodblock print both visualise a common endeavor: recreating nature to better understand it.

Simulating monster waves

The photographs in the left column feature the recreation of a very particular wave that took form in 1995 in the North Sea, known as the Draupner freak wave. This particular surface wave was one of the first confirmed observations of a freak wave at sea. The Draupner Oil Platform had taken measurements of the event, reporting that the wave was 26 metres tall (more than twice as tall as the surrounding waves). Rogue waves as high as 30 metres had been reported by sailors and scientists for many years, but until the 20th century there was wide disbelief from the scientific community that such waves were more than myth.

“The measurement of the Draupner wave in 1995 was a seminal observation initiating many years of research into the physics of freak waves and shifting their standing from mere folklore to a credible real-world phenomenon,” said McAllister in a recent press release.

Such rogue waves are capable of causing heavy damage to large ships, and by recreating the Draupner freak wave, McAllister and his colleagues are trying to better understand how this marine phenomenon occurs.

Experiments were carried out in the FloWave Ocean Energy Research facility at the University of Edinburgh. The facility has a circular basin equipped with wavemakers around the entire circumference, allowing scientists to generate waves from any direction and recreate complex wave conditions.

The research team was able to simulate this wave on a smaller scale by crossing two different wave groups at a large angle. They found that when the two wave groups hit each other at 120 degrees, this allowed the freak wave to take shape.

Typically, wave breaking in the ocean limits the maximum height of waves. But when waves cross each other at large angles, wave breaking behaviour changes, removing typical height limitations.

Monster wave immortalised in print

The Great Wave off Kanagawa, one of Hokusai’s most famous prints, depicts three crewed boats at sea, seemingly seconds away from crashing into a monstrous wave, with Japan’s Mount Fugi sitting in the distance. The work is often interpreted to symbolize the eternity and formidable force of nature compared to the frailty of humans.

While the print is often considered to be an artistic representation of a tsunami, one study argues that the features and conditions are more similar to a freak wave event. By using the boats and the mountains as reference points, the researchers involved in the study estimate that the great wave is approximately 10-12 metres in height.

While many artists distort reality to enhance and highlight certain aspects of their work, the researchers point out that Hokusai’s work is likely to be representative of nature, noting that he strove for years to understand the structure of his surroundings and draw them accurately in his art. In the afterward of his 1834 collection of prints containing The Great Wave of Kanagawa, Hokusai writes:

“Since the age of six, I had a habit of sketching from life. From fifty onwards I began producing a fair amount of art work, but nothing I did before the age of seventy was worthy of attention. At seventy-three, I began to grasp the structures of birds and beasts, insects and fish, and of the way plants grow.

If only I go on trying, I will surely understand them still better by the time I am eighty, so that by ninety I will have penetrated to their essential nature. At one hundred, I hope I may have a divine understanding of them, while at one hundred and ten I may have reached the stage where every dot and every stroke I paint will be alive. May men of great age and virtue see that I am not hoping for too much!”

By Olivia Trani, EGU Communications Officer

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: A painted forest fire

Imaggeo on Mondays: A painted forest fire

This week’s featured image may appear to be a painted landscape, but the picture is in fact a photo, taken ten years ago by Victoria Arcenegui, an associate professor at Miguel Hernández University in Spain, during a controlled forest fire in northern Portugal.

The blaze is actually hot enough to distort the image, making some of the flames appear as brush strokes, beautifully blurring together the colours of the fire, trees and smoke.

Intense heat such as this influences how light travels to both the human eye and a camera lens. As air warms it expands, while colder air becomes denser. As a result, light travels quicker through thinner warm air but is refracted more in denser cool air. So when there are shifting pockets of cold and hot air, the speed of light through air is constantly changing, creating a shimmering effect.

The prescribed fire in this photo is not only showcasing an interesting phenomenon, but is also providing an important service to the region’s ecosystem. For decades, forest fires were often considered detrimental to the environment, however, researchers say that small natural fires help strengthen ecosystems. For example, by burning old dead vegetation, these fires cycle nutrients back to the soil and clear space for new plants to grow. In addition, some plant rely on fires to spread or activate seeds. Historically, many wildlife management programmes prevented smaller fires from removing vegetation, subsequently creating overgrown forests, which are more susceptible to larger, more destructive fires.

Now, many researchers are studying the effectiveness of prescribed burning, where forests are periodically set on fire in a controlled setting to replicate the ecological impact of natural fires and reduce wildfire risk.

By Olivia Trani, EGU Communications Officer

References

Santín, C. and Doerr, S. H.: Fire effects on soils: the human dimension, Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1696), 20150171, doi:10.1098/rstb.2015.0171, 2016.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

A better framework for disasters

A better framework for disasters

The end of the Northern hemisphere summer tends to be a good time to regroup from natural hazards, as the frequency and intensity of storms, as well as the incidence of wildfires, tends to trail off. At the time of writing, however, Hurricane Willa had just crashed into Mexico, while Typhoon Yutu has just hit the Northern Mariana Islands so hard that any equipment designed to record wind-speed had been swept away. Both storms rapidly strengthened, and the latter was described by the US National Weather Service as ‘likely [to] become the new yard stick by which future storms will be judged.’

Super Typhoon Yutu (24 October 2018) making its way towards the Northern Mariana Islands, a territory of the United States. (Photo: Joshua Stevens/NASA Earth Observatory)

What if we changed the way we think about such events, though? What if, instead of focusing on the wind-speed of a typhoon or the magnitude of an earthquake, the first points of discussion were about the human aspect and impact associated with a specific event. How would this summer’s events be framed? It’s a crucial distinction; natural disaster is in some ways a paradox in terms – although the hazard, or physical manifestation, of a hurricane or earthquake is natural, the impacts, and thus the disaster, are entirely a result of human exposure and vulnerability. Let’s first explore some of the most dramatic themes from this summer’s disasters, and then try and put them in this new human context.

What links this summer’s events?

The recent Hurricanes – Yutu, Willa, Florence and Michael – encapsulate well the intensity and frequency at which we’ve seen disasters come over the last few months. Earthquakes, storms, droughts and wildfires have all caused havoc in a hugely diverse spectrum of locations, and while the specter of natural hazards is always present in many parts of the world, there seems to be something more intense and urgent with respect to this summer’s catastrophes, especially in the media coverage.

The availability of smartphones and the proliferation of social media use means we can see ever more easily from the safety of our homes what others experience in terror during disasters; who could forget the scarring imagery from the earthquake and tsunami in Lombok in September, as houses were tossed about like toys as the ground turned to liquid.

Elsewhere, Japan experienced a plethora of hazards as flooding, typhoons, landslides, earthquakes and drought brought a whole range of challenging conditions which caused a large number of fatalities, despite Japan’s status as one of the best prepared countries in the world for natural hazards.

Much of the media discussion related to disasters has focused on the links between hazards and climate change, and whether the severity of events like Hurricane Florence can be attributed in part to anthropogenic emissions. While it has historically proven difficult to attribute the strength of different storms to climate change, this summer marked the first time scientists attempted it in earnest while an event was taking place – some researchers argued that the rainfall forecast for Hurricane Florence was 50% higher than it would otherwise have been, although such estimates are still in their infancy. What is clearer from scientific predictions of future climate change is that storms will likely be stronger, wetter and slower moving, suggesting similar intense storms could become more normal.

Beyond tropical storms, records were broken by other catastrophes. The Northern hemisphere wildfire season was among the worst we’ve ever experienced on record, at least in terms of acreage burned. Californian fires were so intense that smoke was noticeable on the East Coast, while the extent of fire in western Canada was second only to the cataclysmic fires last year. Abnormally warm temperatures in Scandinavia prompted wildfires to break out north of the Arctic circle, an extremely rare and concerning occurrence.

A different way to think about catastrophes

While it’s interesting and important to discuss the potential for increased storm severity as a result of climate change, it seems that this should only form a part of the larger discussion: how will trends in climate co-evolve with trends in human exposure and vulnerability to hazards? Similarly, why focus on the numbers associated with a disaster – the earthquake magnitude, the depth of flooding, acres of forest burned – when we could instead look at who has been impacted, and how to prevent this in the future.

It’s especially important to frame the ‘cost’ of a given event in this context. Often, we think of cost in either loss-of-life or financial terms, but it’s worth considering those as functions of exposure and vulnerability. For example, Hurricane Florence, which recently made landfall on the US eastern seaboard, is likely to cost  40-50 billion US dollars. Compare this to Hurricane Maria, which devastated Puerto Rico in 2017; some estimates for the cost of the storm were around 100 billion US dollars. While Hurricane Maria cost roughly twice as much as Florence, the relative impact on Puerto Rico was far greater than that value would imply. The vulnerability of the economy of Puerto Rico to a disaster of that scale was far higher than the mainland US; with a GDP of over 10 trillion US dollars, the US economy can absorb shocks like Florence, but the GDP of Puerto Rico declined by a massive 8% in the aftermath of Maria. It is worth noting that Puerto Rico is in fact a territory of the US, and received federal funding to assist with recovery – so the economic impact might even have been more severe without it.

U.S. Customs & Border Protection & FEMA personnel deliver food and water to isolated Puerto Rico residents after their bridge was destroyed by Hurricane Maria in the mountains around Utuado, Puerto Rico (Photo: U.S. Air Force/Master Sgt. Joshua L. DeMotts via FEMA)

We can build the same framing for loss of lives; countries with well-developed disaster response and recovery mechanisms suffer significantly fewer fatalities in the face of a similar magnitude event to a poorly equipped country, all things being equal. This kind of social vulnerability to disaster is difficult to quantify, and encompasses a range of aspects including cultural awareness of natural hazards and healthcare expenditure, but it has to be considered alongside the trends in hazard intensity.

I would argue that coverage of (and research related to) disasters needs to shift away from the headline numbers, like skyrocketing costs or the increasing intensity of storms and wildfires, and instead discuss whether disasters are hitting harder in places that are more vulnerable, or whether the relative economic or human exposure to a given type of disaster is worsening or not. While it’s fascinating to see images of multiple hurricanes over a single basin, it’s an incomplete picture unless the risk is incorporated.

Flash flood impacts in Peru after torrential rain in 2013 (Photo: Galeria del Ministerio de Defensa del Perú via Flickr)

Reframing our vision of disasters would put the focus squarely on where inequality and climate change interact; if more vulnerable developing countries or regions are expected to be more exposed to disasters under a changing climate, then there is real potential for inequalities to be exacerbated – and this is indeed what the UN anticipates will occur. More fundamentally, reframing would help us shift away from a coldly analytical perspective of ‘disasters by the numbers’ and instead consider where the worst impacts would be, and who the people at risk are. While trends in the developed world indicate fewer and fewer deaths from disasters over the last 100 years, many countries don’t have the same capacity to absorb shocks.

The human tendency to dwell on the extraordinary, and the ephemeral nature of modern news coverage certainly encourages reporting to focus on the records broken by a given event. Perhaps it’s futile to add another voice to the many that have already asked for more context and temperance from such coverage, but it seems important to highlight that there may be other ways to cover disasters; those affected may benefit greatly, in both the long and short term.

Robert Emberson is a Postdoctoral Fellow at NASA Goddard Space Flight Center, and a science writer when possible. He can be contacted either on Twitter (@RobertEmberson) or via his website (https://robertemberson.com/)

Editor’s note: This is a guest blog post that expresses the opinion of its author, whose views may differ from those of the European Geosciences Union. We hope the post can serve to generate discussion and a civilised debate amongst our readers.

Imaggeo on Mondays: Hole in a hole in a hole…

Imaggeo on Mondays: Hole in a hole in a hole…

This photo, captured by drone about 80 metres above the ground, shows a nested sinkhole system in the Dead Sea. Such systems typically take form in karst areas, landscapes where soluble rock, such as limestone, dolomite or gypsum, are sculpted and perforated by dissolution and erosion. Over time, these deteriorating processes can cause the surface to crack and collapse.

The olive-green hued sinkhole, about 20 m in diameter, is made up of a mud material coated by a thin salted cover. When the structures collapse, they can form beautiful blocks and patterns; however, these sinkholes can form quite suddenly, often without any warning, and deal significant damage to roads and buildings. Sinkhole formations have been a growing problem in the region, especially within the last four decades, and scientists are working hard to better understand the phenomenon and the risks it poses to nearby communities and industries.

Some researchers are analysing aerial photos of Dead Sea sinkholes (taken by drones, balloons and satellites, for example) to get a better idea of how these depressions take shape.

“The images help to understand the process of sinkhole formation,” said Djamil Al-Halbouni, a PhD student at the GFZ German Research Centre for Geosciences in Potsdam, Germany and the photographer of this featured image. “Especially the photogrammetric method allows to derive topographic changes and possible early subsidence in this system.” Al-Halbouni was working at the sinkhole area of Ghor Al-Haditha in Jordan when he had the chance to snap this beautiful photo of one of the Dead Sea’s many sinkhole systems.

Recently, Al-Halbouni and his colleagues have employed a different kind of strategy to understand sinkhole formation: taking subsurface snapshots of Dead Sea sinkholes with the help of artificial seismic waves. The method, called shear wave reflection seismic imaging, involves generating seismic waves in sinkhole-prone regions; the waves then make their way through the sediments below. A seismic receiver is positioned to record the velocities of the waves, giving the researchers clues to what materials are present belowground and how they are structured. As one Eos article reporting on the study puts it, the records were essentially an “ultrasound of the buried material.”

The results of their study, recently published in EGU’s open access journal, Solid Earth, give insight into what kind of underground conditions are more likely to give way to sinkhole formation, allowing local communities to better pinpoint sites for future construction, and what spots are best left alone. This study and further work by Al-Halbouni and his colleagues have been published in a special issue organised by EGU journals: “Environmental changes and hazards in the Dead Sea region.”

By Olivia Trani, EGU Communications Officer

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.