GeoLog

Earth Magnetism and Rock Physics

NASA’s Juno mission reveals Jupiter’s magnetic field greatly differs from Earth’s

NASA’s Juno mission reveals Jupiter’s magnetic field greatly differs from Earth’s

NASA scientists have revealed surprising new information about Jupiter’s magnetic field from data gathered by their space probe, Juno.

Unlike earth’s magnetic field, which is symmetrical in the North and South Poles, Jupiter’s magnetic field has startlingly different magnetic signatures at the two poles.

The information has been collected as part of the Juno program, NASA’s latest mission to unravel the mysteries of the biggest planet in our solar system. The solar-powered spacecraft is made of three 8.5 metre-long solar panels angled around a central body. The probe (pictured above) cartwheels through space, travelling at speeds up to 250,000 kilometres per hour.

Measurements taken by a magnetometer mounted on the spacecraft have allowed a stunning new insight into the planet’s gigantic magnetic field. They reveal the field lines’ pathways vary greatly from the traditional ‘bar magnet’ magnetic field produced by earth.

Jupiter’s magnetic field is enormous. if magnetic radiation were visible to the naked eye, from earth, Jupiter’s magnetic field would appear bigger than the moon. Credit: NASA/JPL/SwRI

The Earth’s magnetic field is generated by the movement of fluid in its inner core called a dynamo. The dynamo produces a positive radiomagnetic field that comes out of one hemisphere and a symmetrical negative field that goes into the other.

The interior of Jupiter on the other hand, is quite different from Earth’s. The planet is made up almost entirely of hydrogen gas, meaning the whole planet is essentially a ball of moving fluid. The result is a totally unique magnetic picture. While the south pole has a negative magnetic field similar to Earth’s, the northern hemisphere is bizarrely irregular, comprised of a series of positive magnetic anomalies that look nothing like any magnetic field seen before.

“The northern hemisphere has a lot of positive flux in the northern mid latitude. It’s also the site of a lot of anomalies,” explains Juno Deputy Principal Investigator, Jack Connerney, who spoke at a press conference at the EGU General Assembly in April. “There is an extraordinary hemisphere asymmetry to the magnetic field [which] was totally unexpected.”

NASA have produced a video that illustrates the unusual magnetism, with the red spots indicating a positive magnetic field and the blue a negative field:

Before its launch in 2016, Juno was programmed to conduct 34 elliptical ‘science’ orbits, passing 4,200 kilometres above Jupiter’s atmosphere at its closest point. When all the orbits are complete, the spacecraft will undertake a final deorbit phase before impacting into Jupiter in February 2020.

So far Juno has achieved eleven science orbits, and the team analysing the data hope to learn more as it completes more passes. “In the remaining orbits we will get a finer resolution of the magnetic field, which will help us understand the dynamo and how deep the magnetic field forms” explains Scott Bolton, Principal Investigator of the mission.

The researchers’ next steps are to examine the probe’s data after its 16th and 34th passes meaning it will be a few more months before they are able to learn more of Jupiter’s mysterious magnetosphere.

By Keri McNamara, EGU 2018 General Assembly Press Assistant

Further reading

Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., et al. A new model of Jupiter’s magnetic field from Juno’s first nine orbits. Geophysical Research Letters, 45, 2590–2596. 2018

Bolton, S. J. et al. Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft, Science, 356(6340), p. 821 LP-825. 2017

Guillot, T. et al. A suppression of differential rotation in Jupiter’s deep interior, Nature. Macmillan Publishers Limited, part of Springer Nature. All rights reserved., 555, p. 227. 2018

April GeoRoundUp: the best of the Earth sciences from the 2018 General Assembly

April GeoRoundUp: the best of the Earth sciences from the 2018 General Assembly

The 2018 General Assembly took place in Vienna last month, drawing more than 15,000 participants from 106 countries. This month’s GeoRoundUp will focus on some of the unique and interesting stories that came out of research presented at the Assembly.

Mystery solved

The World War II battleship Tirpitz was the largest vessel in the German navy, stationed primarily off the Norwegian coastline as a foreboding threat to Allied armies. The ship was 250 metres in length and capable of carrying around 2,500 crewmates.

Despite its massive size, the vessel’s presence often went unnoticed as it moved between fjords, masked by a chemical fog of chlorosulphuric acid released by the Nazi army.

Ultimately the ship sank and the war ended, but evidence of the toxic smog still lingers today, in the tree rings of Norway’s nearby forests.

Claudia Hartl, a dendrochronologist from the Johannes Gutenberg University in Mainz, Germany, made this discovery unexpectedly while sampling pines and birches near the Norwegian village Kåfjord. She and her research team presented their findings at the General Assembly in Vienna last month.

The German battleship Tirpitz partly covered by a smokescreen at Kaafjord. (Image Credit: Imperial War Museums )

Hartl had been examining wood cores to draw a more complete picture of past climate in the region when she noticed that some trees completely lacked rings dating to 1945,” reported Julissa Treviño in Smithsonian Magazine.

The discovery was odd since it is rare for trees to have completely absent rings in their trunks. Tree ring growth can be stunted by extreme cold or insect infestation, but neither case is severe enough to explain the missing tree rings from that time period.

“A colleague suggested it could have something to do with the Tirpitz, which was anchored the previous year at Kåfjord where it was attacked by Allied bombers,” explains Jonathan Amos from BBC News.

The researchers indeed found physical and chemical evidence of the smokescreen damage on the trees, demonstrating the long-lasting impact warfare can impart onto the environment.

 

What you might have missed

Seismicity of city life

Researchers use seismometers to record Earth’s quakes and tremors, but some seismologists have employed these instruments for a different purpose, to show how humans make cities shake. “This new field of urban seismology aims to detect the vibrations caused by road traffic, subway trains, and even cultural activities,” reports EGU General Assembly Press Assistant Tim Middleton on GeoLog.

With seismometers, Jordi Díaz and colleagues at the Institute of Earth Sciences Jaume Almera in Barcelona, Spain have been able to pick up the seismic signals of major football games and rock concerts, like footballer Lionel Messi’s winning goal against Paris Saint-Germain and Bruce Springsteen’s Barcelona show.

Seismic record captured by the seismometer during the Bruce Springsteen concert. The upper panel shows the seismogram, while the lower panel shows the spectrogram where it is possible to see the distribution of the energy between the different frequencies. (Image Credit: Jordi Díaz)

Díaz’s project first began as an outreach campaign, to teach the general public about seismometers, but now he and his colleagues are exploring other applications. For example, the data could help civil engineers with tracking traffic and monitoring how buildings withstand human-induced tremors.

Antarctica seeing more snow

Meanwhile in Antarctica, snowfall has increased by 10 percent in the last 200 years, according to new research presented at the meeting. After analysing 79 ice cores, a research team led by Liz Thomas from the British Antarctic Survey discovered that Antarctica’s increased snowfall since 1800 was equivalent to 544 trillion pounds of water, about twice the volume of the Dead Sea.

It has been predicted that snowfall increase would be a consequence of global warming, since a warmer atmosphere can hold more moisture, thus resulting in more precipitation. However, these ice core observations reveal this effect has already been happening. The new finding implies that Earth’s sea level has risen slightly less than it would have otherwise, but only by about a fifth of a milimetre. Though overall, this snowfall increase is not nearly enough to offset Earth’s increased ice loss.

Ocean’s tides create a magnetic field

Also at the Assembly, scientists presented new data collected from a team of ESA satellites known as Swarm, In particular, the satellite observations recently mapped magnetic signals induced by Earth’s ocean tides. As the planet’s tides ebb and flow, drawn by the Moon’s gravitational pull, the salty water generates electric currents. And these currents create a tiny magnetic field, around 20,000 times weaker than the global magnetic field.

Scientists involved with the Swarm project say the magnetic view provides new insight into Earth’s ocean flow and magnetic field, can improve our understanding of climate change, and help researchers build better Earth system models.

When salty ocean water flows through Earth’s magnetic field, an electric current is generated, and this in turn induces a magnetic signal. (Credit: ESA/Planetary Visions)

 

Other noteworthy stories:

 

To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

Imaggeo on Mondays: Chilean relics of Earth’s past

Imaggeo on Mondays: Chilean relics of Earth’s past

As Earth’s environment changes, it leaves behind clues used by scientists to paint portraits of the past: scorched timber, water-weathered shores, hardened lava flows. Chile’s Conguillío National Park is teeming with these kind of geologic artifacts; some are only a few years old while others have existed for more than 30 million years. The photographer Anita Di Chiara, a researcher at Lancaster University in the UK, describes how she analyses ancient magnetic field records to learn about Earth’s changing crust.

Llaima Volcano, within the Conguillío National Park in Chile, is in the background of this image with its typical double-hump shape. The lake is called Lago Verde and the trunks sticking out are likely remnants from one of the many seasonal fires that have left their mark on this area (the last one was in 2015).

The lake sits on pyroclastic deposits that erupted from the Llaima Volcano. On these deposits, on the side of the lake, you can even track the geologic record of seasonal lake level changes, as the layers shown here mark the old (higher) level of the lake during heavy winter rains.

The lake also overlaps the Liquiñe-Ofqui Fault, which runs about 1000 kilometers along the North Patagonian Andes. The fault has been responsible for both volcanic and seismic activity in the region since the Oligocene (around 30 million years ago).

I was there as field assistant for Catalina Hernandez Moreno, a geoscientist at Italy’s National Institute of Geophysics and Volcanology, studying ancient magnetic field records imprinted on rocks. We examined the rocks’ magnetised minerals (aligned like a compass needle to the north pole) as a way to measure how fragmented blocks of the Earth’s crust have rotated over time along the fault.

From this fieldwork we were able to examine palaeomagnetic rotation patterns from 98 Oligocene-Pleistocene volcanic sites. Even more, we concluded that the lava flows from the Llaima Volcano’s 1958 eruption would be a suitable site for studying the evolution of the South Atlantic Anomaly, an area within the South Atlantic Ocean where the Earth’s magnetic field is mysteriously weaker than expected.

By Anita Di Chiara, a research technician at the Lancaster Environment Centre in the UK 

References

Hernandez-Moreno, C., Speranza, F., & Di Chiara, A.: Understanding kinematics of intra-arc transcurrent deformation: Paleomagnetic evidence from the Liquiñe-Ofqui fault zone (Chile, 38-41°S), Tectonics, https://doi.org/10.1002/2014TC003622, 2014.

Hernandez-Moreno, C., Speranza, F., & Di Chiara, A.: Paleomagnetic rotation pattern of the southern Chile fore-arc sliver (38°S-42°S): A new tool to evaluate plate locking along subduction zones. Journal of Geophysical Research: Solid Earth, 121(2), https://doi.org/10.1002/2015JB012382, 2016.

Di Chiara, A., Moncinhatto, T., Hernandez Moreno, C., Pavón-Carrasco, F. J., & Trindade, R. I. F.: Paleomagnetic study of an historical lava flow from the Llaima volcano, Chile. Journal of South American Earth Sciences, 77, https://doi.org/10.1016/j.jsames.2017.04.014, 2017.

 

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submittheir photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: recording the Earth’s magnetic field one grain at a time

Imaggeo on Mondays: recording the Earth’s magnetic field one grain at a time

The Earth’s magnetic field extends from the core of the planet, right out to space. It is an invisible, butterfly-like, shield which protects us against the harmful particles ejected by solar flares. In addition, it guards us from atmospheric erosion and water loss caused by solar wind.

But how do scientists study the Earth’s magnetic field when it can’t be see? Much of what is known results from a combination of methods: computer simulations help understand the inner core – where the field is generate – while rocks of all ages can contain information about the changes in strength and direction of the past magnetic field.

The best recorders of this information are volcanic rocks, but sediments (those rocks formed through processes of deposition) and other types of igneous rocks can also be studied.

For a rock to be a good source of information about the properties of the magnetic field, it needs to contain some ferromagnetic minerals (magnetite, titanomagnetite – as pictured above – maghemite, among others). The more ferromagnetic minerals a rock contains the better it will record information about the Earth’s magnetic field.

To find out more about the Earth’s magnetic field and magnetic minerals take a look at some of these resources:
·         A visualisation of the Earth’s invisible field by NASA
·         The Earth’s Magnetic Field: An Overview by the British Geological Survey (BGS)
·         How does the Earth’s core generate a magnetic field? USGS
·         Magnetic vortices record history of Earth’s magnetic field by the Institute of Physics (IOP)

 

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.