GeoLog

Sessions

Top ten tourist beaches threatened by tsunamis

Top ten tourist beaches threatened by tsunamis

December 2004 saw one of the deadliest natural disasters in recorded history. 228,000 people were killed when an earthquake off the coast of the Indonesian island of Sumatra triggered tsunami waves up to 30 m high. The destruction was extreme as the waves hit 14 different countries around the Indian Ocean. Economic losses totalled over 10 billion US dollars. The tourism industry in particular suffered a significant blow. In Phuket, a province of Thailand, a quarter of the island’s hotels had closed six months after the tsumani.

“The 2004 Sumatra tsunami and some of the recent Pacific Island tsunamis have shown their devastating impact on beaches and beach-related tourism,” says Andreas Schaefer, a researcher from the Karlsruhe Institute of Technology (KIT). But where is disaster likely to strike next? And can we be prepared for it?

Schaefer and his colleagues are trying to find out. “We asked the question: can we quantify potential tsunami losses to tourism industries along beaches?” he says. The number of tourists visiting the most exotic locations in the world, places such as Thailand, Indonesia, Colombia and Costa Rica, are rising twice as fast as the global average. In some cases, visitor numbers are growing by as much as 11 percent each year.

This rise in tourism in tsunami-prone locations is potentially a cause for real concern. “We compiled the first ever global loss index for the tourism industry [associated with beaches],” continues Schaefer. His findings were presented last month at the European Geosciences Union General Assembly in Vienna .

Beaches can be affected by tsunamis in a variety of ways. As well as the immediate threat to human life, a tsunami wave can leave behind piles of debris or offshore sand that can damage a beach environment. Alternatively, large swathes of beach sand might be removed by erosion. And in cases where an earthquake is very close to the shore, the beach itself may be down-thrust or uplifted during the event, leaving it either permanently submerged underwater or high and dry.

To quantify the locations in the world that are most at risk, Schaefer and his colleagues used two large datasets: tourist information and earthquake statistics.

Tourism-derived GDP per capita across the world. (Image credit: Andreas Schaefer)

To calculate the human exposure, “we compiled a global tourism destination database,” he explains. This database includes over 200 countries, at least 10,000 tourist destinations, more than 24,000 beaches, and almost a million hotels from all around the globe.

“It was important to get the latest and best tourism and hotel information,” says James Daniell, another member of the KIT research team. “Tourism contributes over 6 trillion [US] dollars directly and indirectly to the global economy every year.”

The research team then calculated tsunami probabilities all around the world using earthquake statistics and tectonic modelling. Chile, central America, Indonesia and Japan are the main countries that frequently experience large tsunamis.

Over longer time periods, the Caribbean and Mediterranean are also likely to be affected by rarer events. To put the numbers in perspective, if you spend a day on the coast of Mexico you have a one in 60,000 chance of seeing a tsunami; in Crete, this decreases to one in 600,000.

To model the tsunamis, it is also important to have a good understanding of the shape of the seafloor in the vicinity of the tourist sites. In the deep ocean, big tsunamis can have gaps between waves of as much as 200 km and wave heights as small as 1 m; ships are often unable to feel them passing. But as they approach the shore, the water shallows, causing the waves to slow down and pile up. The wave spacing decreases to less than 20 km, whilst the wave heights can grow to tens of metres. Hence, what looks like an innocuous fluctuation at sea can cause major damage when it reaches land. The depth of the adjacent seafloor plays a major role in this.

Simulated tsunamis across the world showing maximum potential wave heights. (Image credit: Andreas Schaefer)

Given the large number of variables at play, tsunami modelling involves many calculations and typically requires the use of a supercomputer. But in a paper published last year, Schaefer helped to develop a new simulation framework called TsuPy, which allows for quick modelling of tsunamis on personal computers. With this in place, he could rapidly simulate more than 10,000 tsunamis all around the world, calculate the expected wave heights at the tourist sites in his database, and estimate the likely economic losses.

The researchers estimate 250 million US dollars in global annual loss to the tourism industry from tsunami waves. Furthermore, every 10 years they expect a single $1 billion event.

Of all the tourist destinations, “Hawaii is the number one,” says Schaefer. This is “because of all the potential tsunamis that come from around the Pacific Ring of Fire,” he explains. “There are so many [tsunami] sources all around, that, even though they are far away, they have an effect.”

The last major tsunami to strike Hawaii was as a result of the biggest earthquake ever recorded: the 1960 magnitude 9.6 Valdivia earthquake on the coast of Chile. 60 people on Hawaii were killed and the damage amounted to 500 million US dollars in today’s terms.

Top ten locations on the global risk index for beach tourist destinations threatened by tsunamis. (Image credit: Andreas Schaefer)

Other notable locations on the top ten list include Valparaiso (Chile), Bali (Indonesia), and Phuket (Thailand). “Locations that are known for their tourism are at the top of the list because there is a lot [of existing infrastructure] that could be damaged,” explains Schaefer.

Slightly surprisingly, southwest Turkey is also high on the list. Furthermore, places like Tonga and Vanuatu are particularly at risk. They have rapidly developing tourist industries and large projected losses per dollar of tourism-related business, so they feature highly on Schaefer’s list. “They are mostly small island nations with a significant need for tourist dollars,” explains Daniell.

For many parts of the world, the results are not necessarily good news. But they are a first step inasmuch as they highlight the locations that are currently thought to be at greatest risk. “We hope, with these results, to raise awareness among tourists. But they do not need to be afraid,” says Schaefer. With adequate preparation and evacuation planning, it is hoped that future disaster on the scale of the 2004 event might be averted.

By Tim Middleton, EGU 2018 General Assembly Press Assistant

References

Schaefer, A., Daniell, J., and Wenzel, F. Beach Tsunami Risk Modelling – A probabilistic assessment of tsunami risk for the world’s most prominent beaches. Geophysical Research Abstracts, Vol. 20, EGU2018-11955, 2018, EGU General Assembly 2018 (conference abstract)

Schaefer, A. and Wenzel, F. TsuPy: Computational robustness in Tsunami hazard modelling. Computers & Geosciences, 102, 148-157, 2017

Plate Tectonics and Ocean Drilling – Fifty Years On

Plate Tectonics and Ocean Drilling – Fifty Years On

What does it take to get a scientific theory accepted? Hard facts? A strong personality? Grit and determination? For many Earth Scientists today it can be hard to imagine the academic landscape before the advent of plate tectonics. But it was only fifty years ago that the theory really became cemented as scientific consensus. And the clinching evidence was found in the oceans.

Alfred Wegener had proposed the theory of continental drift back in 1912. The jigsaw-fit of the African and South American continents led him to suppose that they must once have been joined together. But in the middle of the century, the idea fell out of favour; some even referred to it as a “fairy-tale”.

It was not until the discovery of magnetic reversals on the seafloor in the early 1960s that the theory began to sound plausible again. If brand new ocean crust was being formed at the mid-ocean ridges, then the rocks either side of the ridge should show symmetrical patterns of magnetism. Fred Vine and Drummond Matthews, geologists at the University of Cambridge in the UK, were the first to publish on the idea of seafloor spreading in 1963.

But plate tectonics was still not the only theory on the market. The expanding Earth hypothesis held that the positions of the continents could be explained by an overall expansion in the volume of the Earth. Numerous twentieth-century physicists subscribed to such a view. Or, similarly, the shrinking Earth theory proposed that the whole planet had once been molten. Mountain ranges would then be formed as the Earth cooled and the crust crumpled.

Helmut Weissert, President of the EGU Stratigraphy, Sedimentology and Palaeontology Division, remembers the difficult exchanges that took place whilst he was a student at ETH Zürich in the late 1960s. “Earth-science-wise it was a hot time,” he recalls. “In Bern University they did not teach plate tectonics. We did not have a course on plate tectonics either. I probably first heard about plate tectonics in [my] second or third year.”

Weissert especially remembers Rudolf Trümpy, professor of Alpine geology at ETH at the time, saying that plate tectonics sounds interesting, but it does not work for the Alps. Meanwhile, younger voices at ETH, postdocs and lecturers, were becoming increasingly convinced by plate tectonic theory.

Weissert soon found himself in the midst of the controversy as his own research had a direct bearing on the debate. “I had an interesting diploma topic,” says Weissert. “I worked on continental margin successions and associated serpentinites.” Serpentinites are green-coloured rocks that are full of the water-rich mineral serpentine, and therefore must have formed on the ocean floor. The fact that Weissert was finding them in Davos, at the top of the Alps, was a good indication that modern-day Switzerland had once been part of the oceans. As Weissert succinctly puts it, “green rocks were ocean”.

The observed and calculated magnetic profile for the seafloor across the East Pacific Rise, showing symmetrical patterns of magnetism. (Image Credit: U.S. Geological Survey. Distributed via Wikimedia Commons)

By 1967, interest in the theory of plate tectonics had snowballed. When the Deep Sea Drilling Project (DSDP) was launched the following year, it had its sights firmly set on finding evidence that would definitively either confirm or reject the hypothesis of seafloor spreading.

The DSDP research vessel, the Glomar Challenger, set sail from Texas in March 1968. By its third leg it had drilled 17 holes at 10 sites along the mid-Atlantic ocean ridge and was already producing results that looked like they would confirm Wegener’s theory of continental drift. “After a few legs it was clear that the seafloor spreading hypothesis was tested and proven,” remembers Weissert.

There were only eight scientists on board, but two or three of them were working on the stratigraphy of the seafloor sediments. “The stratigraphy was superb,” explains Weissert. “You have the very young [sediments near the ridge] and then at the edges of the ocean the Jurassic sediments. If you have aging crust then you have aging sediment, so the hypothesis was very clear.” If the sediments got progressively older on moving away from the ridge, then so must the crust, a sure sign that new ocean floor was being created at the ridge.

Karen Heywood, EGU Division President in Ocean Sciences, remembers how her own fascination with the theory of plate tectonics ended up sparking her career in physical oceanography. Heywood began as a physics student at the University of Bristol in the 1980s. “They said we had to write an essay on the historical development of an idea in physics,” she recalls. “I did the development of the theory of plate tectonics and seafloor spreading. I wrote this essay all about Alfred Wegener.”

“This essay inspired me to think about earth sciences,” she says. “The idea that you could apply physics to the real world was amazing. It got me into oceanography.”

Heywood went on to establish her career at the University of East Anglia (UEA), where she became the first female professor of Physical Oceanography in the UK. “I went to the UEA and Fred Vine was there. It brought me back full circle. I could not believe that this was Fred Vine, who had discovered the magnetic stripes. This was the real person and that was amazing… it was the same person that I had read about and written about in my essay as an undergraduate in the 80s.”

There were clearly strong personalities on both sides of the debate about plate tectonics, but Weissert is pragmatic about the progress of science. “You have to accept that you are part of a scientific development. Everybody makes hypotheses… We all make mistakes. We all learn. We all improve.”

Indeed, many years later, in 2001, Trümpy wrote what Weissert calls “a beautiful small article” entitled Why plate tectonics was not invented in the Alps. Trümpy magnanimously writes, “Shamefacedly, I must admit that I was not among the first Alpine geologists to grasp the promise of the new tectonics.”  And yet, he continues, “to the Alps, plate tectonics brought a better understanding”. The humans and the science move on together.

By Tim Middleton, EGU 2018 General Assembly Press Assistant

References

DSDP Phase: Glomar Challenger, International Ocean Discovery Program

Trümpy, R., Why plate tectonics was not invented in the Alps, International Journal of Earth Sciences, Volume 90, Issue 3, pp 477–483, 2001.

Wildfires in the wake of climate change

Wildfires in the wake of climate change

Last year saw some of the biggest blazes in history, and may be a sign of things to come.

2017 was a record year for wildfires. California and neighboring western states saw the most destructive fire in US history, with an estimated 18 billion dollars worth of damage over the season. In central Portugal, fires caused 115 deaths over the same period. Researchers presenting at a press conference at the European Geosciences Union General Assembly in Vienna, Austria, suggest this may be a sign of things to come.

With climate change, wildfires are expected to be on the rise, as fire-prone regions become hotter and drier. But how did weather and climate contribute to this disastrous season? Strong winds and warm temperatures are thought to be responsible for last year’s fires in California, but it remains unclear how much climate change contributed to these conditions. Etienne Tourigny, of the Barcelona Supercomputing Centre, has been on the case.

“Would this event have been possible with or without climate change?” Tourigny asks. “It’s hard to say. What we can say is that there is a high chance that these kinds of events will be more present and more frequent in the future, especially if we see temperatures increasing as they have”

Central Portugal is already very susceptible to wildfires. It’s hot, it’s dry and it’s forested: a recipe for the perfect storm. The 2017 season was particularly tragic due to an unusual set of circumstances: a tropical cyclone passed as the Portuguese Centro Region was ablaze. The nation hoped that the hurricane would bring rain to put out the fires, but, instead, the storm passed the area by, bringing strong winds and spreading the flames.

200 thousand hectares were burned in two days. Even if this was spread throughout an entire season, it would be a very bad year. Speaking at the conference, António Ferreira, a scientific coordinator at the Research Centre for Natural Resources, Environment and Society in Coimbra, Portugal, puts it frankly: “that’s hell as it was taught in Sunday School.”

The region is also vulnerable to climate change, and an increased risk of wildfires is expected by the end of the century. New strategies are needed to prevent such losses in future. Ferreira emphasised that there is no quick fix and, to reduce the risk, policies, plans, habits and investment have to change.

Even in the high Arctic, fires present a threat. This time, it’s not a direct risk to life or infrastructure, but a threat to the environment. Nikolaos Evangeliou, from Norwegian Institute for Air Research, stated that, even in icy regions, wildfires have the capacity to alter the Earth’s climate and accelerate melting.

Thawing permafrost during the 2017 summer left Greenland’s peatlands vulnerable to wildfires and between 31 July and 21 August about 2300 hectares of peatland were burned. Seven tonnes of black carbon generated by the fires rained down on the ice sheet, making the surface darker and causing it to absorb more heat.

If the ice sheet darkens, it reduces Earth’s ability to deflect solar radiation, allowing more of the sun’s energy to warm the planet. The change in Earth’s reflectivity following last year’s wildfires was small, but it is a warning. With larger fires predicted as the climate warms, we could expect much bigger changes to the Earth’s reflectivity towards the end of the century. Such warming spells further trouble for wildfire-sensitive regions.

By Sara Mynott, EGU 2018 General Assembly Press Assistant

References

Evangeliou et al. Open Fires in Greenland: An Unusual Event and its Impact on the Albedo of the Greenland Ice Sheet. Geophysical Research Abstracts, Vol. 20, EGU2018-12383, 2018, EGU General Assembly 2018.

Leitão et al. Dealing with climate change: how to cope with wildfire threat in a climate transition region. Geophysical Research Abstracts, Vol. 20, EGU2018-16640, 2018, EGU General Assembly 2018.

Tourigny et al. An observational study of the extreme wildfire events of California in 2017: quantifying the relative importance of climate and weather. Geophysical Research Abstracts, Vol. 20, EGU2018-9545-1, 2018, EGU General Assembly 2018.

April GeoRoundUp: the best of the Earth sciences from the 2018 General Assembly

April GeoRoundUp: the best of the Earth sciences from the 2018 General Assembly

The 2018 General Assembly took place in Vienna last month, drawing more than 15,000 participants from 106 countries. This month’s GeoRoundUp will focus on some of the unique and interesting stories that came out of research presented at the Assembly.

Mystery solved

The World War II battleship Tirpitz was the largest vessel in the German navy, stationed primarily off the Norwegian coastline as a foreboding threat to Allied armies. The ship was 250 metres in length and capable of carrying around 2,500 crewmates.

Despite its massive size, the vessel’s presence often went unnoticed as it moved between fjords, masked by a chemical fog of chlorosulphuric acid released by the Nazi army.

Ultimately the ship sank and the war ended, but evidence of the toxic smog still lingers today, in the tree rings of Norway’s nearby forests.

Claudia Hartl, a dendrochronologist from the Johannes Gutenberg University in Mainz, Germany, made this discovery unexpectedly while sampling pines and birches near the Norwegian village Kåfjord. She and her research team presented their findings at the General Assembly in Vienna last month.

The German battleship Tirpitz partly covered by a smokescreen at Kaafjord. (Image Credit: Imperial War Museums )

Hartl had been examining wood cores to draw a more complete picture of past climate in the region when she noticed that some trees completely lacked rings dating to 1945,” reported Julissa Treviño in Smithsonian Magazine.

The discovery was odd since it is rare for trees to have completely absent rings in their trunks. Tree ring growth can be stunted by extreme cold or insect infestation, but neither case is severe enough to explain the missing tree rings from that time period.

“A colleague suggested it could have something to do with the Tirpitz, which was anchored the previous year at Kåfjord where it was attacked by Allied bombers,” explains Jonathan Amos from BBC News.

The researchers indeed found physical and chemical evidence of the smokescreen damage on the trees, demonstrating the long-lasting impact warfare can impart onto the environment.

 

What you might have missed

Seismicity of city life

Researchers use seismometers to record Earth’s quakes and tremors, but some seismologists have employed these instruments for a different purpose, to show how humans make cities shake. “This new field of urban seismology aims to detect the vibrations caused by road traffic, subway trains, and even cultural activities,” reports EGU General Assembly Press Assistant Tim Middleton on GeoLog.

With seismometers, Jordi Díaz and colleagues at the Institute of Earth Sciences Jaume Almera in Barcelona, Spain have been able to pick up the seismic signals of major football games and rock concerts, like footballer Lionel Messi’s winning goal against Paris Saint-Germain and Bruce Springsteen’s Barcelona show.

Seismic record captured by the seismometer during the Bruce Springsteen concert. The upper panel shows the seismogram, while the lower panel shows the spectrogram where it is possible to see the distribution of the energy between the different frequencies. (Image Credit: Jordi Díaz)

Díaz’s project first began as an outreach campaign, to teach the general public about seismometers, but now he and his colleagues are exploring other applications. For example, the data could help civil engineers with tracking traffic and monitoring how buildings withstand human-induced tremors.

Antarctica seeing more snow

Meanwhile in Antarctica, snowfall has increased by 10 percent in the last 200 years, according to new research presented at the meeting. After analysing 79 ice cores, a research team led by Liz Thomas from the British Antarctic Survey discovered that Antarctica’s increased snowfall since 1800 was equivalent to 544 trillion pounds of water, about twice the volume of the Dead Sea.

It has been predicted that snowfall increase would be a consequence of global warming, since a warmer atmosphere can hold more moisture, thus resulting in more precipitation. However, these ice core observations reveal this effect has already been happening. The new finding implies that Earth’s sea level has risen slightly less than it would have otherwise, but only by about a fifth of a milimetre. Though overall, this snowfall increase is not nearly enough to offset Earth’s increased ice loss.

Ocean’s tides create a magnetic field

Also at the Assembly, scientists presented new data collected from a team of ESA satellites known as Swarm, In particular, the satellite observations recently mapped magnetic signals induced by Earth’s ocean tides. As the planet’s tides ebb and flow, drawn by the Moon’s gravitational pull, the salty water generates electric currents. And these currents create a tiny magnetic field, around 20,000 times weaker than the global magnetic field.

Scientists involved with the Swarm project say the magnetic view provides new insight into Earth’s ocean flow and magnetic field, can improve our understanding of climate change, and help researchers build better Earth system models.

When salty ocean water flows through Earth’s magnetic field, an electric current is generated, and this in turn induces a magnetic signal. (Credit: ESA/Planetary Visions)

 

Other noteworthy stories:

 

To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.