GeoLog

Guest

This guest post was contributed by a scientist, student or a professional in the Earth, planetary or space sciences. The EGU blogs welcome guest contributions, so if you’ve got a great idea for a post or fancy trying your hand at science communication, please contact the blog editor or the EGU Communications Officer Laura Roberts Artal to pitch your idea.

Five top tips to apply for small grants

Five top tips to apply for small grants

Stephanie Zihms, the ECS Representative for the EMRP Division (and incoming Union Level Representative) has applied for a range of small scale grants (<£15,000, ca. 16,965€). At this year’s General Assembly, she was one of two speakers at the ‘How to write a research grant’ short course, where she shared  insights from her successes and failures. In today’s post she tells us about the top five lessons she learnt in the process of applying for funds.

Publications and grants are an important aspect in academia and success in both areas necessary for career progression. Frustratingly, many grants are only available to researchers with open-ended or permanent contracts and since practice makes perfect you don’t want your first grant proposal to be for a million pounds, dollars or euros.

Instead, there are plenty of (often unknown) small scale grants available to fund anything from a trip to a conference through to a field campaign and to support some of your existing work. Applying for these gives you valuable insight when it comes to writing larger-scale grants and shows future employers you have a go-getting attitude.

  1. Start early – start small: Travel grants, internal support grants, field work grants – these all count and will help you get better at writing in a proposal style, learn the language of different panels and get used to the format of a proposal. You might also get a chance to learn how to budget and justify certain costs, a big aspect of proposal writing.
  2. Always ask for feedback: Not only on the grants you didn’t get but also on the ones you secured. It will tell you what the panel really liked about your proposal and you can highlight that even more next time.

    Some feedback from my successful Royal Academy of Engineering Newton Fund application. Credit: Stephanie Zihms

  3. Get training: See if your university or institution offers grant writing or academic writing courses – even if you’re not working on a proposal when you attend this training will come in handy when you do. You are also likely to make some good connections with people that will be able to help you when you do start applying.
  4. Get help: Either from colleagues, connections you made during a writing course, a specialised office within your university or even from the institution offering the grant. See if you can get previous applications that were successful to help you make sure you get the language right.
  5. Write, write, write: As an academic you will spend a lot of your time writing so it’s good to get lots of practice and make writing regularly a habit. I try and write for 1 hour every morning before I head to the office and I attend a weekly writing group on campus. Or join a virtual writing group via Twitter for example #AcWri or #AcWriMo for November – since it is Academic Writing Month.

    Set up for our weekly Hide & Write group. Credit: Stephanie Zihms

Do you have any top tips for securing your first grants? If so, we’d love to hear them and share them with the GeoLog community. Please share your experiences and suggestions in the comments below!

Stephanie’s full presentation can be downloaded here.

At the upcoming General Assembly, Stephanie will be delivering a workshop on how to apply for small scale grants. Full details will be available once the conference programme launches, so stay tuned to the EGU 2018 website for more.

By Stephanie Zihms, the ECS Representative for the EMRP Division (and incoming Union Level Representative)

EGU 2018 will take place from 08 to 13 April 2017 in Vienna, Austria. For more information on the General Assembly, see the EGU 2018 website and follow us on Twitter (#EGU18 is the official conference hashtag) and Facebook.

Imaggeo on Mondays: Of ancient winds and sands

Imaggeo on Mondays: Of ancient winds and sands

Snippets of our planet’s ancient past are frozen in rocks around the world. By studying the information locked in formations across the globe, geoscientist unpick the history of Earth. Though the layers in today’s featured image may seem abstract to the untrained eye, Elizaveta Kovaleva (a researcher at the University of the Free State in South Africa) describes how they reveal the secrets of ancient winds and past deserts.

In summer 2016 we toured the Western US in a minivan. We visited many of the gems of Utah, Arizona, and New Mexico, such as Monument Valley, Antelope Canyon, Grand Canyon, The Arches, Bryce Canyon, White Sands Monument… But the most precious and memorable for me was Zion National Park in Utah. This canyon is a unique and special place. First, because you access it from the bottom, unlike most of the other canyons, which you observe from cliff tops, such as the Grand Canyon. Thus, as you drive along the road, leading into Zion National Park, you look upward into the magnificent cliffs and rock temples. Small hiking trails lead up to waterfalls, arches and breathtaking views.

The cliffs of Zion National Park are built of Navajo Sandstone and display aeolian deposits, which have been shaped by winds, on a massive scale. They are the remnants of an ancient fossil-bearing sand desert, one of the greatest and largest wind-shaped environments that has ever existed on Earth.

In the Early Jurassic, up to 200 million years ago, the Navajo desert covered most of the Colorado Plateau (which today includes the states of Utah, Colorado, New Mexico and Arizona). Fossils, found in these sand deposits, include ancient trees, dinosaur footprints and rare dinosaur bones.

In Zion National Park, the thickness of sand deposits reaches 762 m. Beautiful cross-beds are cross-sections through fossilized towering sand dunes. They indicate the direction of the ancient winds, which were mainly responsible for moving and accumulating the sand in the Navajo desert. On the top, the Navajo sandstone is abruptly truncated by a regional unconformity, which indicates the erosion of the overlying sediments, and is covered by Middle Jurassic sediments. In remains unknown how much of the Navajo sandstone was eroded from the top of the formation during this weathering episode. It might be that the thickness and height of the Navajo sand dunes used to be even more impressive than it is now.

The cliffs of Zion National Park. Pictured is Checkerboard Mesa (South-Eastern entrance to the Zion National Park. Credit: Credit: Elizaveta Kovaleva.

By Elizaveta Kovaleva, post-doctoral researcher at University of the Free State, in South Africa

Movement of ancient sand is one of the winners of the 2017 Imaggeo Photo Contest.

References

Ron Blakey and Wayne Ranney, Ancient Landscapes of the Colorado Plateau, Grand Canyon Association, 2008, p.156.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

 

GeoSciences Column: Forests in flux – log-jams in the Amazon

GeoSciences Column: Forests in flux – log-jams in the Amazon

Collapsing dams are a staple of disaster films, but the form that these take in natural systems is also surprisingly varied. Streams and rivers can be blocked by a range of rapid and gradual inputs. One of the lesser-known causes of stream blockage is through the accumulation of large woody debris – tree trunks and large branches – to form a log jam.

The impact of these jams on river geomorphology can be varied, but in some extreme cases, when they break, large flood waves can wash out huge downstream areas. This kind of hazard is often poorly understood, so a new study exploring how logjams in Bolivia can drive downstream flooding published in Earth System Dynamics by Umberto Lombardo provides an important addition to our understanding.

To form a log-jam, tree trunks and other large woody debris needs to end up in the river through erosion and transport processes. The majority of the rivers in the assessed area meander back and forth, which encourages erosion of the river banks; this can topple trees into the river. This bank erosion provides the source of the woody debris which then gets stuck in the channel, beginning the construction of a log-jam.

Once the jam is formed there is potential for flooding, which has important consequences for the surrounding forest. Behind the dam, silt and sand accumulates, and once the river either breaks the dam or redirects around it, sediment is also distributed downstream, along with the woody debris.

Using satellite imagery, Lombardo explores a chunk of the Bolivian part of the Amazon rainforest to look for the effects of log-jam induced flooding on forest dynamics. He shows in this study that the sudden influx of mud and silt onto the forest floor characteristically results in the die-off of much of the vegetation. Where floods occur repeatedly, the dense rainforest ecosystem is replaced by a drier, more savannah-like ecosystem.

Evolution of the Cuberene River. The river flows from southwest to northeast. From 1995 to 2016, the location of the log-jams propagated upriver, along the two rivers that form the Cuberene. By 2016, large areas that were forested in 1995 had been transformed into savannah. An east–west road crossing the Cuberene in 1995 is completely obliterated in the 2016 image. Also notice how the light green areas in early stages of the successional process in 1995 are already forested by 2016. From Lombardo U., 2017.

The flood-induced ecosystem change is not an isolated one, either; in the study area, the amount of forest killed by floods is nearly as great as the amount lost to deforestation for agricultural growth, and the near-annual recurrence of these events in many rivers means that it is a consistent cause of ecological shifts.

From a human perspective, these log-jams are a risk that may not be appreciated. Recent studies have shown that human driven deforestation can accelerate the rate at which river banks in tropical regions erode; so while the removal of trees may initially reduce the propensity for log-jams in extensively managed stretches of river, the faster rate of meandering may also lead to log-jam formation further down the line sooner than we might think. A clearer understanding of such river systems, where log-jam formation and coupled flooding is part of the normal evolution of the stream system, would serve us well in rapidly developing tropical countries that rely on forest ecosystems.

While the dynamics of log-jams have been studied in more temperate regions, this study represents a significant step into the unknown in tropical regions. The Amazon as a whole is a crucial component of the global carbon cycle, so a clearer understanding of the feedbacks between rivers, erosion, and the forest ecosystem will allow us to create more nuanced models of the rainforest dynamics.

The more scientists study forests, the clearer it becomes that these ecosystems regularly undergo significant disturbances simply as part of their natural cycles. Forest fires and pest outbreaks can disrupt a given stand of forest; log-jams are another example of a disturbance, this time closely associated with river dynamics. Forests renew and regenerate themselves at a range of scales, from individual trees to whole swathes of woodland, and log-jams provide an additional mechanism that can lead to die-off of mature forest and replacement by new growth.

By Robert Emberson, a science writer based in Canada

References

Lombardo, U.: River logjams cause frequent large-scale forest die-off events in southwestern Amazonia, Earth Syst. Dynam., 8, 565-575, https://doi.org/10.5194/esd-8-565-2017, 2017

Geoscience communication: A smart investment

Geoscience communication: A smart investment

In this post, originally published in June 2017 on the blog of the Geological Society of America (GSA), Terri Cook, a science and travel writer and former winner of the EGU’s Science Journalism Fellowship, argues the importance of quality science communication as a means for scientists to make their research accessible to a broad audience. One way to achieve this is working with a science journalist who can help researchers bring their work to life. To facilitate this partnership and to encourage science journalists to develop an in-depth understanding of the research questions, approaches, findings and motivation which drives geoscientists, the EGU launched the Science Journalism Fellowship. Now in its 7th edition, the 2018 competition opens today. The fellowships enable journalists to report on ongoing research in the Earth, planetary or space sciences, with successful applicants receiving up to €5000 to cover expenses related to their projects. The deadline for applications is 5th December 2017.

The dissemination of new knowledge is an integral part of the scientific enterprise; regular publication of high-impact, peer-reviewed articles is one of the most important metrics for measuring a scientist’s success. Due to the technical nature of these manuscripts, however, such communication does not typically boost the public’s understanding of the specific study results — or of science in general.

Yet, according to the Science Literacy Project, scientific research and novel technologies “play a major role in key political, economic, cultural and social policy discussions, as well as in public dialogue.” In an age of “alternative facts” and shrinking science budgets, and a time when the U.S. risks losing its edge in research and development, advocating for an evidence-based approach to decision making, which is independent of political views, has become crucial. So too has successfully reaching policymakers and the public, who must wrestle with the science underpinning a host of geoscience-related issues with important societal ramifications, from energy development to procuring mineral resources vital to our national security, in order to make informed decisions.

While there is much that individual scientists can do to disseminate their research and promote civil discourse, including holding public talks, harnessing social media, and writing for popular audiences, these are time-consuming endeavors. In addition, communicating with a lay audience is a skill; it’s easy to become mired in jargon, and there may be gaps between what scientists assume the public knows and what it actually does, according to a 2013 article in the Journal of Undergraduate Neuroscience Education. Plus most scientists, according to that same article, don’t receive any formal training on how to communicate scientific topics to the public, and there is often little incentive to prioritize this.

Science journalists like myself arguably serve an important societal role by disseminating the results of rigorous, peer-reviewed research to broader audiences.

“Our common mission,” writes Alison Fromme in The Science Writers’ Handbook, “is to explain very complicated things with both maximum simplicity and maximum accuracy.” A significant part of our job is to ask tough questions. “This critical questioning is important, and what it needs more than anything else is experience,” said BBC News Correspondent Pallab Ghosh in a 2013 panel discussion.

But even as the need for experienced science journalists continues to rise, the number of full-time jobs in this field, as well as the pay rate for freelancers, continues to decrease while the workload has generally increased, according to a 2009 Nature survey. This has led to some alarm.

“Independent science coverage is not just endangered, it’s dying,” said science journalist Robert Lee Hotz of the Wall Street Journal.

What then can geoscientists do to help avert what Gosh has called “a crisis in science journalism”? Journalists need honest answers from scientists, including an assessment of a study’s limitations and flaws, as well as its significance, in order to provide a balanced assessment of the research. We also need quotations to help us communicate the relevance and impact of scientists’ findings. One of the easiest ways to acquire the insight and capture the myriad details necessary to write an informative and captivating article is to visit a researcher onsite. In the geosciences, this is often in the field. Yet there is little support for science journalists to do this; few outlets will pay such expenses, especially for freelancers, who account for roughly half the number of science journalists.

To encourage the in-depth understanding of geoscientists’ approaches, research questions, motivations, and findings, the European Geosciences Union (EGU) has established an annual Science Journalism Fellowship that provides funding specifically intended for journalists to visit geoscientists in the field. The annual award of €5000 is typically split between two recipients each year, so since its inception in 2012 a dozen journalists, including myself, have received awards.

While the journalists benefit, so too do the scientists; their research receives wide exposure in prestigious publications, and they are given the luxury of being able to explain the intricacies of their work, such as dating previous motion along major faults in Nepal, and its implications first-hand and directly answering journalists’ questions as they arise.

But I would argue that it’s the general public who benefits the most. During the fellowship’s first four years, the seven recipients produced 18 pieces of science reporting, ranging from blog articles to a book, in a wide variety of outlets that included Nature, Science, Der Tagesspiegel, and EGU’s GeoLog blog. The topics, which are proposed by the journalists, have covered a broad range of geoscience disciplines, from the disastrous historic eruption of Iceland’s Laki volcano and fracking in Europe to my proposal about using dams to unleash artificial floods in order to restore rivers’ ecological integrity.

Recognizing the many potential benefits of better communicating the value of geoscience, the Geological Society of America (with the help of several generous donors) also recently established an annual Science Communication Fellowship.  The intent of this ten-month position is to help improve communication of geoscience knowledge between the members of GSA and the non-scientific community. I hope that other societies will soon follow suit. We are living in a period of unprecedented human influence on climate and the environment; establishing these awards sends a strong signal that geoscience communication is a priority — as well as a smart investment.

Terri Cook is a freelance science and travel writer based in Boulder, Colorado.