CR
Cryospheric Sciences

Satellites

Image of the Week – What’s Hot in the Cryosphere? A 2018 review

Image of the Week – What’s Hot in the Cryosphere? A 2018 review

Every year, humanity understands more and more about a remote and unforgiving component of the Earth system – the cryosphere. 2018 has been no exception, and in this blog post we’ll take a look at some of the biggest scientific findings of cryospheric science in 2018. We will then look forward to 2019 and beyond, to see what the future holds for these rapidly changing climate components.


The Cryosphere at 1.5°C warming

In 2018, the IPCC (Intergovernmental Panel on Climate Change) released their report that looked at the impact of 1.5 and 2.0°C of global warming by 2100 on the Earth system. In the Arctic, warming is already in excess of 2.0˚C, driving a very strong decreasing trend in the summer sea-ice extent. The IPCC suggest that sea-ice-free summers will occur once per century at 1.5°C, but this increases to once per decade at 2.0°C. Limiting warming to 1.5˚C will also save 1.5-2.5 million km2 of permafrost thaw (preventing the release of ancient carbon into the atmosphere), 10 cm of sea-level rise contribution from ice sheets and glaciers, and reduce the risk of the irreversible collapse of the ice sheets. Read more about the cryosphere under 1.5°C warming in this previous post.

 

Mass Balance of the Antarctic Ice Sheet

Compiling 24 independent estimates of mass balance, from a number of different remote sensing and modelling techniques, the IMBIE team produced the best estimate of how Antarctica is responding to continued climate warming. The mass balance refers to the net change in ice mass, accounting for all of the inputs and outputs to the ice. They quantify that ice mass loss from West Antarctica has increased three-fold between 1992 and 2017, largely due to melting from a warmer ocean. On the Antarctic Peninsula, the collapse of ice sheets has led to an increase ice mass loss by a factor of 4. East Antarctica is gaining mass slightly, although this is highly uncertain, by 5 ± 46 billion tonnes per year. Overall, Antarctica has lost 2,720 ± 1,390 billion tonnes of ice in this 25-year time period, and this mass loss is accelerating. Read more about these results in this previous post.

Mass loss from the Antarctic ice sheet is accelerating, largely due to ocean warming impacting West Antarctica. East Antarctica is very slightly gaining mass, but this doesn’t go anywhere near balancing out mass loss across the continent [Credit: NASA Goddard].

A polluted cryosphere

It’s easy to think of the cryosphere as a pristine, beautiful, untouched landscape. However, research from 2018 has shown us that the remoteness of Polar Regions has not protected them from man-made pollution. In one litre of melted Arctic sea-ice, 234 particles of plastic and over 12,000 particles of microplastics were found, which will only go onto adversely impact Arctic wildlife by spreading through the ecosystem. Radioactive material from the Chernobyl accident has also been found to be concentrated in dark sediments found on Swedish glaciers. As these glaciers melt, this concentration of radioactive material may be released in meltwater. In Greenland, lead pollution found in ice cores has provided exciting new insight into wars, plagues and invasions during the Roman Empire.

In 2018, we saw a glimpse of the geological secrets that Greenland hides beneath its ice sheet. However, there is still a hidden world that future field-based campaigns or airborne radar missions will help to unravel [Credit: NASA Goddard].

What secrets is Greenland hiding?

In 2018, we got our best ever look beneath the Greenland ice sheet. Scientists from the British Antarctic Survey and NASA found that the hotspot (a thermal plume in the Earth’s mantle) currently under Iceland was once beneath Greenland, between 80 to 50 million years ago. This hotspot was discovered by studying the magnetism of minerals beneath the ice. Using airplanes, radio waves and sediment that’s washed out from underneath the ice sheet has also revealed a massive 31 kilometre wide meteorite crater underneath Hiawatha glacier. Given it’s beneath three kilometres of ice, the age of this crater is unknown, but given the interest and speculation in connecting this event to an abrupt cooling period 12,000 years ago (the Younger Dryas), we may know very soon.

 

Blast Off!

Satellites remain one of the most popular methods of monitoring the vast, hostile cryosphere. In 2018, a new generation of earth observation missions launched. ESA’s Sentinel-3B continues the Copernicus programme, monitoring the reflectivity of the ice, elevation and sea-ice thickness. NASA’s GRACE FO mission continues the successful first GRACE mission, which used gravimetry to ‘weigh’ different regions of ice. NASA also launched ICESat-2, which will provide global elevation data at unprecedented spatial resolution on a 91-day repeat orbit. Each satellite is being finely tuned to make sure it’s working exactly as intended, and we’ll get the first science from them in 2019. Stay tuned!

Remote sensing data has provided us with answers to some of the biggest questions in the cryosphere. We use it to help quantify mass loss, sea-level rise and glacial retreat. In 2019, new missions will take our knowledge of cryospheric sciences to new heights! [Credit: Liam Taylor]

A look ahead to 2019

On the ground, getting inside the ice will continue to provide fascinating insights into the history of the cryosphere – from reconstructing winds in sub-Antarctic islands using ice cores, to further insights deep inside the world’s highest glacier. As permafrost continues to thaw, we are likely to hear of more discoveries of woolly mammoths, ancient diseases and carbon release. The IPCC will also publish their special report devoted to The Ocean and Cryosphere in a Changing Climate, which will provide the best overall state of the cryosphere to date. And, of course, the infamously named ‘Boaty McBoatface’ will provide us with incredible data from beneath sea-ice and ice shelves when the RRS Sir David Attenborough is launched. 2018 has been a truly exciting year to be a cryospheric scientist, and 2019 looks set to be another hot one!

 

Edited by Adam Bateson


Liam Taylor is a PhD student at the University of Leeds and Centre for Polar Observation and Monitoring. His research looks at identifying novel remote sensing methods to monitor mountain glaciers for water resource and hazard management. He is passionate about climate change and science communication to a global audience, as an educator on free online climate courses and through his personal blog. You can find Liam on Twitter.

Image of the Week — Orange is the new white

Figure 1. True color composite of a Sentinel-2 image showing the dust plume off the coast of Libya on 22-Mar-2018 (see also on the ESA website) [Credit: processed by S. Gascoin]

On 22 March 2018, large amounts of Saharan dust were blown off the Libyan coast to be further deposited in the Mediterranean, turning the usually white snow-capped Mountains of Turkey, Romania and even Caucasus into Martian landscapes.  As many people were struck by this peculiar color of the snow, they started documenting this event on social media using the “#orangesnow hashtag”. Instagram and twitter are fun, but satellite remote sensing is more convenient to use to track the orange snow across mountain ranges. In this new image of the week, we explore dusty snow with the Sentinel-2 satellites…

Марс атакует 🌔 #smurygins_family_trip

A post shared by Alina Smurygina (@sinyaya_ptiza) on


Sentinel-2: a great tool for observing dust deposition

Sentinel-2 is a satellite mission of the Copernicus programme and consists of two twin satellites (Sentinel-2A and 2B). Although the main application of Sentinel-2 is crop monitoring, it is also particularly well suited for characterizing the effect of dust deposition on the snowy mountains because:

  1. Sentinel-2A and 2B satellites provide high-resolution images with a pixel size of 10 m to 20 m (depending on the spectral band), which enables to detect dust on snow at the scale of hillslopes.
  2. Sentinel-2 has a high revisit capacity of 5 days which increases the probability to capture cloud-free  images shortly after the dust deposition.
  3. Sentinel-2 has many spectral bands in the visible and near infrared region of the light spectrum, making easy to separate the effect of dust on snow reflectance — i.e. the proportion of light reflected by snow — from other effects due to snow evolution. The dust particles mostly reduce snow reflectance in the visible, while coarsening of the snow by metamorphism (i.e. the change of microstructure due to transport of vapor at the micrometer scale) tends to reduce snow reflectance in the near infrared (Fig. 2).
  4. Sentinel-2 radiometric observations have high dynamic range and are accurate and well calibrated (in contrast to some trendy miniature satellites), hence they can be used to retrieve accurate surface dust concentration, provided that the influence of the atmosphere and the topography on surface reflectance are removed.

Figure 2: Diffuse reflectance for different types of snowpack. These spectra were computed with 10 nm resolution using the TARTES model (Libois et al, 2013) using the following parameters: snowpack density: 300 kg/m3, thickness: 2 m, fine snow specific surface area (SSA): 40 m2/kg, coarse snow SSA: 20 m2/kg, dust content: 100 μg/g. The optical properties of the dust are those of a sample of fine dust particles from Libya with a diameter of 2.5 μm or less (PM2.5) (Caponi et al, 2017). The Sentinel-2 spectral bands are indicated in grey. [Credit: S. Gascoin]

Dust on snow from Turkey to Spain

The region of Mount Artos in the Armenian Highlands (Turkey) was one of the first mountains to be imaged by Sentinel-2 after the dust event. Actually Sentinel-2 even captured the dust aloft on March 23, before its deposition (Fig. 3)

Figure 3: Time series of three Sentinel-2 images near Mount Artos in Turkey (true color composites of level 1C images, i.e. orthorectified products, without atmospheric correction). [Credit: Contains modified Copernicus Sentinel data, processed by S. Gascoin]

Later in April another storm from the Sahara brought large amounts of dust in southwestern Europe.

Figure 4: Sentinel-2 images of the Sierra Nevada in Spain (true color composites of level 1C images). [Credit: Contains modified Copernicus Sentinel data, processed by S. Gascoin]

This example in the spanish Sierra Nevada nicely illustrates the value of the Sentinel-2 mission since both images were captured only 5 days apart. The high resolution of Sentinel-2 is also important given the topographic variability of this mountain range. This is how it looks in MODIS images, having a 250 m resolution.

Figure 5: MODIS Terra (19) and Aqua (24) images of the Sierra Nevada in Spain. True Color composites of MODIS corrected reflectance. [Credit: NASA, processed by S. Gascoin]

Sentinel-2 satellites enable to track the small-scale variability of the dust concentration in surface snow, even at the scale of the ski runs as shown in Fig. 6.

Figure 6: Comparison of a true color Sentinel-2 image and a photograph of the Pradollano ski resort, Sierra Nevada. [Credit: photograph taken by J. Herrero / Contains modified Copernicus Sentinel data, processed by S. Gascoin]

A current limitation of Sentinel-2, however, is the relative shortness of the observation time series. Sentinel-2A was only launched in 2015 and Sentinel-2B in 2017. With three entire snow seasons, we can just start looking at interannual variability. An example in the Prokletije mountains in Albania is shown in Fig. 7.

Figure 7. Sentinel-2 images of the Prokletije mountains in Albania (true color composites of level 1C images) [Credit: Contains modified Copernicus Sentinel data, processed by S. Gascoin]

These images suggest that the dust event of March 2018 was not exceptional in this region, as 2016 also highlights a similar event. The Sentinel-2 archive will keep growing for many years since the EU Commission seems determined to support the continuity and development of Copernicus programme in the next decades. In the meantime to study the interannual variability the best option is to exploit the long-term records from other satellites like MODIS or Landsat.

Beyond the color of snow, the water resource

Dust on snow is important for water resource management since dust increases the amount of solar energy absorbed by the snowpack, thereby accelerating the melt. A recent study showed that dust controls springtime river flow in the Western USA (Painter et al, 2018).

“It almost doesn’t matter how warm the spring is, it really just matters how dark the snow is.”

said snow hydrologist Jeff Deems in an interview about this study in Science Magazine. Little is known about how this applies to Europe…

Further reading

 Edited by Sophie Berger


Simon Gascoin is a CNRS researcher at Centre d’Etudes Spatiales de la Biosphère (CESBIO), in Toulouse. He obtained a PhD in hydrology from Sorbonne University in Paris and did a postdoc on snow and glacier hydrology at the Centro de Estudios Avanzados en Zonas Áridas (CEAZA) in Chile. His research is now focusing on the application of satellite remote sensing to snow hydrology. He tweets here and blog here.

 

 

Marie Dumont is a researcher, leading the snow processes, observations and modelling research team at the snow study centre (CNRM/CEN, Grenoble, France). Her research focuses on snow evolution mostly in alpine region using numerical modelling and optical remote sensing.

 

 

 

Ghislain Picard is a lecturer working at the Institute of Geosciences and Environment at the University Grenoble Alpes, in the climate and ice-sheets research group. His research focuses on snow evolution in polar regions in the context of climate change. Optical and microwave remote sensing is one of its main tools.

Image of the Week – The Gap, the Bridge, and the Game-changer

The Gap, the Bridge, and the Game-changer, together with many of the passive microwave satellite missions relevant for sea ice concentration mapping for the period 1980s to 2030s [Credit: T. Lavergne].

The Gap, the Bridge, and the Game-changer are three series of satellites. They carry instruments that measure the microwave radiation emitted by the Earth (called passive microwave instruments), while flying 800 km above our heads at 7,5 km/s. Since the late 1970s, most sea ice properties (concentration, extent, area, velocity, age and more!) have been measured with such passive microwave instruments.
So who are the Gap, the Bridge, and the Game-changer? Their story is what this Image of the Week is about…


The Gap

Since 1978, the U.S. equipped 11 satellites with passive microwave instruments to observe global sea ice. These instruments are called SMMR, SSM/I and SSMIS. Their measurements have produced a continuous, almost 40 year long climate data record of sea ice (see how satellite observations are converted into sea ice properties in this previous post). However, as described late last year in a Nature article, the remaining three of these instruments are ageing, already beyond their expected lifetime, and with no planned continuation from the U.S (see SSMIS F16-18 on our Image of the Week).

Europe will be operating a series of similar instruments (the MicroWave Imagers, MWI) on their 2nd Generation Polar System from 2023. A (looming future) gap is feared if the last U.S. instruments fail before the European ones are fully operating.

The decline of summer sea ice extent in the Arctic is an iconic indicator of climate change and U.S. satellites have enabled and sustained its monitoring for all these years (see this earlier post). More than a news magnet, the satellite time series is a back-bone for our understanding of the evolution of global sea ice. It is a key asset for developing and evaluating our climate models. The possibility of a data gap understandably caught the attention of the scientific community and the general public. This (looming future) «Gap» is the first character in our story.

The Bridge

The «Bridge» is known under the code name Feng Yun 3 (FY3) MWRI and is Chinese. The FY3 programme, operated by the Chinese Meteorological Administration (CMA), is a series of satellites with passive microwave instruments very similar to the ones on the American and European satellites. FY3D -the 4th satellite in the FY3 series- was successfully launched in late 2017, bridging the data gap that was feared to happen, even if the remaining U.S. SSMIS satellites would fail next month.

Over the past few months, scientists at the EUMETSAT OSI SAF (the European Organization for the Exploitation of Meteorological Satellites – Ocean and Sea Ice Satellite Application Facility) have been investigating the quality of FY3 passive microwave data. They adapted their algorithms to retrieve sea ice concentration from raw satellite measurements, so that they yield very similar accuracy to the sea ice concentration data they obtain from the SSMIS. An example sea ice concentration map using the OSI SAF algorithm on raw FY3 data is shown below. Such maps can extend the climate data record released in early 2017, should the last SSMIS fail.

Sea Ice Concentration maps for February 6th 2018 (left: Northern Hemisphere, right: Southern Hemisphere). These are computed by the OSI SAF algorithms applied on raw FY3 MWRI data [Credit: A. Sørensen].

Access to the FY3 data was facilitated by bi-lateral agreements between EUMETSAT and CMA. National and international space agencies coordinate their activities in a variety of forums such as CEOS (Comittee on Earth Observation Satellites), CGMS (Coordination Group for Meteorological Satellites) or WMO PSTG (the World Meteorological Organization Polar Space Task Group) to cite a few. This global-scale coordination goes mostly unnoticed to the public and the scientific community. It is, however, a great aid for our ability to continuously monitor and predict the global environment.

You might think that, now that the Gap is Bridged, I have nothing more to tell you about passive microwave satellites for sea ice observations? Well, think again. There is a third character to our story: the «game-changer».

The Game-changer

Without further teasing you, our «game-changer» is CIMR. CIMR stands for the «Copernicus Imaging Microwave Radiometer». It might get selected for joining the family of Copernicus satellites some time in the late 2020s.

Before I tell you what makes CIMR so special, we need a short introduction on what passive microwave instruments are, why we like them for observing sea ice, and how they work:

T. Lavergne (2018) Passive Microwave Remote Sensing of Sea Ice : a crash-course in just four list items, Int. J. of Short Lists

  1. The best satellite instruments for measuring sea ice use the microwave part of the electromagnetic spectrum (from ~1 to ~100 GHz). This type of radiation does not depend on Sun light, and is not blocked by clouds.

  2. Passive microwave instruments record a tiny amount of radiation naturally emitted at the surface of the Earth and in the atmosphere. Aboard the satellite, the radiation is reflected by an antenna towards a recording instrument: the radiometer.

  3. Radiometers can measure at several frequencies. Once the images are back at the processing centers on Earth, algorithms are applied to compute geophysical products such as sea ice concentration.

  4. Radiometers with low frequencies (e.g. 6 GHz) yield best accuracy for sea ice concentration products. The bigger the antenna, the better the final resolution of the product.

One of a kind, the CIMR will focus on the low frequencies (6, 10, and 18 GHz), and fly an antenna big enough to ensure much better resolution than any of the passive microwave instruments we ever used before. This requires the antenna of CIMR to be substantially larger than that of SSMIS (60cm diameter), MWI (75cm) or even AMSR2 (2.1m)! The AMSR-E instrument and its followers were game-changers 15 years ago, and still offer the best resolution today… but future operational models and polar applications will require better sea ice products all too soon.

An exciting time opens for satellite-based observations of polar sea ice, as the pre-studies for CIMR are started by the European Space Agency this spring! Will industry take-up the challenge and build a big enough antenna for CIMR? Will CIMR be selected as EU’s future polar Copernicus mission? If “yes” to both, Europe will have a game-changer: high-resolution all-weather daily global accurate mapping of sea ice concentration.

I will definitely follow the developments with CIMR! Maybe I’ll tell you how it went in a future blog post? 🙂

Note: Were there too many acronyms in this blog? Well, we are sorry about that. Those satellite-people just LOVE their acronyms! A good resource for searching what satellite acronyms mean is the “Space capability” page from the World Meteorological Organization: https://www.wmo-sat.info/oscar/spacecapabilities (enter the acronym in the Quick Search, top-right for the page).

Further reading

Edited by David Docquier and Clara Burgard


Thomas Lavergne is a research scientist at the Norwegian Meteorological Institute. His main interest is in improving algorithms to improve sea ice satellite products, and help towards a better understanding between observation and model communities. He recently worked with EUMETSAT OSI SAF and ESA CCI to produce Climate Data Records for Sea Ice Concentration. He tweets as @lavergnetho.