CR
Cryospheric Sciences

Ice Caves

The hidden part of the cryosphere – Ice in caves

The hidden part of the cryosphere – Ice in caves

The cryosphere can be found in various places in many forms and shapes… in the atmosphere, on land and sea. A lesser known part of the cryosphere is hidden deep in the dark, in the cold-karstic areas of the planet: Ice caves! The ongoing climate change affecting ice all over the world is now rapidly melting these hidden ice masses as well. We therefore need to hurry up and try to collect as much information as we can before all will melt away…


The big melting

The ice masses around the globe, in ice sheets, sea ice, and mountain glaciers, have been melting away in past decades (see this previous post). The reduction of the cryosphere, both in terms of area and mass, has particularly been visible in the European Alps over the last 30 years. On the one hand, large and small Alpine glaciers decline, fragment and even disappear, and this trend has accelerated since the mid 1980s. Mountain glaciers are therefore considered to be sensitive indicators for climate variability. On the other hand, the warming climate is also acting on permafrost degradation, mostly affecting the stability of rock-slopes and cliffs.

What makes the international scientific community worry at the moment is how fast this abrupt glacial reduction is occurring globally. However, not all the natural environments respond in the same way to sudden changes in the climate system! Fortunately for us scientists, there are physical environments and ecological niches more resilient to external perturbations. This aspect has sometimes allowed the preservation of environments and information in the Earth’s climatic history that would have been otherwise destroyed.

Caves are resilient

Among the most resilient natural environments there are caves, “protected” by the rocky mass within which they were formed. In the mountains, high-altitude karst cavities can contain huge deposits of ice representing a lesser known part of the cryosphere. Speleologists face such ice in caves both as a joy and a damnation: fascinating by their beautiful shapes and morphologies, they also see it as an unwieldy presence that prevents explorations of still unknown voids in the alpine karstic systems.

Fig. 2: An ice deposit in a cave of the southeastern Alps [Credit: Renato R. Colucci].

 

But ice in caves is not just something beautiful (but isn’t it? Look at Fig. 2!). It rather represents a precious natural archive, sometimes with high temporal resolution, able to tell the climate history of large part of the Holocene (the last 11700 years of the Earth’s history). The permanent ice deposits, i.e. the ice staying longer than just a winter season, often defined in a colorful way as “fossil ice” by speleologists, is what counts the most. As it typically gets older than 2 years, which is one threshold for the general definition of permafrost, this phenomenon is part of the mountain permafrost… right or wrong, ice in caves is ground ice!

Fig. 3: Huge entrance of a cave opening in the Dachstein limestones of the Canin-Kanin massif, southeastern Alps [Credit: Renato R. Colucci].

 

Generally in the Alps such ice deposits lie in caves having their opening at altitudes above 1,000 m (Fig. 3), but locally even lower. The formation of these unique environments depends on a combination of geomorphological and climatic characteristics, which allow for accumulation and preservation of ice also in places where this would be very unlikely.

Now, although the caves are resilient environments, ice melting due to climate change is rapidly increasing there as well. This is why it is important to save as much information as possible from the remaining ice, before it is definitely lost!

The C3 project – Cave’s Cryosphere and Climate

The C3-Cave’s Cryosphere and Climate project is under the scientific guidance of the National Research Council (CNR) of Italy, and precisely the climate and paleoclimate research group of ISMAR Trieste. It aims to monitor and study ice deposits in caves. Such ice deposits store several information related to the paleoclimate, the biology, the chemistry and ecology of these environments.

Fig. 4: Drilling ice cores with the aim to extract the CCC layer from this ice body in a cave of the southeastern Alps [Credit: Arianna Peron].

The project started in 2016, following the discovery of a coarse cryogenic calcite deposit (CCCcoarse) in an ice layer (in-situ) in a cave of the Canin-Kanin massif, in the Julian Alps, located between Italy and Slovenia. This finding, representing the first evidence of CCC in the southern Alps, provides an important opportunity to understand the processes associated to the formation of these particular calcite crystals (Fig. 4). Previously, the CCC (Fig. 5) was only found on the floor in caves where ice had already melted away. What makes it interesting is the fact that it is possible to date these crystals using the isotopic ratio of some trace elements in radioactive materials, typically Uran and Thorium.

Fig. 5: Millimetric crystals of coarse cryogenic calcite found in-situ in the southern Alps [Credit: Renato R. Colucci].

The strongest financial and logistic support to the project is given by the Alpine Society of the Julian Alps through its speleological group, the E. Boegan Cave Commission. In addition to the CNR and other Italian institutions such as the University of Trieste, University of Bologna, Insubria University in Varese, Milano Bicocca University and the Natural Park of the Julian Prealps, the project involves research institutes and universities from Germany (Institute of Physics of Heidelberg University), Switzerland (Paul Scherrer Institut; Swiss Institute for Speleology and Karst Studies), Austria (Innsbruck University; Palynology and Archaeobotany Research Group), and Slovenia (Geological survey of Slovenia).

Many activities and several results already unveiled few of the secrets hidden in such environments: the realization of the first thermo-fluido-dynamic model in an ice cave, the development of innovative techniques for studying the mass balance of the ice, the study of the thermal characteristics of the rock and therefore of the permafrost and the active layer, the development of innovative and multidisciplinary methods of ice dating.

But there is little time to do all, and we must exploit it to the fullest!

Further reading

Edited by Clara Burgard


Renato R. Colucci works in the climate and paleoclimate research group of ISMAR-CNR, Department of Earth System Sciences and Environmental Technology. He is also adjunct Professor of glaciology at the University of Trieste (Italy). During his PhD he honed his skills in glacial and periglacial geomorphology at UNIS (University Center in Svalbard). His research centers around the interactions between cryosphere (glaciers, permafrost, ice caves) and the climate, spanning from the end of the Last Glacial Maximum to the present days.

Image of the Week – Ice on Fire (Part 2)

Image of the Week – Ice on Fire (Part 2)

This week’s image looks like something out of a science fiction movie, but sometimes what we find on Earth is even more strange than what we can imagine! Where the heat of volcanoes meets the icy cold of glaciers strange and wonderful landscapes are formed. 


Location of the Kamchatka Peninsula [Credit: Encyclopaedia Britannica]

The Kamchatka Peninsula, in the far East of Russia, has the highest concentration of active volcanoes on Earth. Its climate is cold due to the Arctic winds from Siberia combined with cold sea currents passing through the Bearing Strait, meaning much of it is glaciated.

Mutnovsky is a volcano located in the south of the peninsula, which last erupted in March 2000. At the base of the volcano are numerous labyrinths of caves within ice. The caves are carved into the ice by volcanically heated water. The roof of the cave shown in our image of the week is thin enough to allow sunlight to penetrate. The light is filtered by the ice creating a magical environment inside the cave, which looks a bit like the stained glass windows of a cathedral. It is not always easy to access these caves, but when the conditions are favourable it makes for a wonderful sight!

The Mutnovsky volcano is fairly accessible for tourists, around 70 km south of the city of Petropavlovsk-Kamchatsky. Maybe this could be the holiday destination you have been searching for?

Further Reading

We have featured a number of stories about ice-volcano interaction on our blog before, read more about them here, here and here!

Edited by Sophie Berger

Image of the Week – Inside a Patagonian Glacier

Image of the Week – Inside a Patagonian Glacier

Chilean Patagonia hosts many of the most inhospitable glaciers on the planet – in areas of extreme rainfall and strong winds. These glaciers are also home to some of the most spectacular glacier caves on Earth, with dazzlingly blue ice and huge vertical shafts (moulins). These caves give us access to the heart of the glaciers and provide an opportunity to study the microbiology and water drainage in these areas; in particular how this is changing in relation to climate variations. Our image of this week shows the entrance to one of these caves on Grey Glacier in the Torres del Paine National Park.


“Glacier karstification”

Glaciers in Patagonia are “temperate”, which means that the ice temperature is close to the melting point. As glacial melt-water runs over the surface of this “warm” ice it can easily carve features into ice, which are similar to those formed by limestone dissolution in karstic landscapes. Hence, this phenomenon is called Glacier karstification. It is this process that forms many of the caves and sinkholes that are typically found on temperate glaciers.

From the morphological (structural) point of view, glaciers actually behave like karstic areas, which is rather interesting for a speleologist (scientific cave explorer). Besides caves and sinkholes one often finds other shapes similar to karstic landscapes. For example, small depressions on the ice surface formed by water gathering in puddles, whose appearance resembles small kartisic basins (depressions). Of all the features formed by glacier karstification glacier caves are the most important from a glaciological perspective.

Glacier caves can be divided in two main categories:

  • Contact caves – formed between the glacier and bed underneath; or at the contact between extremely cold and temperate ice by sublimation processes (Fig. 2a)
  • Englacial caves – form inside the glacier – as shown in our image of the week today. Most of these caves are formed by runoff, where water enters the glacier through a moulin (vertical shaft) and are the most interesting for exploration and research (Fig. 2b)
Figure 2: Two different types of caves explored on the Grey Glacier. A- Contact formed between the glacier bed and overlying ice [Credit: Tommaso Santagata]. B- Entrance to an englacial cave [Credit: Alessio Romeo/La Venta].

Figure 2: Two different types of caves explored on the Grey Glacier. A- Contact formed between the glacier bed and overlying ice [Credit: Tommaso Santagata]. B- Entrance to an englacial cave [Credit: Alessio Romeo/La Venta].

Exploring the moulins of a Patagonian glacier

Located in the Torres del Paine National Park area (see Fig. 3), the Grey glacier was first explored in 2004 by the association La Venta Esplorazioni Geografiche. In April of this year, a team of speleologists went back to the glacier to survey the evolution of the glacier.

Figure 3: Map of Grey Glacier with survey site of 2004 and 2016 indicated by red dot [Adapted from: Instituto Geografico Militar de Chile ]

Figure 3: Map of Grey Glacier with survey site of 2004 and 2016 indicated by red dot [Adapted from: Instituto Geografico Militar de Chile ]

Grey glacier begins in the Andes and flows down to it’s terminus in Grey Lake, where it has three “tongues” which float out into the water (Fig, 3). As with many other glaciers, Grey Glacier is retreating, though mass loss is less catastrophic than some of Patagonia’s other glaciers (such as the Upsala – which is glaciologically very similar to the Grey Glacier). Grey Glacier has retreated by about 6 km over the last 20 years and has thinned by an average of 40 m since 1970.

In 2004 research was concentrated on the tongue at the east of this Grey Glacier (Fig. 3 – red dot), which is characterised by a surface drainage network with small-size surface channels that run into wide moulin shafts, burying into the glacier. In this latest expedition, the same area was re-examined to see how it had changed in the last 12 years.

Several moulins were explored during the 2016 expedition, including a shaft of more than 90 m deep and some horizontal contact caves (Fig 2). The glacier has clearly retreated and the surface has lowered a lot from the 2004 expedition. The extent of the thinning in recent years can be easily measured on the wall of the mountains around the glacier. Interestingly the entrance to the caves which were explored in 2004 and in 2016 was in the same position as 12 years ago, although the reasons for this are not yet clear.

The entrance of two of the main moulins which were explored were also mapped in 3D using photogrammetry techniques (see video below). The 3D models produced help us to better understand the shape and size of these caves and to study their evolution by repeating this mapping in the future. For more information about the outcome of this expedition, please follow the Inside the Glaciers Blog.

 

 

Further Reading:

Books on the subject:

  • Caves of the Sky: A Journey in the Heart of Glaciers, 2004, Badino G., De Vivo A., Piccini L.
  • Encyclopaedia of Caves and Karst Science, 2004, Editor: Gunn J.

Edited by Emma Smith and Sophie Berger


tom_picTommaso Santagata is a survey technician and geology student at the University of Modena and Reggio Emilia. As speleologist and member of the Italian association La Venta Esplorazioni Geografiche, he carries out research projects on glaciers using UAV’s, terrestrial laser scanning and 3D photogrammetry techniques to study the ice caves of Patagonia, the in-cave glacier of the Cenote Abyss (Dolomiti Mountains, Italy), the moulins of Gorner Glacier (Switzerland) and other underground environments as the lava tunnels of Mount Etna. He tweets as @tommysgeo