Cryospheric Sciences

Quirky Ice

Image of the Week – Why is ice colourful?

Image of the Week – Why is ice colourful?

When you think of glacier ice, what colour first springs to mind? Maybe white, blue or transparent? Well, glacier ice can, in fact, be mesmerising and multi-coloured! Our image of the week shows thin sections of glacier ice under polarised light. These sections were cut from block samples of two Alpine glaciers in Switzerland (Chli Titlis and Grenzgletscher).  

In these images the individual ice crystals (Fig. 1 ) can be easily distinguished due to the different colours (see previous post about sea ice) and most of them are large (Fig. 1 ) due to the relatively high temperature of the glaciers they originate from; ice crystals grow faster at high temperatures, close to zero!

Now we know the answer to “what is the colour of ice?” can not be simply answered with “transparent”, the obvious follow-up question is:

Why is ice colourful?

While ice is, of course, transparent (Fig. 2 ) – when we see it as icicles on the roof, as fern frost on a window or as ice cubes in our gin and tonic, it can have any colour – if you look at it in special light – polarised light (Fig. 3 ).

Figure 2: A thin section of ice (~0.3 mm thick) appears transparent under normal light conditions [Credit: Johanna Kerch]

Linearly polarised light is produced by putting a filter in front of a light source. Before being polarised, the light is an electromagnetic wave that vibrates in many directions. The polarising filter, which looks a bit like a very small picket fence, only lets light through that vibrates in the direction of the “gaps in the fence”. If we have two such filters and put them in a row, but rotate the second filter by 90° no light will come through because polarised light from the first filter will not fit through the gaps at the second filter. However, if we put a very thin slice of glacier ice between the two filters we begin to see the colours!

This effect can be observed because ice is birefringent. This means, that light travelling through the ice is split into two parts by the crystal structure of the ice. To help you understand, we have created this analogy: imagine a pair of children who enter a forest side-by-side and hand-in-hand, but they split up to travel through the forest. One part of the light (one child) can travel faster than the other because, it is interacting less with the crystal lattice (less dense part of the forest) . At the end of their separated journey through the ice sample the two parts of light recombine (children are hand-in-hand again), but because they were travelling at different speeds they will be out of phase, meaning the recombined light will have a different polarisation than it did when it entered the ice after passing through the first polariser (one child will be a bit behind the other, rather than side-by-side). Only in case where the new polarisation is 90° rotated can the light pass through the second filter.

Figure 3: Left: transparent ice thin section (0.3 mm thick) on a glass plate during measurement viewed from the side without polarisers. Right: thin section between two polarisers shows crystals in ice section in different colours [Credit: Johanna Kerch].

However, it gets a bit more complicated, white light is a collection of lots of different waves with different wave lengths,  which corresponds to different colours (shorter wave lengths are bluish, longer wave lengths are reddish and in between there is yellow-green). Each of these wave lengths is split up (as described above) when entering the ice sample. So each wave length has two waves travelling with different speeds (imagine a whole group of children who arrive at the forest in pairs, hand-in-hand, forced to split up to go through the forest single file). After exiting the ice sample, the two parts for each wave length recombine (children are back in pairs), and each pair of of waves, at a given wave length has a new polarisation direction. Not all of them can pass the second filter, only those wave lengths where the new polarisation is 90° rotated. Therefore, instead of white light only light of specific colours completes it’s journey through the second filter, to be seen by the observer – all the other colours are swallowed (all the children that don’t make it are eaten by wild animals in the forest!!). Because different crystals in a slice of glacier ice are oriented in various directions, they exert different amounts of birefringence on the light passing through them, this means they appear in different colours when viewed through the second polarising filter (Fig. 3 ). So…that’s cool and allowed us to make a wild analogy about children in a forest, but why is this scientifically useful?

Polarisation Microscopy

The technique by which we examine the ice between crossed polarisers to map the different crystals is called polarisation microscopy. The multi-coloured images of thin ice slices allow us to understand the orientation of the individual crystals, which is important to understand the mechanical properties of glacier ice – but this is another story, for another blog post.

Right, now we have to go and rescue some children from a forest!

Further Reading

Personal note on outreach:

From my experience in the ice laboratory most people, especially children, are immediately captured by the birefringence effect in ice. It’s a great starting point to get them interested in glaciological issues!

Edited by Emma Smith

Johanna Kerch is a postdoctoral researcher at Alfred-Wegener-Institute in Bremerhaven. Her research focus is on crystal-preferred orientation and microstructure of glacier ice and how it links to other physical properties in ice and the deformation mechanisms in glacier ice. She has studied cold and temperate glacier ice from various sites in the Alps and has recently been involved in making measurements of the physical properties of the EGRIP ice core. She tweets as @JohannaKerch.

Image of the Week – Broccoli on Kilimanjaro!

Image of the Week – Broccoli on Kilimanjaro!

On the plateau of Kilimanjaro, Tanzania, the remnants of a glacier can be found and the ice from that glacier contains a rather interesting feature – Broccoli! Not the vegetable, but bubbles that look a lot like it. Our Image of the Week shows some of these strange “Broccoli Bubbles”. Read on to find out more about where these were found and how we can see them.

Figure 2: Kilimanjaro northern ice field, Tanzania, 5800 m a.s.l. Red arrow indicates where ice samples were collected [Credit: Adapted from a Google Earth image]

There is not much ice left on the mountain plateau of Kilimanjaro (Fig. 2), the highest mountain in Africa (5895 m a.s.l.), which is also a dormant volcano. Very likely the last remnants of glacier ice will have gone soon (Thompson et al., 2009). However, a recent expedition to Kilimanjaro’s Northern Ice Field in 2015 (Bohleber et al., 2017) brought home some ice block samples cut with a chain saw from the accessible southern ice cliff 5800 m a.s.l. (red arrow, Fig. 2) . These block were then studied in  ice laboratory at AWI in Germany and an interesting observation was made…Broccoli bubbles!

These irregularly shaped bubbles, which look like broccoli, were seen in the polished ice slabs using close-up photography and an LASM (Large Area Scan Macroscope). This type of bubble intrigued scientists as it is certainly not a common one! When looking from above onto a horizontal section the broccoli bubbles appear to have pointy tips (Fig. 3.), which are all directed towards the glacier face.

Figure 3: “Broccoli” bubbles seen from above. RHS: A horizontal section of ice, area in image is approx. 2 cm high, image is a close-up photograph with a metal plate in the background. The pointed tips of the bubbles (up in this photo) are directed towards the ice cliff face (from which the samples were taken). LHS: Large Area Scan Macroscope (LASM) cross-section through the sample (LHS). The black pore spaces are the Broccoli bubbles [Credit: Johanna Kerch].

Another type of bubble makes also an appearance: the disk- or bowl-shaped bubble (Fig. 1). It is rather regular but not rounded. Instead it is flattened on one or both sides and a little angular, maybe even leaning towards a hexagonal shape. Disk bubbles found close together are oriented in the same direction, one explanation for this could be that the crystal orientation of the ice (the way the ice crystal align during ice flow) plays a role in the bubble formation.

How do the broccoli and disk bubbles evolve? Although we suspect it has something to do with the temperate ice and some temperature gradient at the ice cliff, we do not know for certain. Nonetheless, it is a marvellous thing to discover – before the Kilimanjaro glacier ice is gone for good!

Edited by Emma Smith

Johanna Kerch is a postdoctoral researcher at Alfred-Wegener-Institute in Bremerhaven. Her research focus is on crystal-preferred orientation and microstructure of glacier ice and how it links to other physical properties in ice and the deformation mechanisms in glacier ice. She has studied cold and temperate glacier ice from various sites in the Alps and has recently been involved in making measurements of the physical properties of the EGRIP ice core. She tweets as @JohannaKerch.

Image of the Week – Ice Stupas: a solution for Himalayan water shortage?

Image of the Week – Ice Stupas: a solution for Himalayan water shortage?

As the world searches for practical innovations that can mitigate the impact of climate change, traditional methods of environmental management can offer inspiration. In Hindu Kush and Karakoram region, local people have been growing, or grafting, glaciers for at least 100 years. Legend has it that artificial glaciers were grown in mountain passes as early as the twelfth century to block the advance of Genghis Khan and the Mongols!


What exactly are we talking about?

People in the Himalayas need water for the irrigation of their crops. Naturally, they get this water during the melting period of local glaciers. Glacial melt, however, is insufficient to satisfy the demands in early spring (April-June). Artificial ice structures can increase the availability of water for crop irrigation during this period. They are grown during the winter season preventing the water to waste away into the ocean. The Ice Stupa project is bringing these practices back from the realm of folklore for the everyday use of mountain farmers again.


How it works

An artificial glacier is built following a simple technique. Water is piped away from high altitude reservoirs (glacial lakes or streams) in winter. Further downstream, the water is allowed to “leave” the pipe. Due to gravity, the pressure that has built up on the way forces the water to leave the pipe as a water fountain. In contact with subzero temperatures, the water fountain freezes, building a huge cone of ice. In its final form, this artificial glacier looks like a traditional buddhist building, hence the name “stupa“. In the following video, you can get a better visual idea of the process!



An ice stupa is needed for crop irrigation. The water contained in the stupa should therefore also be released during the right time of the year. To this purpose, it is also designed to conserve water in ice form as long into the summer as possible. It can then, as it melts, provide irrigation to the fields until the real glacial melt waters are sufficient in June. Since these ice cones extend vertically upwards towards the sun, they receive less of the sun’s energy per unit of volume of water stored. Hence, they will take much longer to melt compared to an artificial glacier of the same volume formed horizontally on a flat surface.


Further reading

Edited by Clara Burgard

Suryanarayanan Balasubramanian is a mathematician who has been managing the Ice Stupa Project for the past three years. He studies the life cycle of Ice Stupas through field measurements and dynamic models. He is currently developing the project in Peru, Switzerland, Nepal and India. Contact Email:

Image of the Week – When the dirty cryosphere destabilizes!

Image of the Week – When the dirty cryosphere destabilizes!

Ice is usually something you see covering large ocean areas, mountain tops and passes or as huge sheets in polar regions. This type of ice is clearly visible from space or with the naked eye. There is, however, a large volume of ice that is less visible. This ice is distributed over the polar and high alpine permafrost regions; and is the ice hidden below ground. It might be hidden, but that doesn’t mean we should ignore it. If this below-ground ice melts, the ground might collapse!

On solid ground?

To change the surface of a landscape usually requires wind or water, which actively erodes the material around it. In permafrost areas, however, different mechanisms are at work. In these areas, the ground or parts of the ground, are frozen all year round and the formation and melting of below-ground ice changes the landscape in a complicated way. Below-ground ice can have many shapes and sizes depending on moisture availability, sediment type and thermal regime (French, 2007). Because a gram of ice has 9 % higher volume than a gram of water, simply freezing, thawing and re-freezing soil water can make the surface “wobbly” and irregular. Since ice doesn’t drain from a saturated soil, as water does, a permanently frozen soil can also contain moisture in excess of the absorption capacity of the soil – excess ice. This means that ice might take up the majority of the ground volume in ice-rich areas.

Our Image of the Week (Fig. 1) was taken in NE Greenland. The phenomenon shown is a result of ground, which has been frozen for many years, being destabilized. In this photo, the below-ground ice has begun to melt, and the decrease in ice volume has caused the ground to collapse, forming what is known as a thermokarst development (Fig. 1). This is just one type of feature that can be caused by below-ground ice mass loss. Kokelj and Jorgenson (2013) give a nice overview of recognized thermokarst features including: retrogressive thaw slumps, thermokarst lakes and active layer detachment slides. Ice melt might also simply be expressed as a lowering of the land surface (thermal subsidence), as observed in peat (Dyke and Slaten, 2010) and in areas with ice wedge polygons (Jorgenson et al., 2006), or in upraised plateaus (Chasmer et al., 2016).

the decrease in ice volume has caused the ground to collapse

The spatial scales of these types of collapse features span from depressions of 10 cm depth to areas of several square kilometers, with thermokarst features many meters deep. The rates of surface change also vary from sudden detachment and slide of the unfrozen upper active layer on slope, to features developed over centuries and even millennia (e.g. Morgenstern et al., 2013).

The most dramatic surface changes often happen where ground ice content is high, such as in the coastal lowland tundras of Siberia (e.g. Morgenstern et al., 2013) or coastal northern Canada (Fortier, et L., 2007). However, thermokarst development is found also in coastal Greenland (Fig. 1) and even the McMurdo Dry Valleys of Antarctica (Levy et al., 2013).

Why does the ground ice melt?

Many factors can lead to the destabilization of below-ground ice bodies. Notable ones are:

  • Erosion of the surface allows for atmospheric energy to penetrate deeper into the ground.
  • Thermal contraction or other types of cracks might create an easy access to deeper layers for water and energy.
  • Persistent running water might erode physically as well as transfer fresh energy into the system.

Fig. 2 shows a recently opened crack in the ground, close to the karst formation shown in Fig.1. The crack reveals a large body of massive (pure ice) below-ground ice. The opening of the crack, however, also creates a highway for heat energy into the now unstable ice body, which will start degrading.

Figure 2: Looking into a recently opened crack revealing a large ice body just below the summer thaw layer, NE Greenland [Credit: Laura Helene Rasmussen]

“And so what?”

The surface changes somewhat. No big deal. Why investigate where and how and how much and how fast?

For people living in permafrost areas thermal subsidence might happen below the foundation of their house or destabilize the one road leading to their local airport (Fortier, et al., 2011).

Figure 3: Taking a closer (!) look at below-ground ice, NE Greenland [Credit: Line Vinther Nielsen].

Thermal subsidence might also change the hydrology of the area, causing surface water to find new routes (Fortier, et al., 2007) or pool in new places. When water pools in the depressions above frozen ground, the exchange of energy between the atmosphere and the permafrost is altered.

There is increased heat transport downward into the ground in summer (Boike et al., 2015), which can then lead to more melting. Similarly, thermokarst development itself exposes more frozen ground to above-zero temperatures, leading to further thawing (Chasmer et al., 2016)

and crucially mobilising otherwise dormant carbon stored in the permafrost (Tarnocai, et al., 2009).

Reports of an increase in rates of thaw have been linked to recent climatic warming (Kokelj and Jorgenson, 2013), and changes in precipitation patterns (e.g. Kokelj et al., 2015). So expect to see this “dirty“ cryospheric component receiving more attention, and don’t be surprised if you see an increasing number of strange scientists figuratively or literally (!) sticking their heads into cracks in the ground…

Edited by Emma Smith and Clara Burgard

Laura Helene Rasmussen is a Danish permafrost scientist working at the Center for Permafrost, University of Copenhagen. She has spent many seasons in Greenland, working with the Greenland Ecosystem Monitoring Programme and is interested in Arctic soils as an ecosystem component, their climate sensitivity, functioning and simply understanding what goes on below.

Image of the Week – Ice lollies falling from the sky

Lolly in the sky. [Credit: Darwin Bell via flickr]

You have more than probably eaten many lollipops as a kid (and you might still enjoy them). The good thing is that you do not necessarily need to go to the candy shop to get them but you can simply wait for them to fall from the sky and eat them for free. Disclaimer: this kind of lollies might be slightly different from what you expect…

Are lollies really falling from the sky?

Eight years ago (in January 2009), a low-pressure weather system coming from the North Atlantic Ocean reached the UK and brought several rain events to the country. Nothing is really special about this phenomenon in Western Europe in the winter. However, a research flight started sampling the clouds in the warm front (transition zone where warm air replaces cold air) ahead of the low-pressure system and discovered hydrometeors (precipitation products, such as rain and snow) of an unusual kind. Researchers named them ‘ice lollies’ due to their characteristic shape and maybe due to their gluttony. The microphysical probes onboard the aircraft, combined with a radar system located in Southern England, allowed them to measure a wide range of hydrometeors, including these ice lollies that were observed for the first time with such concentration levels.

How do ice lollies form?

A recent study (Keppas et al, 2017) explains that ice lollies form when water droplets (size of 0.1 to 0.7 mm) collide with ice crystals with the form of a column (size of 0.25 to 1.4 mm) and freeze on top of them (see Fig. 2).

Fig 2: Formation of an ice lolly: water droplet (the circle) collides with an ice crystal (the column) [Credit: Fig. 1a from Keppas et al., (2017)].

Such ice lollies form in ‘mixed-phase clouds’, i.e. clouds made of water droplets and ice crystals and whose temperature is below the freezing point (0°C). At these temperatures, water droplets can be supercooled, meaning that they stay liquid below the freezing point.

Figure 3 below shows the processes and particles involved in the formation of ice lollies. Ice lollies are mainly found at temperatures between 0 and -6°C, in the vicinity of the warm conveyor belt, which represents the main source of warm moist air that feeds the low-pressure system. This warm conveyor belt brings water vapour that participates in the formation and growth of supercooled water droplets. Ice crystals formed near the cloud tops fall through the warm conveyor belt and collide with the water droplets to form ice lollies.

Fig 3: Processes involved with the formation of ice lollies, which mainly form under the warm conveyor belt [Credit: Fig 4 from Keppas et al., (2017)].

Are these ice lollies important?

Ice lollies were observed more recently (September 2016) during another aircraft mission over the northeast Atlantic Ocean but no radar coverage supported the observations. At the moment of writing this article, the lack of observations prevent us from determining the importance of these ice lollies in the climate system. However, future missions would provide more insight. In the meantime, we suggest you to enjoy a lollipop such as the one shown in the image of this week 🙂

This is a joint post, published together with the atmospheric division blog, given the interdisciplinarity of the topic.

Edited by Sophie Berger and Dasaraden Mauree

Reference/Further reading

Keppas, S. Ch., J. Crosier, T. W. Choularton, and K. N. Bower (2017), Ice lollies: An ice particle generated in supercooled conveyor belts, Geophys. Res. Lett., 44, doi:10.1002/2017GL073441


DavidDavid Docquier is a post-doctoral researcher at the Earth and Life Institute of Université catholique de Louvain (UCL) in Belgium. He works on the development of processed-based sea-ice metrics in order to improve the evaluation of global climate models (GCMs). His study is embedded within the EU Horizon 2020 PRIMAVERA project, which aims at developing a new generation of high-resolution GCMs to better represent the climate.

Image of the Week – Ice on Fire (Part 2)

Image of the Week – Ice on Fire (Part 2)

This week’s image looks like something out of a science fiction movie, but sometimes what we find on Earth is even more strange than what we can imagine! Where the heat of volcanoes meets the icy cold of glaciers strange and wonderful landscapes are formed. 

Location of the Kamchatka Peninsula [Credit: Encyclopaedia Britannica]

The Kamchatka Peninsula, in the far East of Russia, has the highest concentration of active volcanoes on Earth. Its climate is cold due to the Arctic winds from Siberia combined with cold sea currents passing through the Bearing Strait, meaning much of it is glaciated.

Mutnovsky is a volcano located in the south of the peninsula, which last erupted in March 2000. At the base of the volcano are numerous labyrinths of caves within ice. The caves are carved into the ice by volcanically heated water. The roof of the cave shown in our image of the week is thin enough to allow sunlight to penetrate. The light is filtered by the ice creating a magical environment inside the cave, which looks a bit like the stained glass windows of a cathedral. It is not always easy to access these caves, but when the conditions are favourable it makes for a wonderful sight!

The Mutnovsky volcano is fairly accessible for tourists, around 70 km south of the city of Petropavlovsk-Kamchatsky. Maybe this could be the holiday destination you have been searching for?

Further Reading

We have featured a number of stories about ice-volcano interaction on our blog before, read more about them here, here and here!

Edited by Sophie Berger

Image of the Week – Goodness gracious, great balls of ice!

Image of the Week – Goodness gracious, great balls of ice!

At first glance our image of the week may look like an ordinary stoney beach…but if you look more closely you will see that this beach is not, in fact, covered in stones or pebbles but balls of ice! We have written posts about many different weird and wonderful ice formations and phenomena (e.g. hair ice or ice tsunamis) here at the EGU Cryosphere blog and here is another one to add to the list – ice balls!

During the northern hemisphere winter these naturally formed balls of ice have been found on several Arctic shores; as well as Estonia there have been reports of them in RussiaNorth America and Northern Germany. There are even photos of “ball ice” in the Great Lakes from a 1966 book of aerial photography published by the University of Michigan. However, they are still a rare occurrence, surprising and delighting onlookers when they appear.

How do they form and why are they not seen more often?

These ice balls are thought to form from ice slush, which is amalgamated by turbulent water to form rough lumpy ice masses – similar to the way you would roll a small snow ball into a much larger one to form a snow man. The ice masses are then rounded into the smooth spherical shapes you see in our image of the week by wave action rolling them around in shallow water near the shore (see video below). This is much the same way as pebbles on a beach are smoothed and rounded – it just happens a lot faster with ice balls than solid pebbles!

It seems that the right combination of wind strength, wind direction, sea temperature and coast line shape are needed to form these features and then bring them on to the shore. For all of these things to occur at the same time is rare and special!