CR
Cryospheric Sciences

Student Reporter

Image of The Week – Tumbling Rocks

Image of The Week – Tumbling Rocks

This photo captures a rockfall at the summit of Tour de Ronde, 3792 m above sea level in the Mont Blanc Massif. On 27 August 2015, around 15000 m3  of rock fell from the steep walls of the mountain.

Why do mountains crumble ?

Rockfalls such as the one on the photo have been linked to thawing permafrost. The exact mechanism that leads to these events is not fully understood, however, it is thought that areas of the mountain becoming destabilised during thaw periods (Luethi et al, 2015). Records show that during heat waves — as for instance the one that happened in the summer of 2015 in the Mont Blanc Massif — there are many more rockfalls than during colder years. Researchers at the Université Savoie Mont Blanc have been monitoring this area of the Alps for many years, installing a network of temperature sensors on the surface and in boreholes drilled into the rock to try and better understand the link between temperature and rock slope stability (see Magnin et al, 2015).

What can we do about it? 

The short answer is that there is not a lot that can be done to prevent it. However, long term monitoring studies, such as the one from Magnin et al (2015), help to better understand what conditions are likely to result in rockfall activity and therefore predict when they are likely to happen. By doing this in the Mont Blanc region the team from Université-Savoie Mont Blanc has been able to put in place an alert network to warn the local community to increased rockfall activity. This means that the potential damage can be minimised, for example, by closing climbing routes in risky areas.


Further reading

Check out our blog post about how cryospheric research can transform lives.

  • Magnin, F., Deline, P., Ravanel, L., Noetzli, J., and Pogliotti, P. (2015) : Thermal characteristics of permafrost in the steep alpine rock walls of the Aiguille du Midi (Mont Blanc Massif, 3842 m a.s.l), The Cryosphere, 9, 109-121, doi:10.5194/tc-9-109-2015
  • Luethi, R., Gruber, S. and Ravanel, L., (2015) Modelling transient ground surface temperatures of past rockfall events: towards a better understanding of failure mechanisms in changing periglacial environments. Geografiska Annaler: Series A, Physical Geography, 97, 753767. doi: 10.1111/geoa.12114

Edited by Emma Smith and Sophie Berger

From Hot to Cold – Volcanology Meets the Cryosphere

From Hot to Cold – Volcanology Meets the Cryosphere

Hello again, I’m Kathi Unglert, and you’re about to read my third and final post as a student reporter at EGU 2016. Today I am writing about my experience in the cryosphere sessions from my volcanology perspective.


In preparation for the conference I kept thinking about what sort of research I would see in the cryosphere sessions. I had never really attended any specific conferences or meetings on the topic, so most of what I knew was from work that friends of mine do, which is mainly ice stream modelling. I am wondering whether similar tools (for example, analytical or numerical methods) can be used to model ice streams and lava flows?

 

A Tale of Ice and Fire

Thinking about the differences between ice streams/glaciers and lava, another potential overlap between cryospheric sciences and volcanology jumps out; In places like Iceland, volcanoes sometimes sit underneath large ice sheets. Similarly, tall volcanoes – particularly those in high mountain ranges – are often covered in snow and have small glaciers in their craters or on their summits. It is important to understand the interactions between the warm volcano, the hot lava, and the cold ice. For example, to forecast catastrophic floods that often occur when a subglacial volcanic eruption melts parts of the overlying ice and snow (so-called “jökulhlaups”). There is even a commission on “glaciovolcanism”, and it turns out that astrogeologists are quite interested in the topic to learn more about potential volcano-ice interactions on Mars. I had no idea how interdisciplinary this field of research was. It would definitely be useful for volcanologists to poke their heads into cryosphere meetings once in a while, and vice versa. Throw a little bit of planetary science in the mix, and you have a textbook example of interdisciplinary research!

Lava meets snow: Lava flowing into a canyon at the snow covered Eyjafjallajökull during an eruption in 2010 - one of the many examples where volcanology and cryospheric sciences meet. Photo credit: Martin Hensch (Imaggeo)

Lava meets snow: Lava flowing into a canyon at the snow covered Eyjafjallajökull during an eruption in 2010 – one of the many examples where volcanology and cryospheric sciences meet. Photo credit: Martin Hensch (Imaggeo)

The methods that we use in the different fields can also be quite similar: Resistivity measurements can be used to determine the extent of permafrost in the subsurface in Artic regions, but also to detect high temperature bodies beneath volcanic edifices that may be storing magma. I also saw a PICO presentation at the conference last week that uses cosmic rays to image the bed of a glacier in the Swiss Alps, a technique that volcanologists have tested to detect magma reservoirs and conduits on volcanoes!

In terms of the bigger picture, volcanological and cryospheric research overlap a lot in climatology. Erupting volcanoes emit gases and increase aerosols in the atmosphere, which can affect the climate locally, regionally, or even globally. The traces of such volcanic eruptions can sometimes be found in ice cores, where volcanic ash gets trapped and preserved for centuries or more. For a long time, it has been known that at least one big volcanic eruption in the 6th century – the traces of which have been found in ice cores – caused strong changes in climate for a few years, and some studies suggest that these effects may have contributed to political and societal instability in the Maya civilization in Central America at the same time. There was even a press conference about it at the EGU 2016 meeting. Other questions that we could ask might be “Does wide spread glaciation change the frequency or nature of volcanic eruptions?”, “How do volcanic eruptions affect the climate and ice stream or glacier dynamics?”, or “What can we learn about glacier dynamics by analyzing the locations of volcanic deposits in ice?”

So you know how they say “go big or go home”? Let’s put our minds together and get interdisciplinary! At the very least it’s going to be fun to think in slightly different terms for a while, and who knows where it may lead!

 

The EGU Student Reporter Experience

All in all, it’s been really great taking part in the Student Reporter Programme, and peeking into a totally different field. Seeing overlap between the different disciplines was a good experience, and one that was made possible by being a student reporter. Sometimes we get so stuck in our individual little niche that there is no room for anything else, despite the fact that other disciplines might have come across the same problems, struggled with the same methods, and maybe found a solution. I was lucky that the session schedule worked out ok – most days when things were a bit slow volcanology-wise I was able to go a cryosphere session. However, that way it was a very busy week, there was rarely ever any downtime, or time away from the conference. During the few quiet moments I spent time in the press office, doing some background research for my posts, editing work from the other reporters, or going to a press conference. I have to say, the press office was a new, but very cool experience. There were always interesting people around, both scientists presenting their latest results and journalists trying to find a new story. I’ve been into science writing for a while, so meeting some of the people whose work I read was a really cool bonus to the whole programme! If you enjoy writing, don’t mind a faster pace, and are curious about science at EGU outside your field I would highly recommend the Student Reporter Programme. If there is no blog in your discipline (like it was the case for me) that might even be a good thing, and you’ll get to learn some new and unexpected things!

(Edited by Emma Smith and Sophie Berger)


 

profile_highres_EarthMatters_lightKathi Unglert is a PhD student in volcanology at the University of British Columbia, Vancouver. Her work looks at volcanic tremor, a special type of earthquake that tends to happen just before or during volcanic eruptions. She uses pattern recognition algorithms to compare tremor from many volcanoes to identify systematic similarities or differences. This comparison may help to determine the mechanisms causing this type earthquake, and could contribute to improved eruption forecasting. You can find her on Twitter (@volcanokathi) or read her volcano blog.

 

When Cryospheric Research Transforms Lives

When Cryospheric Research Transforms Lives

My name is Kathi Unglert, and I’m reporting from the EGU 2016 General Assembly as part of the EGU student reporter programme. Below is my second contribution to the Cryosphere Blog – this time about how cryosphere research can have a real impact on people’s lives.

Antoni Lewkowicz – he’s famous, according to a comment I overheard in Tuesday’s PICO session on applied geophysics in cryosphere research. I’m a volcanologist, so I guess I wouldn’t know. But what I do know is that he’s a passionate scientist. His PICO presentation got my curiosity, but what really grabbed my attention is a small statement he made during the subsequent discussion of his PICO poster. But I’m getting ahead of myself.

One thing I’ve learned over the last few days is that cryospheric research can have a big impact on people’s lives. Antoni’s work is part of a project on the effects of a changing environment in Northern Canada, and on adaptation to climate change. The Yukon is Canada’s northwestern most territory, right on the border to Alaska. It’s about twice the size of the UK, but with just under 40,000 people its population is lower than 0.1% of the UK’s population. You can imagine the vast wilderness in the Yukon. Yet, for the people living in this part of the world, climate change is happening right now. Permafrost is disappearing (see the blog Image of The Week from last Friday), and the thawed ground is the foundation of now wonky houses. Among others, the Kluane First Nation and their territory are threatened by the disappearance of frozen ground. They have teamed up with various universities and research institutes for Antoni’s climate change adaption and hazard mapping project to identify regions where future construction is less likely to be affected by thawing permafrost. The project reveals that on previously burnt ground, where the permafrost has already thawed, the shallow ground is less likely to move and settle any further, so it’s safer for buildings.

An old building in Dawson, Yukon, warped by thawing permafrost. Photo credit: Antoni Lewkowicz

An old building in Dawson, Yukon, warped by thawing permafrost. Photo credit: Antoni Lewkowicz

Ludovic Ravanel also studies permafrost. The researcher and mountain guide has set up a network of observers – fellow guides, hut keepers, cable car operators and more – to monitor rockfalls at Aiguille du Midi, a peak at over 3,800 m altitude in the Mont Blanc Massif in France. Even a small chunk of rock that tumbles down the steep slopes of the Massif can be fatal. Ludovic’s records show that during heat waves such as the one that happened in the summer of 2015, there are many more rockfalls than during colder years. During that year, at least one person lost their life because of crumbling parts of the mountain. On the poster in the permafrost open session on Wednesday, Ludovic and colleagues summarize the results from years of monitoring, and conclude that the rockfalls can clearly be attributed to thawing permafrost. This is bad news. The good news is that the observer network works well to alert the community of increased rockfall activity. Climbing routes can be closed, and protective measures can be introduced to keep falling rocks from getting to areas where people are, or from hitting important infrastructure.

Steep peak in the Mont Blanc Massif. Thawing permafrost can cause fatal rockfalls. Photo credit: Christian Massari (Imaggeo)

Steep peak in the Mont Blanc Massif. Thawing permafrost can cause fatal rockfalls. Photo credit: Christian Massari (Imaggeo)

The results from both studies are extremely important and have the potential to reduce costs to the community as well as transform and even save people’s lives. During Antoni’s presentation, the comment that led to this article was that the Kluane First Nation decided not to follow Antoni’s and his colleagues’ recommendation for where to build new homes. As Antoni says, people are people after all, and who wouldn’t like to build their house next to some nice trees, instead of burnt ground with some small shrubs. In contrast, Ludovic is happy with the actions taken at Aiguille du Midi following his research. However, in a comment concluding our conversation he admits that things might look different if he wasn’t local to Chamonix and if he wasn’t a mountain guide. In other words, his work has such a positive impact partly because he is very much part of the community and enjoys a level of trust that one might not be able to gain as an “outsider”.

Read more about the Yukon Hazard Mapping project in one of their reports here, or about the effect of thawing permafrost on the Mont Blanc Massif in this paper, published in The Cryosphere.

(Edited by Emma Smith)


profile_highres_EarthMatters_light

Kathi Unglert is a PhD student in volcanology at the University of British Columbia, Vancouver. Her work looks at volcanic tremor, a special type of earthquake that tends to happen just before or during volcanic eruptions. She uses pattern recognition algorithms to compare tremor from many volcanoes to identify systematic similarities or differences. This comparison may help to determine the mechanisms causing this type earthquake, and could contribute to improved eruption forecasting. You can find her on Twitter (@volcanokathi) or read her volcano blog.

The art of surviving a week of conferencing

The art of surviving a week of conferencing

Hello everyone! My name is Kathi Unglert and I’m a PhD student in volcanology at the University of British Columbia in Vancouver. I will be reporting for the Cryospheric Sciences blog during the upcoming EGU General Assembly as part of the “Student Reporter Programme”. With the meeting only a few days away, I thought I’d put together a quick guide how to make the most out of a whole week of conferencing. Hopefully you’ll find it useful! So here we go:

Preparation

Usually I would tell you to start your conference preparation way before the conference. Many conferences have a short course/field trip/professional development program around the actual conference dates. These things fill up fast, so look at the program and decide what you want to do early on (and sign up!). Often these events have discounts if you sign up early, so that’s another bonus. However, given that it’s only 3 days before the meeting starts I guess we’ll skip this step. So here’s what’s next:

Decide on a theme

Conferences are really bad for people like me, who sometimes try to do everything. There are so many opportunities and interesting things going that it’s usually impossible to take advantage of everything. The first step can be to choose a few sessions and sit all the way through them, instead of picking individual talks. You avoid running around trying to find rooms at the last minute, missing half of the talk you really wanted to see because the previous one in a different room ran late, and often the talks with the least appealing titles turn out to be the best. It can also help to identify a theme for the conference. For example for this EGU General Assembly my theme will be – you guessed it – science communication! I will leave my usual field (volcanology) and try out the mostly unknown, cold waters of cryospheric sciences. I am hoping to learn lots of new concepts that may apply to my own field. I will also do my best to view everything from a reporter’s perspective and relay anything I deem cool or fun or important to you! I might try to get into a few press conferences, and go to some of the “Meet the Editor” meetings. So much to do! Of course your “theme decision” doesn’t mean that you can’t do anything outside of the theme, it just helps to focus your attention and time. Need some inspiration to decide on your theme for EGU? Why not check out this early career guide, or some of the short courses!

Do some pre-conference research

There might be a person attending the conference with exactly the kind of job you could see yourself in. Or the researcher who came up with this awesome method that you’ve been using already, but that you still have some questions about. Or your friend from your undergrad who now lives on a different continent and whom you haven’t seen in 3 years. There are lots of reasons to look at the conference program ahead of time. When you see somebody in the program that you would like to meet, get in touch with them before the conference, and maybe you can arrange a meeting over a coffee, in a specific session, or over dinner (see Have fun).

Check for volunteering options

Some conferences give students the opportunity to get involved. That could for example be a contribution to the planning of the actual meeting, or some student or social events around it, which of course works well if the meeting is happening close to where you live. Another option is to volunteer your time during the conference. At EGU, my reporter role is a voluntary gig that I was more than happy to apply for. I’ve been interested in science communication for a while, so it seemed like a great opportunity to try out what it’s like being an “actual” reporter, and write about things way outside of my field. Plus, I might meet some famous reporters and bug them with lots of questions if I can – what’s not to like? The networking aspect opens up another topic:

Bring business cards

You might think that as a student why would I need a business card? Turns out it’s maybe even more important as a student than at a later stage (despite the fact that you don’t have a business…). Networking is all about being interested in other people, them being interested in you, and most importantly to leave a lasting impression. You never know when you might meet a person again, and in what situation. That doesn’t just apply to professionals in your field who are higher up the food chain, but even more so to your fellow students. They will be your future colleagues, and relationships between colleagues – even in different disciplines – can go a long way. I’ve been to many conferences before, and never thought about the business card thing. Man, do I wish I had. How many times have you been at a conference, awkwardly scribbling down somebody’s email address on a random piece of paper, only to lose it or to be unable to read your own writing after the fact? Business cards are a simple, tidy way to keep track of all the people you meet over the course of a conference, and a great way for them to remember you, too.

Wear your name badge somewhere easily visible

When I went to my first conference as a wee Master’s student, I thought it was maybe not super fashionable how everyone runs around with a badge around their neck. Turns out it’s actually super important. You want people you meet to have a visual of your name, to help you to leave a potentially lasting impression. That applies even more when you have somewhat complicated/foreign/rare name (I can’t expect non-German speakers to automatically make the connection from the spoken “Ka-tee” to the written “Kathi”, but I also refuse to anglicize my name. The name tag does help…). Also, for the slightly not so tall ones among us, it’s good to tie a knot into the lanyard or pin your badge to the side of your scarf or the collar of your shirt. Nothing more awkward than somebody having to bent down in front of your crotch to read your name…

Follow up

That one is a simple one – when you meet somebody interesting make sure to follow up with a short email on the day, just to refresh their memory. Following up, of course, requires some time in the evening set aside for that purpose, which leads to this:

Say no

Sometimes you’ll have to say no. There are so many things going on at conferences, from project meetings through evening receptions and dinners/drinks with old and new friends. Once in a while it’s good to say no. Set aside 1-2 hours in the evening to be able to wind down, process all the awesome experiences, and follow up on anything that the day brought (see Follow up).

Say yes

 Sometimes you’ll have to say yes. There will always be surprises, opportunities you didn’t expect. Show your face at the reception you’ve been invited to, even if it’s only for an hour or so. Go to sessions that you wouldn’t usually go to because it’s completely out of your field. I went to a lunchtime presentation about Spacecraft Landing Site Identification on Mars at a conference a few years ago, and learned that they use some of the same methodology that I use, despite a complete lack of overlap of my research with theirs. How cool is that? For this EGU, I highly recommend socializing with some fellow early career cryosphere people at our “Icy Outing” (more info here)!

Last but not least, the most important thing:

Have fun!

Yes, the conference is the reason why your supervisor paid for your flight, your hotel, and your food. But that doesn’t mean that you have to exhaust yourself to the point of collapse by day 3, when the conference lasts for another 2 days. Instead, pick a morning or afternoon with somewhat less relevant sessions and explore Vienna. Go to a museum. Take in all the history. Walk in Empress Sisi’s footsteps. Or do some shopping for the upcoming summer. Sit down in one of the many amazing coffee shops and enjoy your obligatory “Wiener Melange”. Use some time to catch up with old friends at a “Heuriger” or grab some food. If you don’t know what any of these words mean, look them up right now! Another great thing to do is spending some time getting to know new people. At a conference a few years ago, I went to a tweet-up, for example. Someone had booked a table at a pub close to the convention center, and invited fellow science-y social media people to meet up, where people only knew each other from Twitter or their respective blogs.

Doing all these things is a great way to wind down a bit (see Say no), to be refreshed after a little break and to take in more science in the following sessions. Conferences are so much more fun if you put a little bit of effort into spending time away from the meeting itself! I can’t wait to learn about more exciting science, meet fascinating people, and catch up with old and new friends during EGU!­

(Modified from a post originally published on Oct 26, 2014 on http://volcano-diaries.blogspot.com)

Edited by Sophie Berger, Emma Smith and Nanna Karlsson


Kathi Unglert is a PhD student in volcanology at the University of British Columbia, Vancouver. Her work looks at volcanic tremor, a special type of earthquake that tends to happen just before or during volcanic eruptions. She uses pattern recognition algorithms to compare tremor from many volcanoes to identify systematic similarities or differences. This comparison may help to determine the mechanisms causing this type earthquake, and could contribute to improved eruption forecasting. You can find her on Twitter (@volcanokathi) or read her volcano blog.profile_highres_EarthMatters_light