EGU Blogs

Climate change

Looking to the past to see into the future

Brand Peak , Antarctica. Source: euphro, Wikimedia Commons.

Brand Peak , Antarctica. Source: euphro, Wikimedia Commons.

The Earth’s surface temperatures can have a profound effect on the Earth’s ice sheets, the huge layers of ice thousands of metres thick that cover Greenland and Antarctica. Over the past few decades, satellites have monitored the changes of these icy landscapes, revealing that parts of Greenland and West Antarctica are melting. This is important as it contributes to sea level rise, which can have significant impacts on vulnerable coastal lands.

Pine Island Glacier in West Antarctica, seen from NASA's DC-8 research aircraft, 2009. Source: NASA/Jane Peterson.

Pine Island Glacier in West Antarctica, seen from NASA’s DC-8 research aircraft, 2009. Source: NASA/Jane Peterson.

So far, however, East Antarctica’s ice sheet, the largest on the planet, has been seemingly stable. One big question Earth scientists have busied themselves with is just how stable this ice sheet is, and whether or not it will be affected by the continuing CO2 emissions and rising temperatures that are projected for the coming century.

To try and get some answers, scientists can turn to the past. By looking at rocks or sediments that covered the Earth thousands or millions of years ago, at times when the Earth’s climate was either similar or different to today, they can study how the environment responded to these changing climates.

 

Sketch of a core being sampled from the seafloor. Source: Hannes Grobe/AWI, WIkimedia Commons.

Sketch of a core being sampled from the seafloor. Source: Hannes Grobe/AWI, WIkimedia Commons.

Between about 5 and 2.5 millions of years ago, during a time we call the Pliocene epoch, the Earth’s climate was very similar to that which scientists predict for the end of this century. Temperatures were about 3°C warmer than they are today, and CO2 levels were similar to those that are found in the atmosphere at present. By going to the bottom of the ocean and studying ancient Antarctic sediments from this time, Earth scientists can try to paint a picture of what Antarctica looked like under these conditions, which scientists suggest we may be facing in a few decades.

The chemical composition of buried sediment grains, dust and tiny algae can reveal information about the temperature of the water, its salinity, and also where the buried material physically came from before it found its way to the bottom of the ocean. By using very sensitive geochemical fingerprinting tools, scientists have for example found that sediments taken from the seafloor 350km off the coast of East Antarctica had originally come from a region of Antarctica called the Wilkes Basin, today buried deep under the ice sheet. For material from the Wilkes Basin to have been eroded and transported to the bottom of the sea, this region must have been out in the open and ice-free.

This could suggest that during warmer periods of the Pliocene, part of Antarctica’s giant East ice sheet did melt, and scientists think that such an amount of melting would have contributed to between 3 and 10 m of sea level rise. Today, such a rise, if it were to happen, could have important consequences.

Microfossils from a sediment core. Source: , Alfred Wegener Insititute, Wikimedia Commons.

Microfossils from a sediment core. Source: Hannes Grove/AWI, Wikimedia Commons.

Geological results such as these, not only from Antarctica, but from across the world’s oceans and seas, can provide important new constraints to help scientists understand what sort of environmental changes we may be facing tomorrow.

Geological core repository for sediment samples. Source: Hannes Grobe/AWI, WIkimedia Commons.

Geological core repository for sediment samples. Source: Hannes Grobe/AWI, WIkimedia Commons.

 

Citizen science: how can we all contribute to the climate discussion?

Until the turn of the 20th century, science was an activity practiced by amateur naturalists and philosophers with enough money and time on their hands to devote their lives to the pursuit of knowledge and the understanding of the natural world.

Hand-colored lithograph of Malaclemys terrapin, in John Edwards Holbrook's North American herpetology. Source - WIkimedia Commons.

Hand-colored lithograph of Malaclemys terrapin, in John Edwards Holbrook’s North American herpetology. Source – Wikimedia Commons.

Today, scientific research is an industry of its own, carried out by highly trained and specialised professionals in academic institutions and research laboratories. From the outside, the world of science can sometimes seem like a mysterious one. A world that conveys wonder yet can feel impenetrable and somewhat detached from the reality of our daily lives.

But science is not that far removed from us, and anyone with an interest in anything from astrophysics to ecology and climate change can get involved and become a citizen scientist.

Citizen science is the engagement of amateur or nonprofessional scientists in scientific research, either through observations in nature, data analysis, or loaning of tools and resources such as computer power. Though the concept has picked up in recent years, citizen science is nothing new: Charles Darwin relied on the observations of amateur naturalists around the world to develop his theory of evolution.

1837 sketch by Charles Darwin of an evolutionary tree. Source - Wikimedia Commons.

1837 sketch by Charles Darwin of an evolutionary tree. Source – Wikimedia Commons.

From bird watching to galaxies

Citizen scientists can get involved in a number of projects, depending on their interest, how much time they would like to spend, and what facilities they are prepared to loan.

The spiral galaxy NGC 1345. Source - ESA/Hubble/NASA.

The spiral galaxy NGC 1345. Source – ESA/Hubble/NASA.

Astronomy lovers can participate in the Galaxy Zoo project, where members of the public are asked to help classify galaxies. Humans are much better at pattern recognition than computers, and scientists simply to not have the time and resources to analyse the thousands of images of galaxies captured by telescopes. Amateur astronomers participating in Galaxy Zoo lend their eyes to carry out this task and millions of classifications have been carried out through the project.

Citizen science doesn’t just happen on people’s computers. In the spirit of Darwin, many ecology and wildlife scientific projects make use of thousands of amateur observations. Since the launch of the Garden Birdwatch in 1994, bird lovers help the British Trust for Ornithology understand how birds use our gardens through weekly observations of what species fly into their back yards. For the BioBlitz project, professional and amateur naturalists get together for an intensive 24-hour classification of all species of mammal, bird, insect, plant and fungus found in a particular space.

Great tit in a garden in Broadstone, UK. Source: Ian Kirk, Wikimedia Commons.

Great tit in a garden in Broadstone, UK. Source: Ian Kirk, Wikimedia Commons.

Many people have the desire, ability and tools to contribute to research activities. By facilitating the communication between research, policy and the public, citizen science is another instrument for public engagement, with potential mutual benefits for all.

How can citizen science help with climate change research?

In the wake of devastating events such as storm Sandy, typhoon Haiyan, Australian bushfires or the recent floods in the UK, the big question on everyone’s lips is this: Is climate change to blame for more frequent and powerful extreme weather events?

Typhoon Haiyan captured MODIS on NASA's Aqua satellite. Source: NASA, Wikimedia Commons.

Typhoon Haiyan captured MODIS on NASA’s Aqua satellite. Source: NASA, Wikimedia Commons.

The process of linking specific extreme weather patterns to global climate change, what scientists call attribution, can be tricky. In order to define a causal relationship (did A cause B? Did climate change cause the UK storms?), climate scientists need strong statistical proof. This requires thousands and thousands of simulations of a particular set of conditions, so that any interesting climate trend can be established enough times to be “statistically significant”. But extreme weather events are, by definition, a result of rare and unusual weather conditions and so a great number of simulations have to be run to produce statistically relevant data.

Such a large number of simulations takes time and produces terabyte after terabyte of data that must then be analysed. This requires huge computing resources and universities and research centres often do not have the physical resources to carry out all these simulations rapidly.

 UK Floods, Staines-upon-Thames. Source: Marcin Cajzer, Wikimedia Commons.

UK Floods, Staines-upon-Thames. Source: Marcin Cajzer, Wikimedia Commons.

The new weather@home project, set up by a team of Oxford climate scientists, asks interested members of the public to loan their spare computer time to help climate scientists run more numerous and faster climate simulations. It specifically aims to determine whether the UK’s wet winter and unusually strong storms were triggered by rising atmospheric CO2 concentrations and associated climate change.

How does it work?

For climate simulations to work, scientists have to tell the model where to start. For a chosen period of time to be modelled, they enter the set of particular conditions (“initial conditions”), such as atmospheric temperature, humidity, wind speed and greenhouse gas levels, that was observed at the start of the chosen period. They might decide to start their model one particular month and will use relevant data for that month as the model’s starting point.

Using these initial conditions, the model will then calculate how weather conditions evolve over time. Looking at the specific period of time when an extreme weather event occurred, scientists can model that same period thousands of times over in their climate model to see how often the model predicts the extreme event, and how often weather patterns unfold as normal, with no extreme event.

To determine whether this winter’s storms are linked to human-induced climate change, the weather@home team is running their model with two different sets of initial conditions.

– Real conditions that were actually measured (with high levels of greenhouse gases).

– ‘Natural’ atmosphere and ocean conditions that would have existed without the influence of human emissions.

By running thousands and thousands of these simulations, the Oxford team can then compare how frequently the extreme events occur in both sets of simulations and see whether the impact of human emissions have made these events more likely and/or stronger.

The weather@home project is on going, and the more simulations are carried out, the more robust the conclusions will be.

The first results are in!

The scientists are analysing the model results as they come in from citizen scientists’ homes, and anyone can monitor how the data evolves as more results are published on the website.  Their first four batches of results are online here and it is possible to observe first hand how the plots are slowly building up as more and more data comes in. Thousands and thousands of simulations are still needed in order to acquire statistically significant results, and it is still time to join the project. The more the merrier. And the better scientists’ understanding of last winter’s extreme weather.

 

Towards a greener energy world?

Marion reports on the latest Grantham Institute for Climate Change special lecture by International Energy Agency Chief Economist Dr Fatih Birol. 

On January 29th, I attended the Grantham Institute for Climate Change special lecture by International Energy Agency (IEA) Chief Economist Dr Fatih Birol at Imperial College London. Dr Birol discussed the future of the world’s energy market and outlined the main conclusions of the IEA World Energy Outlook report published in November last year. Here are the main points of Dr Birol’s lecture.

The long-held tenets of the energy sector are being rewritten

Trade patterns are changing and countries are switching roles, with long-established energy importers becoming exporters.

–        The United States will soon become a significant gas exporter;

–        Brazil is predicted to become a major net oil exporter around 2015;

–        The Gulf States will increasingly export towards Asia.

US shale gas production, historical and projected - Source: US Energy Information Administration, Wikimedia Commons.

US shale gas production, historical and projected – Source: US Energy Information Administration, Wikimedia Commons.

This is mainly due to the shale revolution and changes in nuclear policies of some countries following the Fukushima nuclear disaster. These new supply options are reshaping ideas about the distribution of resources.

However, long-term solutions to the global energy challenges remain scarce. There is a renewed focus on energy efficiency but CO2 emissions continue to rise. One problem remains the heavy subsidies of fossil fuel prices. These give an increased impetus to the consumption of coal, oil and gas and make it difficult for the clean energy industry to compete.

China is currently the main driver of the increased energy demand but India is predicted to take over in 2020 as the principal source of growth.

Most importantly, 1.3 billion people still lack access to electricity, mainly in Africa and South Asia, and the world must solve this problem.

What proportion of fossil fuels?

Twenty-five years ago, fossil fuels accounted for 82% of the global energy mix. It still accounts for 82% today, suggesting that reduction policies are not effective. Nonetheless, this number would perhaps be even higher if these policies were not in place.

The proportion of fossil fuels is predicted to decrease to 75% by 2035. They will still dominate in the near future, but the amount of renewables will increase.

With this fossil fuel energy mix, CO2 emissions will continue to increase and temperatures are set to rise by 3.6 degrees, which would have major environmental implications.

No more excuses?

As the most important energy consumer and CO2 emitter, it is very important that China be part of the future energy landscape. The country is currently relying on two premises to justify its share of global emissions:

1. Holding the past to account

OECD member states (as of 2006) - Source: St. Krekeler, Wikimedia Commons.

OECD member states (as of 2006) – Source: St. Krekeler, Wikimedia Commons.

The world cannot look only at today’s emissions but must take the past into consideration. The United States and the European Union became rich by using large quantities of coal to push the industrial revolution, so they bear the largest responsibility in today’s CO2 concentrations.

However, the responsibility of non-OECD countries will soon increase and will account for rising shares of emissions. It is thought that the energy consumption of non-OECD countries will be half that of OECD countries in 2035.

2. Emissions per capita over total emissions

With over 1.3 billion inhabitants, China’s total emissions are logically higher. The world must focus on emissions per capita.

However, models predict that Chinese consumption per capita will exceed that of some OECD countries next year.

We should be optimistic about Paris

The 21st session of the Conference of the Parties to the UNFCCC will be held in Paris in 2015. We can be optimistic that world leaders will reach an agreement for three reasons:

Source: J.M. Schomburg, Wikimedia Commons.

Source: J.M. Schomburg, Wikimedia Commons.

–        US emissions are decreasing, with current emissions at the level of those of the early 1990s. This is mainly a result of replacing coal with natural gas.

–        Chinese increase in CO2 emissions has been one of the slowest in the past year. This is a result of decreasing coal consumption and investment into renewables. It is likely we will see limitations for coal consumption both locally and nationally in the near future.

–        The EU is very active and remains committed to reducing emissions.

 

Can we achieve a 2 degree warmer world?

Under the current energy landscape, the world is not on track to keep average warming to 2 degrees by the end of the century. The IEA has outlined four energy policies that can keep this scenario alive, coined the 4-for-2 degrees scenario . These four policies could stop the growth of emissions by 2020 at no net economic cost and decrease emissions by 31 Gt, 80% of the saving required to be on track for a 2 degrees warmer world.

1. Implement new energy efficiency measures.

Targeted energy efficiency measures in buildings, industry and transport account for nearly half the emissions reduction in 2020. These will pay back within 5 years, with the additional investment required being more than offset by reduced spending on fuel bills.

The coal-fired Kintigh Generating Station in Somerset, New York - Source: Matthew D. Wilson, Wikimedia Commons.

The coal-fired Kintigh Generating Station in Somerset, New York – Source: Matthew D. Wilson, Wikimedia Commons.

2. Limit the use of inefficient coal power plants.

This would achieve more than 20% of the emissions reduction required and reduce local air pollution. The share of power generation from natural gas and renewables would increase in parallel.

3. Avoid methane escape during oil and gas production.

Emissions of methane (a strong greenhouse gas) during the production of oil and gas can easily be fixed with no negative economic impact. This requires a 0.6% investment for a reduction of half of methane emissions. This would provide 18% of the savings by 2020.

4. Partially phase-out of fossil fuel subsidies.

Implementing a partial phase-out of fossil fuel consumption subsidies would account for a 12% reduction in emissions.

There are four reasons to remain optimistic about the likelihood of implementing these policies:

–        Political support: At the 2013 IEA Ministerial meeting in Paris in November, Energy Ministers agreed to push these measures forward.

–        The US have declared they are committed to finding ways to remove support for inefficient coal power plants.

–        The World Economic Forum Annual Meeting in Davos revealed that several oil and gas companies were interested in cutting down their methane emissions.

–        G20 countries are discussing fossil fuel subsidies.

What future for the energy sources?

Oil Rig at Port Khaled, UAE - Source: Basil D Soufi, Wikimedia Commons.

Oil Rig at Port Khaled, UAE – Source: Basil D Soufi, Wikimedia Commons.

Oil: It was predicted last year that the US would surpass Saudi Arabia as the largest oil producer by 2017. It now seems that this will happen in 2015. This is not to say that this is the end of Middle Eastern oil. Shale oil in the US will grow but will almost exclusively be used nationally to meet the domestic consumption demand.

Consumption is also increasing in Asia and Middle Eastern oil is needed to meet this demand.

Renewables: The renewable energy market is growing everywhere in the world, especially in China. China is investing more in renewables than the US, all of Europe and Japan combined.

The expansion of non-hydrocarbon renewables depends on subsidies. Subsidies worldwide amount to approximately 100 billion USD, 60% of which are in Europe for on- and offshore wind and solar energy. This is set to double by 2035.

The issue of competitiveness

Before the shale gas revolution, gas prices between different regions were relatively similar. Now, EU and Japan natural gas prices are three and five times that of the US, respectively. This divergence will remain in place for many years, causing a structural issue for Europe and Japan. The big question now is if and how the EU will cope with this. Electricity prices are also increasing.

Location of Japanese nuclear power plants in 2006 - Source: PD-USGOV, Wikimedia Commons.

Location of Japanese nuclear power plants in 2006 – Source: PD-USGOV, Wikimedia Commons.

This divergence will impact the EU and Japan. Today, 52 Japanese nuclear reactors are stopped. The country is more reliant on imports and is recording its 17th month of trade deficit. Thirty million people in the EU are employed in energy intensive industries such as petrochemicals, aluminium and cement. This is a large portion of the EU’s economic output.

The change in energy prices will create clear winners (US, China) and losers (EU, Japan). If policies do not change, this will have a knock-on effect on the economy.

Conclusions

1) The global energy landscape is changing fast. Companies that cannot read these changes will become losers. Those who can see development coming and position themselves accordingly can benefit from this.

2) China and India will drive the growing dominance of Asia in the global energy demand.

3) New technologies are opening up new oil resources but the Middle East remains critical.

4) It is likely that the regional price gap for natural gas and electricity will remain significant for many years but there are ways to react. There is a need for efficiency policies to counteract these developments.

5) The transition to a more efficient, low-carbon energy sector is more difficult in tough economic times, but no less urgent.

The Water-Energy Nexus

The Water-Energy Nexus

Flo Bullough writes on the concept of the water-energy nexus; its implications for energy and water security and the impact of climate change and future planning and regulation. 

I first came across the concept of the water-energy nexus when the former UK Chief Scientific Advisor John Beddington discussed the interdependence of food, water and energy as part of his tenure at government: something he described as a ‘perfect storm’. Since then, much has been written about this topic and below is an overview of the issues as they relate to the geosciences.

Tarbela Dam on the Indus river in pakistan. The dam was completed in 1974 and was designed to store water from the Indus River for irrigation, flood control, and the generation of hydroelectric power. The use of water for power captures the interdependence of energy and water. Source - Wikimedia Commons

Tarbela Dam on the Indus river in pakistan. The dam was completed in 1974 and was designed to store water from the Indus River for irrigation, flood control, and the generation of hydroelectric power. The use of water for power captures the interdependence of energy and water. Source – Wikimedia Commons

Water stress and scarcity is one of the most urgent cross-cutting challenges facing the world today and is intrinsically linked with the need for energy.  Water is required for extraction, transport and processing of fuel as well as to process fuels, for cooling in power plants and for irrigation in the case of biofuels. While energy is required for pumping, transportation and the purification of water, for desalination, and for wastewater.  The interconnectedness is such that water and energy cannot be addressed as separate entities. This interdependence is termed the ‘water-energy nexus’, an approach which allows a more holistic assessment of energy and water security issues. Water scarcity is intensifying due to excessive withdrawal , whilst concern for energy provision is sparked by diminishing fossil fuel reserves and the built-in problem of CO2 emissions and climate change.

Over the last 50 years, the amount of water withdrawals has tripled while the amount of reliable supply has remained constant. This has resulted in depletion of long term water reservoirs and aquifers, most acutely in emerging economies with high population growth such as China, India and areas in the Middle East. Additionally, pressures such as the growing cost of fuel extraction, climate change and the of the energy mix has put pressure on the security of energy supply.

Map of the global distribution of economic and physical water scarcity as of 2006. Source - Wikimedia Commons

Map of the global distribution of economic and physical water scarcity as of 2006. Source – Wikimedia Commons

Energy limited by water

The energy sector relies heavily on the use and availability of water for many of its core processes. Resource exploitation, the transport of fuels, energy transformation and power plants account for around 35% of water use globally. Thermoelectric power plants are particularly thirsty and use significant amounts of water accounting for the majority of water use by the energy sector. In the USA in 2007, thermoelectric power generation, primarily comprising coal, natural gas and nuclear energy, generated 91% of the total electricity and the associated cooling systems account for 40% of USA freshwater withdrawals (King et al., 2008).

Of the different types of power plants, gas fired plants consume the least water per unit of energy produced, whereas coal powered plants consume roughly twice as much water, and nuclear plants two to three times as much. By contrast, wind and solar photovoltaic energy consume minimal water and are the most water-efficient forms of electricity production.

Comparative water consumption values by energy type. Data source - WssTP

Comparative water consumption values by energy type. Data source – WssTP

There has been much discussion over the variable CO2 contributions of different fuels but these can be misleading, as the consideration of water consumption (as opposed to withdrawal, see Link) is often omitted. For example, unconventional fracked gas is often presented as a preferable source of energy over coal due to its reduced associated CO2 emissions, but the extraction of fracked gas consumes seven times more water than natural gas, oil extraction from oil sands requires up to 20 times more than conventional drilling and bio fuels can consume thousands times more water due to the need for irrigation. Additionally, carbon capture and storage (CCS) technology has the capacity to remove CO2 from the system but is also estimated to need 30-100% more water when added to a coal fired power plant. Looking at carbon intensity alone may result in a scenario where electricity production is constrained by water scarcity, while global demand for electricity increases.

Water limited by Energy

The flipside to the need for water for energy production is the need for energy in order to produce and deliver water for drinking and other domestic, agricultural and industrial use. Domestic water heating accounts for 3.6% of total USA

Water treatment works. Source - Wikimedia Commons

Water treatment works. Source – Wikimedia Commons

energy consumption (King et al., 2008) while supply and conveyance of water is also energy-intensive and is estimated to use over 3% of USA total electricity. Energy is required at every step of the supply chain, from pumping ground water (530 kW h M-1 for 120 m depth), to surface water treatment (the average plant uses 370 kWh M-1) and transport and home heating (King et al., 2008). Water treatment will require even more energy with the addition of treatment technologies and purification measures.  Water companies in the UK report increases of over 60% in electricity usage since 1990 due to advanced water treatment and increased connection rates, and conservative estimates predict increases of a further 60-100% over 15 years in order to meet the myriad relevant EU directives. This increased energy use may result in displacement of the pollution problem from that in water bodies to build up of CO2 in the atmosphere.

Desalination

One of the most problematic developments in the competition for water and energy is the growth of desalination. It is used in areas suffering from water scarcity, but have viable energy sources to power the energy-intensive purification process. In areas such as the Middle East, the Mediterranean and Western USA, governments have increased their investment in desalination technology in order to secure a more stable water supply. However, the high-energy requirements, steep operational costs, wastewater disposal issues and large CO2 emissions often make this an unsustainable solution.

Desalination is often made economical through access to cheap, local energy sources and an abundant water source. This

Desalination can be very energy intensive. A view across a reverse osmosis desalination plant. Source - Wikimedia Commons

Desalination can be very energy intensive. A view across a reverse osmosis desalination plant. Source – Wikimedia Commons

usually precludes the adoption of desalination in many land-locked countries, as operational costs increase with distance from the water source. However, increased water stress is leading to calls for more ambitious projects such as the planned Red Sea-Dead Sea project (see an earlier Four Degrees post on this) to build a desalination plant and a 180 km pipeline through Israel, Palestine and Jordan.

Desalination can use 10-12 times as much energy as standard drinking water treatment, and is expensive, unsustainable and can lead to increased CO2 emissions (King et al., 2008). These undesirable effects have led to widespread opposition to desalination in areas such as California and Chennai, India. Utilising renewable energy resources, coupled with the use of saline or wastewater for cooling at the power plants, could make the process more sustainable.Water and energy are set to become increasingly interdependent, and by 2050 water consumption to generate electricity is forecast to more than double.

The Impact of Water Scarcity

Freshwater scarcity is a growing issue and by 2030, demand is set to outstrip

India is a very green and wet country courtesy of its regular monsoons but poor management and overexploitation has left is with problems with water scarcity. Source - Wikimedia Commons

India is a very green and wet country courtesy of its regular monsoons but overexploitation of its water resources has left it with problems with water scarcity. Source – Wikimedia Commons

supply by 40%. This is due in part to economic and population growth, but also the rise of aspirational lifestyles, which creates demand for more water-intensive products. This increase in demand will put additional pressure onto water-stressed regions, as well as intensifying current trans-boundary water conflicts. The issue of water shortages often intersects geographically with fragile or weak governments and institutions that may lack the capacity to put in place measures to address water security. In 2004, 29% of India’s groundwater reserves resided in areas that were rated semi-critical to overexploited. About 60% of India’s existing and planned power plants are located in water-stressed areas and there are plans to build a further 59 GW of capacity, around 80% of which will be in areas of water stress and scarcity.

Click on the image to watch an animation showing the average yearly change in mass, in cm of water, during 2003-2010, over the Indian subcontinent. Source - Wikimedia Commons

Click on the image to watch an animation showing the average yearly change in mass, in cm of water, during 2003-2010, over the Indian subcontinent. Source – Wikimedia Commons

Climate change impacts

Climate change presents a challenge to business-as-usual assumptions about future energy and water provision. Predicted major heat waves and droughts will add pressure to both water and energy security. Climate change is set to affect areas around the world in unprecedented ways; in southern Europe, temperatures are likely to rise, and drought will become more common in a region already vulnerable to water stress. Particularly in Spain, a country that derived 14.3% of its electricity production from hydropower in 2010, where hydroelectric plants have been under considerable stress in the last 20 years due to long running issues with drought (Perez et al., 2009;  Trading Economics, 2013). Power cuts caused by extreme weather events, which are expected to become more frequent, will affect areas that rely heavily on energy-intensive ground water extraction for drinking water.

The 2013 EIA Energy Outlook up to 2040 shows steady increases in the need for all fuel types for energy use. Source - Wikimedia Commons

The 2013 EIA Energy Outlook up to 2040 shows steady increases in the need for all fuel types for energy use. Source – Wikimedia Commons

What can be done?

The conflict between more water-intensive energy production and the water needs of a growing population, seeking a better quality of life, will exacerbate an already stressed water-energy nexus.Additionally, Climate change is now considered an issue of national security in many countries, threatening both people and the environment within and across state boundaries. For this reason, climate change mitigation and adaptation must be managed at a new strategic level, beyond that of national law making. A more holistic approach to management of environmental change, water and energy security will also be required.  It will also require strategic planning of water and energy security over much longer timescales than previously.New water and energy production plants must be sited with consideration for water withdrawal, consumption and local power accessibility in addition to future unpredictability in climate as the lifetime of such developments is several decades or more.

Regulatory Changes

Another important tool to address these issues is regulation. Current regulatory frameworks such as the European Climate and Energy Package and the Water Framework Directive (WFD) need to be developed in light of the water-energy nexus model. The EU is committed to 20-30% reduction in CO2 emissions by 2020 compared to levels in 1990, with reductions of up to 50% by 2030 and 80% by 2050 under negotiation. In contrast, the WFD requires additional treatment measures and this will need additional energy, exacerbating tensions between water and energy demand.

There are many policy instruments that can be used to regulate the role of water and energy management, such as water pricing and charges on carbon emissions to incentivise sustainable behaviour. A recent example of this includes the new  US Environment Protection Agency announcement that they will be limiting greenhouse gas emissions for all new electricity generating power plants for coal and gas.  The development of CCS technology could reduce the carbon footprint of power plants, but water consumption implications should be taken into consideration. Adoption of disincentives for certain types of land-use change and stricter building and engineering regulations could also be introduced to increase resilience against extreme weather.

The growing geopolitical issues of water location and scarcity will need to be managed through adaptable water sharing agreements, since many of the world’s largest and most important river basins, such as the Mekong River, which passes

Map of the Mekong River - The long and complicated route of the Mekong river and its intersection with many borders shows the complexity of water management. Source - Wikimedia Commons

Map of the Mekong River – The long and complicated route of the Mekong river and its intersection with many borders shows the complexity of water management. Source – Wikimedia Commons

through south-east Asia, cut across many borders. Co-management strategies such as shared water level and quality information will become important so as the water systems can be managed effectively. Governments must also improve their resilience to extreme weather conditions individually and collectively.

A greater focus on recycling energy- and water-intensive commodities would also alleviate water stresses when taken together with other measures. Education about recycling and water and energy conservation programmes could produce benefits, but also require investment and careful management.

This broad set of issues can only be effectively ameliorated through a holistic approach. A broad analytic framework is needed to evaluate the water-energy relationship, and this must be balanced with local policy contexts and different regulatory measures to ensure water and energy are sustainably managed in the 21st century.

A version of this post first appeared in the European Federation of Geologists magazine ‘European Geologist‘. 

References and Further Reading

Gassert, F., Landis, M., Luck, M., Reig, P., Shiao, T. 2013. Aqueduct Global Maps 2.0. Aqueduct, World Resources Institute. (accessed here in March 2013: http://aqueduct.wri.org/publications)

Glassman, D., Wucker, M., Isaacman, T., Champilou, C. 2011. The Water-Energy Nexus: Adding Water to the Energy Agenda. A World Policy Paper. (accessed here in March 2013: http://www.worldpolicy.org/policy-paper/2011/03/18/water-energy-nexus)

IEA World Energy Outlook 2011. (accessed here in March 2013: http://www.iea.org/newsroomandevents/speeches/AmbJonesDeloitteConference21MayNN.pdf)

King, C, W., Holman, A, S.,  Webber, M, E. 2008. Thirst for energy. Nature Geoscience, 1, 283-286.

Lee, B., Preston, F., Kooroshy, J., Bailey, R., Lahn, G. 2012. Resources Futures. Chatham House. (accessed here in March 2013: http://www.chathamhouse.org/publications/papers/view/187947)

Perez Perez, L., Barreiro-Hurle, J. 2009. Assessing the socio-economic impacts of drought in the Ebro River Basin. Spanish Journal of Agricultural Research, 7, No 2, 269-280.

Trading Economics. Electricity Production from Hydroelectric Sources (%of total) in Spain. (accessed here in March 2013: http://www.tradingeconomics.com/spain/electricity-production-from-hydroelectric-sources-percent-of-total-wb-data.html)

WssTP The European Water Platform. 2011. Water and Energy: Strategic vision and research needs. (accessed here in March 2013: http://www.wsstp.eu/content/default.asp?PageId=750&LanguageId=0)