EGU Blogs

Flo Bullough

Flo is a Policy Assistant at The Geological Society with experience and interests in Water Geochemistry and Environmental Geoscience. She helps to promote the Environment Network & interdisciplinary approaches to geological problems and policy issues. Tweets as @flo_dem.

Policy Focus: 1 – Creating value from Waste

Waste and recycling is a growing issue in a world where abundant resources are diminishing. This week Flo Bullough looks at recent policy activity in the area of ‘valuing waste streams’ and the geo-relevant example of Rare Earth Elements.

This week, the House of Lords Science and Technology committee has been taking oral evidence on the topic of ‘Generating value from waste’ with a particular focus on the technology and processes used to

House of Lords Chamber. Source - Wikimedia Commons

House of Lords Chamber. Source – Wikimedia Commons

salvage raw materials from waste and what the government can do to encourage and assist progress in this area.

This topic was also discussed in a recent European Commission consultation on the Review of European Waste Management Targets and the Raw Material initiative which highlights the importance of recycling to ensure safe access to raw materials. Consultations like these seek to engage with experts in the relevant field and are useful research and fact-finding exercises to inform future government policy.

This is all part of a wider plan to try and incorporate the disposal and cost of waste into the manufacturing life cycle. Additionally, waste is not just a cost burden but can also be a source of valuable materials that can be recycled.  In 2009 Friends of the Earth published a report entitled Gone to Waste – The valuable resources that European countries bury and burn. This included data on the value of the waste we don’t recycle and the associated CO2 emissions. The report also attempted to calculate the monetary value of recyclables. They found that in the UK in 2004, the value of materials classified as ‘key recyclables’ that had been disposed of as waste,  was a minimum of £651 million (based on values for materials such as glass, paper, iron, steel and biowaste. Rare earth elements were not included in their study).

800px-Wysypisko

Landfill Site. Source – Wikimedia Commons.

Geo-Relevant Example – Rare Earth Elements

220px-IPhone_Internals

Internal view of an iPhone. Rare earth elements are used in the manufacture of electronics such as smart phones but when replaced often end up in landfill. Source – Wikimedia Commons

The concept of valuable waste is particularly true of the rare earth elements that end up in waste streams through discarded electronics. Demand for rare earth elements is soaring while scarcity and market cost is increasing. Rare earth elements are essential to many commonplace electronics such as mobile phones and computers as well as in renewable technology such as wind power. The supply of these materials is finite and the market is currently dominated by China (see this excellent post from Geology for Global Development on the issue) which has its own geopolitical implications and so increasing focus from both an environmental and economic perspective is to extract these valuable materials from waste streams.

In terms of current research into Rare Earth Element recycling, Japan is the only place where significant research is being undertaken. An example of this is Hitachi who are aiming to be able to recycle electric motor magnets. It was also announced last year that the US is to build a $120 million ‘Critical Materials’ institute in Iowa which will focus, amongst other things on developing recycling techniques.

For more information see the following links:

Chemistry World – Recycling rare earth elements using ionic liquids

Mining.com – Rare earths recycling on the rise

POST note from the Parliamentary Office of Science and Technology – Rare Earth Elements

 

What’s Geology got to do with it? 3 – Christmas! Part 1

What’s Geology got to do with it? 3 – Christmas! Part 1

Dear Readers!

Christmas is almost upon us and so at Four Degrees we decided to devote our next post in the ‘What’s Geology got to do with it?’ series to Christmas! Marion and I have selected varying aspects of the festive season from trees to biblical stories and common Christmas presents, and linked them to geology (some tenuous, some not so tenuous…). We hope you enjoy!

The Journey to Bethlehem

The story of Joseph and Mary’s hallowed journey from Nazareth to Bethlehem is an intrinsic part of christmas festivities. But what route did they take and what landscapes would they have seen?

715px-1759_map_Holy_Land_and_12_Tribes

Map of the Holy Land showing the Old Kingdoms of Judea and Israel drawn in 1759. Source – Wikimedia Commons

As a distinct geographic area, the description “Holy Land” encompasses modern-day Israel, the Palestinian territories, Jordan and sometimes Syria. The geology of the Holy Land is characterised by the Judean Hills which run North to South through the centre of the region exposing Cretaceous age limestones and sandstones. The rocks reach down to the western banks of the Dead Sea and the Jordan Valley Rift valley which marks the modern border between Palestine and Jordan. The Judean Hills mark the highest area in the region (an area Joseph and Mary may have been trying to avoid!) and the topography then lowers to the Mediterranean coast to the west and the Dead Sea to the east.

Joseph and Mary’s journey to Bethlehem began in Nazareth in modern day Israel and ended in a manger in Bethlehem, which is in modern day Palestine. The route taken between the two, and indeed the time it took them is oft disputed. Given the mountainous nature of the central Holyland which is dominated by the Judean Hills and the reality of transporting a pregnant woman on a donkey, it is possible they would have avoided the mountains and travelled southeast across the Jezreel Valley, connecting with the Jordan Valley to the East, down to Jericho and then across to Bethlehem. This route would have looked something like this.

Image of the Judean Hill taken in 1917. Source – Wikimedia Commons

The area they may have wanted to avoid, the Judean Hills, is formed from monoclinic folds and relates to the Syrian Arc belt of anticlinal folding in the region that began in the Late Cretaceous.  These are the same hills that include the famous Mount of Olives, and the location of the story of David and Goliath which occurred in the Ella Valley in the Judean Hills’. It is also home to Bethlehem which stands at an elevation of about 775 meters and is situated on the southern portion in the Judean Hills.

By contrast, the Jordan valley encompasses the lowest point in the world, the Dead Sea (sitting at 420 below sea level). The valley was formed in the Miocene (23.8 – 5.3 Myr) when the Arabian tectonic plate moved away from Africa.  The plate boundary which extends through the valley (and houses the Dead Sea!) is called the Dead Sea Transform. This boundary separates the Arabian plate from the African plate. For more on the geology of the Dead Sea region see this earlier Four Degrees post.

 

Lego

398px-Lego_Christmas_Tree_at_St_Pancras_International

Christmas tree made of Lego at St Pancras Station! Source – Wikimedia Commons

As children (or adults!) many of us will have experienced unwrapping various Lego sets on Christmas Day. Its popularity has been sustained over the last 50-60 years whilst the company has continued to grow; Lego never goes out of style! But did you know that Lego has been manufacturing its hugely successful interlocking toy bricks since 1949 and as of 2013, 560 billion Lego parts have been produced! But what does any of this have to do with geology?

220px-Lego_Color_Bricks

Lego blocks! Source – Wikimedia Commons

Well, Lego started off as wooden blocks and toys in the workshop of inventor Ole Kirk Christiansen, before moving onto manufacuring the blocks out of cellulose acetate. But since 1963 the blocks have been made from a resilient plastic called acrylonitrile butadiene styrene (ABS).  As with many plastics, the Butadiene and Styrene components of ABS are formed from a process that begins with the extraction and cracking of crude oil. Oil consists of a mixture of hundreds of different hydrocarbons containing any number of carbon atoms from 1-100. Butadiene is a petroleum hydrocarbon that is obtained from the C4 fraction of steam cracking (more on steam cracking here ) and styrene is made by the dehydrogenation of ethylbenzene, a hydrocarbon obtained in the reaction of ethylene and benzene. Lego is just another manufactured product who’s journey began in the rocks!

Wrapping Paper

Christmas_wrapping_paper_display

Christmas wrapping paper! Source – Wikimedia Commons

The use of wrapping paper was first documented in ancient China where it was invented in 2nd century BC but it was the innovations of Rollie and Joyce Hall, the founders of Hallmark Cards that helped popularise the idea of wrapping in the 20th Century. Wrapping paper is made using specially milled wood pulp, this pulp is made from a special class of trees called softwoods. The paper is then bleached and decoration and colours are printed onto the paper using dyes and pigments.

Whilst many dyes that are used in the modern day are synthetic, originally all dye materials were sourced from natural materials. Here we focus on how to make the dyes and pigments for christmassy colours!

800px-Alizarin-sample

Powdered Alizarin dye. Source – Wikimedia Commons

There are a variety of natural materials that can be used to make red dyes including lichen, henna and Madder. Madder, made from the dye plant Rubia tinctorum, has been used as a dye as far back as 1500BC it was even found in the tomb of Tutankhamun. Madder was also used to make Alizarin, the compound 1,2-dihydroxy-9,10-anthracenedione. Alizarin was a prominent red dye until synthetic Alizarin was successfully duplicated in 1869 when German chemists Carl Graebe and Carl Liebermann found a way to produce alizarin from anthracene. A later discovery that anthracene could be abstracted from coal tar further advanced the importance and affordability of alizarin as a synthetic dye. This reduced cost caused the market for madder to collapse almost overnight. While alizarin has been largely replaced by more light-resistant pigmens it is still used in some printing.  (QI – it is also used in classrooms as a stain to indicate the calcium carbonate minerals, calcite and aragonite!)

Other more exotic inks and pigments used in wrapping paper such as metallic pigments are also made through mined raw materials. To produce metallic pigments, materials such as Aluminium powder (aluminium bronze) and copper-zinc alloy powder (gold bronze) are used to produce novel silver and gold inks!

 

Christmas Trees

800px-Julgransförsäljning_utanför_Lunds_domkyrka

Abies Nordmanniana on sale as christmas trees. Source – Wikimedia Commons

Christmas trees are an iconic part of Christmas, whether at home or in your local area its hard to go far in December without seeing one most days! In fact they are so popular now that Christmas trees are farmed specifically for this purpose. While the best selling trees in North America are Scots Pine, Douglas-fir and noble fir, in the UK, Nordmann fir is the most popular species due to its low needle drop feature.

As with all crops, Christmas trees require a specific set of nutrients to thrive and these are provided by fertile soil which is controlled by the underlying geology. Elements that are required for health growth include Nitrogen, Phosphorus, Potassium, Calcium, Magnesium, Sulphur, Boron, Copper, Manganese, Molybdenum, Iron and Zinc which are all obtained from the soil.

Where this isn’t available or in areas of intensive farming these elements are derived through the use of fertiliser which relies on mined phosphate for mass production (more on the link between fertiliser and mined phosphate reserves here). In terms of soil types, pine trees are usually better adapted to a sandy or sandy loam soil, while White Spruce trees and fir trees,  prefer fine-texture loams and clay loam soils.

800px-Abies_nordmanniana_@Kurtbeli-Alucra-Giresun

Abies nordmanniana trees located in the Black Sea region of Turkey. Source – Wikimedia Commons

The popular Nordmann fir used in the UK, or ‘Abies nordmanniana’ is native to the mountains to the east and west of the Black Sea in an area which covers Turkey, Georgia, Russian Caucasus and Armenia. They grow at high altitudes of 900-2200 m on mountains and require plenty of rainfall (~1000mm).

The distribution of the species around the Black Sea and its absence in other local areas of similar, suitable climate is thought to be due to the forest refugia that formed during the ice age. Refugia is the term used to describe a location of an isolated or relict species population. This can be due to climatic changes, as with Nordmann Fir, geography (and therefore geology) or human activities such as deforestation. The forest refugia that caused the limited spread of the Nordmann Fir was caused by the glacial coverage during the Ice Age in the eastern and southern black sea which cut off many areas restricting the spread of the species. Indeed the presence of these refugia is the reason many forest tree populations survived at all!

 

Stay tuned for Marion’s Part 2 of the Christmas Post next week…

Flo

Climate and Policy Roundup – November 2013

From London to Warsaw and Tokyo: Flo Bullough and Marion Ferrat discuss some of last month’s hot topics in the climate and policy world.

News

UN Warsaw Climate Talks

COP19_opening_(22)

United Nations Climate Change COP19 Conference. Source – Wikimedia Commons

The UN’s Climate Change Conference in Warsaw concluded this week at the end of a 30-hour deadlock in decision making over the wording of the final deal. After a series of controversies including hunger strikes, walkouts and standoffs the meeting ended with the a deal  hammered out. Countries have until early 2015 to publish their plans on curbing greenhouse gas emissions. There was also much discussion over the ‘Loss and Damage’ framework: delegates agreed to set up a compensation mechanism. Under the agreement, countries will receive some aid if hit by natural disasters but developed countries won’t be considered liable, and the fund won’t start functioning until 2020, the Guardian reported. See the link for more information.

Carbon Brief: Warsaw climate negotiations achieve nuggets of progress but defer major decisions: http://www.carbonbrief.org/blog/2013/11/warsaw-climate-negotiations-achieve-nuggets-of-progress,-but-defer-major-decisions/

On the back of the conference, Nature published an editorial reviewing the state of the world’s climate targets. Despite certain drawbacks and the general gloomy feeling about political action on climate change,  they concluded: “there is reason for hope”.

House of Lords report on Scientific Infrastructure

220px-House_of_Lords_chamber_-_toward_throne

House of Lords Chamber. Source – UK Parliament, Wikimedia Commons.

Earlier in the summer, the House of Lords Science and Technology Committee launched an inquiry into Scientific Infrastructure. The inquiry was launched to collect evidence on large and medium-sized scientific infrastructure currently available in the UK. It aimed to consider the future needs and strategic planning, funding and governance arrangements, international partnerships and partnerships with industry. The final report for this inquiry has now been launched and highlights the following geo-relevant areas.

 – The significant investment and the success of the Diamond Light Source Synchrotron facility

 – The varied and sophisticated nature of work done by the following important NERC funded institutions

  • British Antarctic Survey, British Geological Survey, Centre for Ecology and Hydrology, National Centre for Atmospheric Science, National Centre for Earth Observation and the National Oceanography Centre

House of Lords Publication on Scientific Infrastructure: http://www.publications.parliament.uk/pa/ld201314/ldselect/ldsctech/76/76.pdf

20 things policy makers need to know about science and 20 things scientists need to know about policy-makers!

800px-Upper_Fairfield_Township_gas_well_2a

Science and policy have collided on contentious issues such as shale gas, these tips attempt to help both sides of the process! Source – Ruhrfisch, Wikimedia Commons.

British and Australian scientists put together a list of tips that could help policy-makers and politicians which was published in Nature. These include the importance of bias sample size, randomization and data dredging. By way of response, there was also a ‘Top 20’ of things scientists need to know about policy making written by Chris Tyler at the Guardian.

Nature: Twenty tips for interpreting scientific claims: http://www.nature.com/news/policy-twenty-tips-for-interpreting-scientific-claims-1.14183

The Guardian: Top 20 things politicians need to know about science: http://www.theguardian.com/science/2013/nov/20/top-20-things-politicians-need-to-know-about-science

The Guardian: Top 20 things scientists need to know about policy-making:  http://www.theguardian.com/science/2013/dec/02/scientists-policy-governments-science

Japan scales back on climate change emissions targets

The Japanese government has scaled back its emissions targets after deciding the 25% reduction was too unrealistic. The shift back to coal, oil and gas for power following the Fukishima disaster has hindered recent progress in reductions.

Phys Org: Japan dials back climate change emissions target: http://phys.org/news/2013-11-japan-dials-climate-emissions.html

USGS to monitor water usage in thermoelectric power generation

In line with the ongoing interdependence between water and energy, the United States Geological Survey announced they are to start reporting water usage during thermoelectric power generation in order to quantify the contribution of this energy source to the overall use of water.

USGS Newsroom: Water watch for electric energy production: http://www.usgs.gov/newsroom/article.asp?ID=3735&from=rss

Typhoon Haiyan

Haiyan_Nov_7_2013_1345Z

Satellite image of Typhoon Haiyan. Source – NASA, Wikimedia Commons.

Typhoon Haiyan hit Southeast Asia in early November: an exceptionally powerful tropical cyclone that devastated portions of Southeast Asia, particularly the Philippines, It is the deadliest Philippine typhoon on record,killing at least 5,632 people in that country alone. There has been much discussion about the sometime assumed contribution of climate change to the disaster although this is rejeteced by many scientists.

Nature: Did climate change cause Typhoon Haiyan? http://www.nature.com/news/did-climate-change-cause-typhoon-haiyan-1.14139

Budget hits keeling curve 

The Scripps Institution of Oceanography in California is seeking donations to maintain the historic ‘Keeling Curve’; a 55-year record of rising CO2 levels following years of lack of funding.

The Keeling Curve: Atmospheric CO2 concentrations as measured at Mauna Loa Observatory. Source - Narayanese, Wikimedia Commons

The Keeling Curve: Atmospheric CO2 concentrations as measured at Mauna Loa Observatory. Source – Narayanese, Wikimedia Commons

Nature: Budget crunch hits keeling curve: http://www.nature.com/news/budget-crunch-hits-keeling-s-curves-1.14206

Impacts of U.S. Shutdown on Earth and Space Science

The effect of the US Government shutdown for 16 days in October had

Amundsen-Scott South Pole Station. Source - U.S. Antarctic Program, National Science Foundation.

Amundsen-Scott South Pole Station. Source – U.S. Antarctic Program, National Science Foundation.

far reaching consequences; not least for research institutes and programs. Amongst the research funding casualties was the Antarctic research program. US research programs such as the NOAA, NASA and USGS were all impacted. Eos magazine produced by AGU assessed the impact on the Earth Science Community

Eos: Impact on Earth and Space Science: http://sites.agu.org/wp-content/uploads/2013/10/pdf-of-Govt-Shutdown-story.pdf

Washington Post: Impact on Antarctic Research program: http://www.washingtonpost.com/national/health-science/us-government-shutdown-stalls-antarctic-research/2013/11/17/7f7e9af4-4e2b-11e3-be6b-d3d28122e6d4_story.html

Research Highlights

Crusty algae unravel history of Arctic sea ice

The first high-resolution proxy for Arctic sea ice cover has been discovered.

Demosponges and coralline algae - Photograph: K. Rasmussen, Wikimedia Commons.

Demosponges and coralline algae – Source: K. Rasmussen, Wikimedia Commons.

Long-lived algae living on the Arctic seafloor and build up as tree-ring-like structures on calcified rocks and record centuries of sea-ice history. Their sensitivity to both water temperature and sunlight is reflected in the algae’s growth rates and Mg/Ca ratio. The 646-year record discovered shows that sea-ice cover has seen the steepest decline in the past 150 years, with the 20th century characterised by the lowest area of sea-ice since the 14th century.

High-resolution palaeo-records of Arctic sea-ice are crucial to assess pre-anthropogenic changes in ice cover and complement the satellite observation data available for the last few decades only.

Proc. Natl Acad. Sci. USA http://doi.org/p6g (2013).

20th century warming driven by humans

Human activities are responsible for temperature changes in the 20th century, a new study has shown.

Francesco Estrada and his team used state-of-the art statistical methods to assess the link between temperature, radiative forcing and CO2 emissions over the past century. They showed that temperature changes have been largely driven by atmospheric CO2 concentrations, with a pronounced increase around 1960.

The results also revealed that human activities have driven periods of global warming slowdown, such as the warming ‘hiatus’ observed since the 1990s.

Their study shows that reducing greenhouse gas emissions is an effective way to curb short-term climate warming.

Nature Geosci. doi:10.1038/ngeo1999 (2013).

Natural aerosols matter for climate models

A good understanding of natural aerosol emissions is necessary to better quantify the effects of human activities

Sea spray on Broadstairs Pier - Photograph: Rose and Trev Clough, WIkimedia Commons.

Sea spray on Broadstairs Pier – Source: Rose and Trev Clough, Wikimedia Commons.

on cloud radiative forcing, and therefore climate change.

A study published in Nature showed that uncertainties in the emissions of natural aerosols such as volcanic sulphur dioxide, biogenic volatile organic carbon and sea spray account for almost half of the variability of modelled aerosol radiative forcing.

The results demonstrate the importance of understanding the effects of aerosols on climate in pre-industrial environments, where the impacts of natural aerosols can be studied in detail. This will be important to subsequently reduce model uncertainties of radiative effects in present-day polluted environments.

Nature doi:10.1038/nature12674 (2013).

Around EGU

Radioactive waters, Four Degrees – Marion writes on how radioactive elements make their way to the world’s oceans – and how scientists can use them to study important processes that go on in our waters.

Raising the dead sea, Four Degrees – Flo writes on what can be done to replenish the Dead Sea and

800px-DeadSeaIsrael

Dead Sea, Ein Boqeq. Source – xta11, Wikimedia Commons.

how it fits in with the region’s complex geopolitics.

Geo-Talk on GeoLog – Flo talks about policy and science communication on GeoLog.

Geology for Global Development –  GfGD posted a piece on the role that both science and academia have in successfully bringing together stakeholders in areas where co-operation is essential, but challenging in areas such as Afghanistan, Pakistan and Iran.

Events

Grantham Institute Annual Lecture: Professor Thomas Stocker

Professor Thomas Stocker at the Grantham Institute Annual Lecture, Imperial College London - Photograph: Marion Ferrat.

Professor Thomas Stocker at the Grantham Institute Annual Lecture, Imperial College London – Source: Marion Ferrat.

  • Four Degrees went down to the Grantham Institute for Climate Change Annual Lecture at Imperial College London last week,  given by Professor Thomas Stocker, co-chair of the IPCC working group 1. He gave a very thorough and clear talk about the latest IPCC report and the importance of climate targets with a clear message that we need to act now to tackle climate change.

Imperial College news: Act now to limit climate change says climate expert at Grantham Annual Lecture: 1http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/naturalsciences/climatechange/newssummary/news_28-11-2013-11-8-22. Professor Stocker also talks about the public perception of climate change and many aspects of the IPCC report in this Nature Climate Change interview.

Rational Parliament Debate: Fracking and Shale Gas

ESA Launch Swarm

Flo and Marion

Raising the Dead Sea

Raising the Dead Sea

 

The Dead Sea is one of the planet’s truly otherworldly places: a peculiarity of water distribution, climate and altitude, it is even more extroadinary in that it is a site of religious, cultural and political significance. Viewed by many as a natural wonder, its characteristics and location within one of the most entrenched political situations in modern history makes it intriguing and troubled in equal measure.

The Dead Sea is the deepest hypersaline lake in the world, situated at the lowest point on earth. It has a salinity of 33.7% due to high concentrations of NaCl and other mineral salts.  The Dead Sea, aside from being a misnomer (it is actually an inland lake) is so-called because of the harsh living conditions that the salinity engenders. Many organisms such as fish cannot live there, in fact only populations of bacteria and microbial fungi can thrive.

800px-Yarden_034PAN2

The Jordan River. Source

Located in the Jordan rift valley bordering Jordan to the east, and Israel and Palestine to the west, it is served only by the Jordan River to the North. A combination of the mineral content of the water, low content of pollens, the reduced ultraviolet component of solar radiation and the higher atmospheric pressure at this depth have specific health effects which have borne a booming spa-tourism economy. This along with the dramatic scenery and tranquil waters is why it has long been a site of tourism and refuge; King David used it as such and it was one of the world’s first health resorts for Herod the Great.

There are two schools of thought as to how it formed; one is that the depression forms part of the East African rift valley complex and, another more recent hypothesis describes the formation as a ‘step over’ discontinuity along the Dead Sea Transform creating an extension of the crust. The sea was once connected to the Mediterranean and experienced regular flooding, resulting in thick layers of salt deposition. The land between the Mediterranean and the Dead Sea subsequently rose to cut the basin off and create a lake.

What’s the status now? 

The dwindling water level of the Dead Sea. Source

The dwindling water level of the Dead Sea. Source

The Dead Sea in more recent years has been characterised by a decline in water levels, a drop of ~30m since 1960 alone and is currently shrinking by around 1m/year. This is in part due to a drop in rainfall and the use of water upstream of the Jordan river for irrigation projects. Declining water levels have resulted in a wide variety of environmental issues for the Dead Sea ecosystems and surrounding region. One such issue is the ever-feared rumble that precedes the formation of sinkholes; these can be unpredictable and can occur suddenly almost anywhere in the Dead Sea region. Indeed, the level of uncertainty and rapidity of sinkhole formation is such that around 10 years ago, renowned geographer-geologist and expert on sinkhole phenomena Eli Raz was swallowed up by one and waited 14 hours for rescue!

Sinkholes in the Dead Sea area are caused by the interaction of incoming freshwater with subterranean salt layers.  As the sea level drops, high levels of salt are left behind in the soil and when freshwater washes in from the Jordan River it dissolves the salts and cavities are created. This process continues until the subterranean structure loses integrity and sinkholes are formed.  It is estimated there are now about 3000 in the region of the dead sea with an opening up of around 1 a day.

 

800px-Dead_Sea_sinkhole_by_David_Shankbone

Sinkholes along the shore of the Dead Sea. Source.

Why is the water level dropping?

Jordan, Syria, Palestine and Lebanon have all tapped the Jordan river for water over the last few decades for irrigation purposes resulting in a reduced flow into the Dead Sea.  An area with historically low rainfall, ~ 2 inches a year, enormous amounts of water is also piped off to fill evaporation pools for the potash and magnesium industries which sit at the very southern end of the sea. This alone is thought to result in a 30-40% reduction in water.

In the last 50 years, the population in the surrounding countries of Israel, Palestine and Jordan has increased from 5.3 million to over 20 million with an increase in the settled population in the Dead Sea region. Currently, tens of thousands of tourists visit every year to bathe in the sea and use the many resorts and spas found along the shores and visit the mighty ruin of Masada (including me!) that overlooks the Dead Sea. Tourism is growing in this area and makes up about 40 percent of the income of local residents and this is putting further pressure on diminishing water resources.

The_Dead_Sea_1972-2011_-_NASA_Earth_Observatory

Views of the Dead Sea in 1972, 1989, and 2011 compared. Source.

 

How can environmental catastrophe be avoided?

The delicate balance of inflows, outflows, evaporation and rainfall has been severely disturbed in the last 50 years, and this hasn’t gone unnoticed. A highly ambitious project is underway to replenish the Dead Sea and ameliorate some of the water and energy shortage issues in the region. The World Bank, together with the local governments is planning to create a canal linking the Red Sea to the Dead sea.  The project includes a series of studies including feasibility, environmental and social assessment with the aim of generating a trilateral agreement between Palestine, Jordan and Israel. If the plan goes ahead as detailed, the pipeline will deliver 2 billion cubic metres of sea water per year from the Gulf of Aqaba through Jordanian territory and to the Dead Sea. The plan is to also use the downwards flow between the Red Sea and the Dead sea to incorporate a hydroelectric plant. This is in turn will power a desalination plant which would provide up to 850 million m3 of fresh water per year to a water parched region. The briny discharge from the desalination plant would then be discharged into an already-saline Dead Sea. The project is likely to cost at least US $10 billion, a significant proportion of this is taken up by the cost to pump the desalinated water 200km over an altitude change of 1000m from the Dead sea towards Amman, an extremely parched area.

782px-ArabianSea_AMO_2005053_crop

Algal Blooms in the Arabian Sea. Source.

So, it sounds good but is it really that simple? Many studies find that if more than 400 million m3 of sea water is added to the Dead Sea, this could result in the formation of algal bloom and unsightly gypsum crystals, the effects of which have effects that are difficult to predict, this will impact on the image and chemistry of the Dead Sea. Although the ecological effects of these chemical changes are still unclear, they would likely diminish the sea’s tourist appeal. This is in addition to the fact that the amount of water supplied would not be enough to stabilise or increase the level of the Dead Sea. There is also concern about the effects of mixing Red Sea water with Dead Sea water. Many other alternatives have been mooted by environmental groups, such as water recycling and conservation by Israel and Jordan, importing water from Turkey and desalinating sea water on the Mediterranean coast. Whilst pumping desalinated sea water from the Mediterranean to Ammam would be easier and cheaper, the geopolitics are concerning. Many worry that Israel would control the supply to Ammam.  Another very real concern is the high frequency of earthquakes in the region, seismic activity could cause salt water to leak into underground fresh water aquifers. Others would prefer to see the rehabilitation of the Jordan River with a greater utilisation of desalination to provide water to the Mediterranean coast.  All of these alternatives however require cooperation and a regional approach to water sharing which is difficult in this part of the world to say the least.

Regional Water Security

This issue sits within a wider problem. This is a region with extremely low levels of rainfall and a booming population. Jordan are well behind the Red-Sea-Dead-Sea project largely because the country’s access to fresh water is extremely restricted, which has been exacerbated by the arrival of more than a quarter of a million Syrian refugees since the outbreak of the civil war.

800px-Nitzana_desalination_(2)

Nitzana desalination plant in Israel. Source.

Israel has long had issues with water scarcity. Due to low rainfall and a booming industry, the demand on water outstrips conventional water resources. This is put under further strain from the water-intensive agricultural practices used throughout the country.This is in part alleviated by their technologically advanced desalination plants dotted along the Mediterranean coast.

Gaza, on the Mediterranean coast is thought to be heading for a serious water crisis in the coming decade with 90-95% of the main aquifer contaminated, the UN suggest the water might be unusable by 2016. Meanwhile water shortages in the West Bank affect the provision of drinking water, water used for farming and agriculture in addition to that required for basic sanitation.

Regional Geopolitics

The regional geopolitics is intensely complex with many historic and current political factors at play. Others can write much more authoritatively on the area but it is worth mentioning here because, as with many geological issues, the interplay between the two is important.

The main regional players are Israel, Palestine and Jordan. Jordan, with few freshwater resources and no oil to power desalination plants, has long been considering an engineered solution to alleviate the water issue in Jordan. At peace with Israel since the signing of a treaty in 1994, the Jordanian government is hoping the plan goes ahead in full.

Israel and Palestine are significantly more complicated. The current de facto borders of Israel and Palestine are broadly along the lines drawn following the ‘Six Day War’ in 1967, as seen in the image, where Israel extended its borders and captured, among other territories, the West Bank.

West_Bank_&_Gaza_Map_2007_(Settlements)

Map of the West Bank and Gaza Strip. Source.

Contemporary Palestine now exists as two non-coterminous territories: the Gaza strip, which is on the Mediterranean coast (run by Hamas) and whose borders are controlled by Israel and Egypt, and the West Bank (the name of which refers to the Jordan River) which borders Israel to the north, south and west, and Jordan to the east. Civil and military authority in the West Bank is a mixture of the Fatah-led Palestinian Authority and the Israeli state. The Dead Sea spans the south east corner of the West Bank, as well as parts of Israel and Jordan. Whilst the West Bank shares a geographical border with Jordan, this is controlled by Israel, and the West Bank remains under Israeli occupation under international law.

In a region with scarce water resources, distribution can be controversial – and Israel’s monopoly over a shared aquifer and access to the Jordan River has resulted in the state being accused of restricting access to water for Palestinians.

Palestine (despite divisions in governance across the two territories) is still seeking independent statehood, and in 2012 was recognised at the United Nations as a ‘Non-member observer state’. As such, negotiations over multilateral initiatives such as the Red Sea-Dead Sea project have enormous geopolitical implications. 

Other Cross-boundary Water Conflicts

There are many examples of delicate border regions which cut across natural river systems, such is the nature of modern national borders, they very rarely follow catchment areas and as such control over and use of water bodies can be highly contested.

Cross boundary water engineering negotiation goes on in many areas around the world and these often intersect with political and environmental issues. In addition to the Dead sea and Jordan river the Nile is subject to boundary issues, running through Egypt, Sudan and Ethiopia. Egypt and Ethiopia are currently negotiating over a billion dollar dam project being built in Ethiopia. Egypt are looking to help with the construction of the dam project.

The Caspian Sea has also had more than its fare share of water-rights disputes. A massive sea in Central Asia, its issues descend from the break up of the Soviet Union in 1991 and thus increasing the number of countries with an interest. As such a number of plans have been proposed and rejected due to lack of unanimity leaving the legality and governance of the area up in the air and resulting in resource grabs and export of resources struck without agency.

As with the Dead Sea, these examples show the great complexity in dealing with cross-boundary water management and no situation is the same, and must be dealt with carefully and on a case by case basis.

Flo

Further Reading

BBC News – Project to replenish Dead Sea water levels confirmed

Phys Org – Dead Sea, Red Sea plan raises environmental hackles

Nature – Environmental concerns reach fever pitch over plan to link Red Sea to Dead Sea

Slate – The Dead Sea is Dying