GeoLog

Paris Agreement

Can the EU become carbon neutral by 2050? A new strategy from the EU!

Can the EU become carbon neutral by 2050? A new strategy from the EU!

On Wednesday 28 November 2018, the European Commission adopted a strategic long-term vision for a climate neutral economy (net-zero emissions) by 2050!  A Clean Planet for All, tactically released ahead of the 24th Conference of the Parties (COP 24), which will be hosted in Katowice, Poland from 2-14 December, describes seven overarching areas that require action and eight different scenarios that allow the EU to significantly reduce emissions.

The EU is currently responsible for approximately 10% of global greenhouse gas emissions and is looking to become a world leader in the transition towards climate neutrality – a state where the amount of emissions produced is equal to that sequestered [1]. A Clean Planet for All highlights how the EU can reduce its emissions and, in two of the eight scenarios outlined, have a climate neutral economy by 2050.

A Clean Planet for All is a leap toward a climate neutral economy but it does not intend to launch new policies, nor alter the 2030 climate & energy framework and targets that are already in place. Instead, it will use these targets as a baseline while simultaneously setting the direction of EU policies so that they align with the Paris Agreement’s temperature objectives, help achieve the UN’s Sustainable Development Goals and improve the EU’s long-term prosperity and health.

What role did science play in the Clean Planet for All strategy?

Reports generated using climate research, such as the IPCC’s Special Report on Global Warming of 1.5ºC, have been catalysts in national climate strategies and policies around the world. This is holds true for the EU’s A Clean Planet for All which features quotes and statistics from the IPCC’s 1.5ºC Report.

International treaties and targets set by organisations such as the United Nations also put pressure on national and regional governments to act and implement their own polices to reduce emissions. Many of these treaties and global targets are based on scientific reports that describe the current state of the world and give projections based on future scenarios. One of the most noteworthy examples of a global treaty is the Paris Agreement which was ratified by 181 counties in 2015. The Sustainable Development Goals are an example of global targets created using a breadth of scientific studies and that are a major consideration when national and local governments are creating policy.

More directly, A Clean Planet for All’s eight different scenarios and their likely outcomes required a huge amount of research and calculations – these scenarios are outlined in more detail below. External scientific input was also employed with scientists and other stakeholders given the opportunity to contribute to the proposal. An EU Public Consultation was open from 17 July until 9 October 2018 and received over 2800 responses. There was also a stakeholder event on 10-11 July 2018 that brought together stakeholders from research, business and the public to discuss the issues with the upcoming strategy.

The 7 strategic building block for a climate neutral economy

A Clean Planet for All outlines seven building blocks that will enable Europe to reduce emissions and build a climate neutral economy.

  1. Energy efficiency
  2. Renewable energy
  3. Clean, safe and connected mobility
  4. Competitive industry and circular economy
  5. Infrastructure and interconnections
  6. Bio-economy and natural carbon sinks
  7. Carbon capture and storage

Figure 1: Achieving a climate neutral economy will require changes in all sectors. Source: EU Commission [3]

Scenarios toward climate neutrality

The Clean Planet for All strategy describes eight different scenarios or pathways that range from an 80% cut in emissions to net-zero emissions by 2050 (see Figure 2 below). Regardless of the scenario chosen, the Commissioner for Climate Action and Energy, Miguel Arias Cañete, emphasised that the structure of the strategy will give member states a certain amount of flexibility to follow different paths. The eight options outlined in the strategy are “what if-scenarios”. They highlight what is likely to happen with a given combination of technologies and actions. While all eight scenarios will enable the EU to reduce emissions, only the last two (shown in the figure below) provide Europe with the opportunity to build a carbon neutral economy by 2050.

The first five scenarios all focus on initiatives which foster a transition towards a climate neutral economy with the extent that electrification, hydrogen, e-fuels and energy efficiency is implemented and the role that the circular economy will play, being the variable. The anticipated electricity consumption required in 2050 also differs depending on the option selected. The energy efficiency and circular economy options have a greater focus on reducing the energy demand rather than developing new sources of clean energy and therefore require the lowest increase in electricity generation (approximately 35% more by 2050 compared with today). Despite the differences, the first five scenarios will all only achieve 80 – 85% emission reductions by 2050 compared with 1990, 15% short of a climate neutral economy.

The sixth scenario combines the first five options but at lower levels and reaches an emissions reduction of up to 90%. The seventh and eighth scenarios are the only ones that could lead to net-zero emissions by 2050. The seventh option combines the first four options and negative emissions technology such as carbon capture and storage. The eighth scenario builds on the seventh with an additional focus on circular economy, encouraging less carbon intensive consumer choices and strengthened carbon sinks via land use changes.

Figure 2: Overview of A Clean Planet for All’s 8 different scenarios to a climate neutral economy [3]

What about the economic cost?

The EU has allocated approximately 20% of its overall 2014-2020 budget (over €206 billion) to climate change-related action. This covers areas such as research and innovation, energy efficiency, public transport, renewable energy, network infrastructure, just to name a few. To achieve a climate neutral economy by 2050, the EU has proposed to raise the share spent on climate-related action to 25% (€320 billion) for the 2021-2027 period.

This is a significant increase but it’s also a smart investment! Not only will it help the EU reach net-emissions but it’s also expected to lower energy bills, increase competitiveness and stimulate economic growth with an estimated GDP increase of up to 2% by 2050. It will also help to reduce the financial impacts of climate change such as damages from increased flooding, heatwaves and droughts. According to a study published in 2018 by the Joint Research Centre, 3ºC of warming (likely in a business-as-usual scenario), would cut Europe’s GDP by at least €240 billion annually by the end of the century. That estimate drops to €79 billion with 2ºC of warming.

Fighting for a climate neutral economy is is expected to have a net-positive impact on employment but of course, some sectors and regions will see job losses. However, the EU has already outlined programmes to manage this issue, such as the European Social Fund Plus (ESF+), and the European Globalisation Adjustment Fund (EGF). As Miguel Arias Cañete (Commissioner for Climate Action and Energy), states:

“Going climate neutral is necessary, possible and in Europe’s interest.”

What are the next steps?

The strategy and scenarios will be discussed at COP24 and may even provide inspiration for other countries to implement similar strategies. You can keep an eye on COP24 developments by streaming sessions via the UNFCCC live webcast and by using #COP24 on social media.

Although already adopted by the European Commission, A Clean Planet for All still needs input and approval from the European Council, the European Parliament’s Environment Committee, the Committee of the Regions and the Economic and Social Committee. According to the Paris Agreement, all 181 nations must submit their 2030 emissions targets by 2020 so it’s likely that comments from these committees will come in early 2019.

It’s likely that there will also be a number of stakeholder events in 2019, such as Citizens Dialogues that give scientists, businesses, non-governmental organisations and the public the opportunity to share their thoughts and be involved in the process. The EGU will provide updates on relevant opportunities as they arise. To receive these updates you can join the EGU’s database of expertise!

References and further reading

[1] A Clean Planet for all. A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy

[2] Questions and Answers: Long term strategy for Clean Planet for All 

[3] In-Depth Analysis in Support of The Commission Communication Com(2018) 773

New EU plan comes out fighting for ‘climate neutrality’ by 2050

Factsheet on the Long Term Strategy Greenhouse Gas Emissions Reduction

10 countries demand net-zero emission goal in new EU climate strategy

October GeoRoundUp: the best of the Earth sciences from around the web

October GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, major geoscience headlines, as well as unique and quirky research, this monthly column aims to bring you the latest Earth and planetary science news from around the web.

Major story

In October, the UN Intergovernmental Panel on Climate Change (IPCC) released a landmark report and summary statement that detailed the severe consequences for our environment and society if global warming continues unabated. The special report, also known as the SR15, was compiled by 91 authors from 40 countries, and cites more than 6,000 peer-reviewed studies.

“There’s no doubt that this dense, science-heavy, 33-page summary is the most significant warning about the impact of climate change in 20 years,” said Matt McGrath an environment correspondent for BBC News.

The  EGU announced its support of the IPCC report in a statement published last month. In this address, EGU President Jonathan Bamber said: “EGU concurs with, and supports, the findings of the SR15 that action to curb the most dangerous consequences of human-induced climate change is urgent, of the utmost importance and the window of opportunity extremely limited.”

The IPCC was first commissioned to produce this report by the UN Convention on Climate Change following the Paris agreement, where world leaders pledged to limit global warming to well below 2ºC above pre-industrial levels and “pursue efforts” towards 1.5ºC. The goal of the report was to better understand what it would take for the world to successfully meet this 1.5ºC target and what the consequences would be if we are unable to reach this goal.

The report illustrates the two different outcomes that would arise from limiting global warming to 1.5ºC or allowing temperatures to rise to 2ºC.

While a half-degree doesn’t come across like a pronounced difference, the report explains that additional warming by this degree could endanger tens of millions more people across the world with life-threatening heat waves, water shortages, and coastal flooding from sea level rise. This kind of warming would also increase the chances that coral reefs and Arctic sea ice in the summer would disappear. These are just a few of the impacts detailed in the report. Recently, Carbon Brief has also produced an interactive graphic that does a deep dive into how climate change at 1.5ºC, 2ºC and beyond will impact different regions and communities around the world.

It should be noted that while limiting warming to 1.5ºC is the better of the two pathways, it still isn’t optimal. For example, under this warming threshold, the authors of the report project that global  sea levels would still rise, coral reefs would decline by 70-90%, and more than 350 million additional people would be exposed to severe drought.

Furthermore, the report goes on to explain what action (and just how much of it) would be necessary to limit warming to 1.5ºC. An article from the Guardian perhaps put it best: “there’s one simple critical takeaway point: we need to cut carbon pollution as much as possible, as fast as possible.

The report authors emphasise that limiting warming would require a massive international movement to reduce emissions and remove carbon dioxide from the atmosphere; and additionally this effort would need to happen within the next few years to avoid the most severe outcomes. They warn that if greenhouse emissions are still released at their current rate, the Earth’s temperature may reach 1.5ºC some time between 2030 and 2052, and reach more than 3ºC by 2100. Even more so, they concluded that the greenhouse gas reduction actions currently pledged by various countries around the world are still not enough to limit warming to 1.5ºC.

Measures to reach this temperature target include reducing global carbon dioxide emissions by 45% from 2010 levels by 2030, and reach a ‘net-zero’ by 2050. and making dramatic investments in renewable energy. They conclude that 70-35% of the world’s electricity should be generated by renewables like wind and solar power by 2050. By that same time, the coal industry would need to be phased out almost entirely.

Moreover, the authors say that we would need to expand forests and develop technology to suck carbon dioxide from the atmosphere. The report notes that climate action needs to be taken on an individual level as well, such as reducing the amount of meat we eat and time we spend on flying airplanes.

The authors report that we have the technology and means to limit warming by 1.5ºC, but they warn that the current political climate could make reaching this goal less likely.

“Limiting warming to 1.5ºC is possible within the laws of chemistry and physics but doing so would require unprecedented changes,” said Jim Skea, Co-Chair of IPCC Working Group III, in an IPCC press release.

Still have questions about the recent report? The IPCC has released a comprehensive FAQ and Carbon Brief has published an in-depth Q&A that addresses questions such as why the panel released the report, why adaptation is important, what the reaction has been, and what’s next.

What you might have missed

BepiColombo approaching Mercury. Credit: ESA/ATG medialab; Mercury: NASA/JPL

Last month the science media was also abuzz with a series of space agency news. On 20 October, the European-Japanese mission BepiColombo successfully launched from French Guiana, starting its seven-year long journey to Mercury, the smallest and least explored terrestrial planet in the Solar System. The probe is poised to be the third mission to travel to Mercury.

Once it arrives in 2025, the spacecraft will actually separate into two satellites, which will orbit the planet for at least one year. One satellite will investigate Mercury’s magnetic field while the other will take a series of measurements, including collecting data on the planet’s terrain, topography, and surface structure and composition. The researchers involved with the mission hope to learn more about Mercury’s origins and better understand the evolution of our solar system.

While one mission has started its journey, another’s has come to an end. Last month NASA’s planet-hunting Kepler space telescope has officially been retired after running out of fuel. Over its 9-year life span, the telescope has spotted more than 2,600 planets outside our solar system, many of which are possibly capable of sustaining life.

“As NASA’s first planet-hunting mission, Kepler has wildly exceeded all our expectations and paved the way for our exploration and search for life in the solar system and beyond,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington. “Not only did it show us how many planets could be out there, it sparked an entirely new and robust field of research that has taken the science community by storm. Its discoveries have shed a new light on our place in the universe, and illuminated the tantalizing mysteries and possibilities among the stars.”

However, even though Kepler’s planet-scoping days are over, NASA’s new space observatory, the Transiting Exoplanet Survey Satellite (TESS) mission, which launched in April 2018, will continue the search for habitable worlds.

NASA’s Kepler space telescope, shown in this artist’s concept, revealed that there are more planets than stars in the Milky Way galaxy. Image credit: NASA

Links we liked

The EGU story

Earlier in October, we announced the winners of the 2019 EGU awards and medals: 45 individuals who have made significant contributions to the Earth, planetary and space sciences and who will be honoured at the 2019 EGU General Assembly next April. We have also announced the winners of the Outstanding Student Poster and PICO (OSPP) Awards corresponding to the 2018 General Assembly, which you can find on our website. Congratulations to all!

This month, we also opened the call for abstracts for the EGU 2019 General Assembly. If you are interested in presenting your work in Vienna in April, make sure you submit your abstract by 10 January 2019, 13:00 CET. If you would like to apply for a Roland Schlich travel grant to attend the meeting, please submit your abstract no later than 1 December 2018. You can find more information on the EGU website.

Interested in science and art? After successfully hosting a cartoonist and a poet in residence at last year’s annual meeting, we are now opening a call for artists to apply for a residency at the EGU 2019 General Assembly. The deadline for applications is 1 December. You can find more information about the opportunity online here.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

Giving back to the city: First EGU Public Lecture at the General Assembly 2018 in Vienna

Giving back to the city: First EGU Public Lecture at the General Assembly 2018 in Vienna

The inaugural EGU Public Lecture, titled ‘After Paris: Are we getting the climate crisis under control?’, took place last April at the 2018 General Assembly in the Natural History Museum of Vienna.

In this first public lecture, Stefan Rahmstorf, a climate scientist at the Potsdam Institute for Climate Impact Research in Germany, took the audience on a fascinating journey through the climate system, discussed its impact around the world, and addressed whether the Paris Agreement will mitigate the risks of Earth’s changing climate. Claudia Volosciuk from the World Meteorological Organization reports on the lecture.

Our pale blue dot

Rahmstorf started by taking a look at the small and fragile planet Earth from space, explaining the ways in which Earth receives and radiates energy, including an animation showing the history of greenhouse gas emissions.

He then went into more detail, showing for example the sources and sinks of carbon dioxide and how its increase in the atmosphere is human-caused. The lecture covered multiple geoscientific disciplines and highlighted their connections to each other: from coral reefs to the cryosphere, the oceans to the atmosphere, and hurricanes to deserts.

Studying Earth’s climate

Stefan Rahmstorf explaining the ways in which Earth receives and radiates energy, and the impacts of the additional carbon dioxide that is emitted to the atmosphere. Credit: Hischam Momen / Natural History Museum of Vienna

The audience also gained insight into the various methods that geoscientists use to study different aspects and time scales of the Earth system.

For example, scientists estimate potential future climate outcomes, by employing climate models to analyse the Earth system’s response to different greenhouse gases emission rates, also known as climate scenarios.

To reconstruct Earth’s past climate, researchers have used natural archives (like ice cores or tree rings), and written records. These observations and reconstructions reveal that the hottest summer in Europe since 1500 took place in 2010, followed by 2003, 2002, 2006 and 2007. “I believe that you don’t need to ask a statistician if you want to know whether this is just chance, it’s clear that this is a systematic effect,”* emphasised Rahmstorf.

The Paris Agreement

Referring to the presentation’s title, Rahmstorf highlighted the great success of ratifying the Paris climate accord to limit global temperature rise to well below two degrees above pre-industrial levels, but he  argued that it came 20 years too late. If the agreement had been reached earlier, there would have been more time for countries to curb carbon emission rates and transition to a carbon-free economy, explained Rahmstorf.

He also cautioned that the agreement isn’t a perfect solution as it still implies a substantial warming. For instance, if we met the Paris agreement’s global temperature rise goal, Rahmstorf noted that the average temperature over land would be higher than the global average, as the oceans do not warm as strongly as land masses. Reaching the Paris agreement goals would still create conditions beyond what Earth has experienced for hundreds of thousands of years.

Rahmstorf suggested mechanisms that policy makers could adopt to increase the speed of emission reduction, which is not yet sufficient to reach the Paris agreement goals. These include establishing a minimum price to emit carbon dioxide and ending subsidies for fossil fuels, which are currently still higher than renewable energy subsidies.

He also warned that the longer we wait to decarbonise our economy, the faster we will have to reduce our emission levels in the future. “The famous climate scenarios are called scenarios and not forecasts,” Rahmstorf explained, “Humankind has the choice whether it wants to emit a lot or a little CO2.”*

EGU and Vienna

The General Assembly has been held in Vienna for more than a decade and the EGU has a very good relationship with the city, according to EGU President Jonathan Bamber. “We thought it is about time that we try an experiment and give something back to the city,” said Bamber, “to share with you our enthusiasm and excitement about the science we do.”

Stefan Rahmstorf (left), Jonathan Bamber (center), and Christian Koeberl (right) at the 2018 EGU Public Lecture. Credit: Hischam Momen / Natural History Museum of Vienna

The director general of the Natural History Museum of Vienna, Christian Koeberl, highly appreciated the Union’s decision to conduct the public lecture at the museum, as the institution has a variety of geoscientific activities, including preserving collections and carrying out research projects.

“Today’s topic is one that interests and affects us all, namely climate. Climate is obviously something that is strongly connected with our understanding of the Earth, but also with our interaction as humans with the Earth,”* Koeberl remarked. The event was at full capacity, attended by an audience spanning all age groups, suggesting that Koeberl’s sentiment was widely shared.

By Claudia Volosciuk, World Meteorological Organization

*Quotation is a translation from the German original

May GeoRoundUp: the best of the Earth sciences from around the web

May GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, as well as  unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major Story

In the last couple of weeks of May, the news world was abuzz with the possibility of Donald Trump withdrawing from the Paris Agreement. Though the announcement actually came on June 1st, we’ve chosen to feature it in this round-up as it’s so timely and has dominated headlines throughout May and June.

In withdrawing from the agreement, the United States becomes only one of three countries in rejecting the accord, as this map shows. The implications of the U.S joining Syria and Nicaragua (though, to be clear, their reasons for not signing are hugely different to those which have motivated the U.S withdrawal) in dismissing the landmark agreement have been widely covered in the media.

President Trump’s announcement has drawn widespread condemnation across the financial, political and environmental sectors. Elon Musk, Tesla and SpaceX CEO, was one of many in the business sector to express their criticism of the President’s decision. In response to the announcement, Musk tweeted he was standing down from his duties as adviser to a number of White House councils. While in early May, thirty business CEOs  wrote an open letter published in the Wall Street Journal to express their “strong support for the U.S. remaining in the Paris Climate Agreement.”

In a defiant move, U.S. States (including California, New York and Vermont), cities and business plan to come together to continue to work towards meeting the targets and plans set out by the Paris Agreement. The group, coordinated by former New York City mayor Mark Bloomberg, aims to negotiate with the United Nations to have its contributions accepted to the Agreement alongside those of signatory nations.

“We’re going to do everything America would have done if it had stayed committed,” Bloomberg, said in an interview.

Scientist and learned societies have also been vocal in expressing their criticism of the White House decision. Both Nature and Science collected reactions from researchers around the globe. The EGU, as well as the American Geophysical Union, and many in the broader research community oppose the U.S. President’s decision.

“The EGU is committed to supporting the integrity of its scientific community and the science that it undertakes,” said the EGU’s President, Jonathan Bamber.

For an in-depth round-up of the global reaction take a look at this resource.

What you might have missed

This month’s links you might have missed take us on a journey through the Earth. Let’s start deep in the planet’s interior.

The core generates the Earth’s magnetic field. Periodically, the magnetic field reverses, but what caused it to do so? Well, there are several, competing, ideas which might explain why. Recently, one of them gained a bit more traction. By studying the seismic signals from powerful earthquakes, researchers at the University of Oxford found that regions on top of the Earth’s core sometimes behave like a giant lava lamp. It turns out that blobs of rock periodically rise and fall deep inside our planet. This could affect the magnetic field and cause it to flip.

Meanwhile, at the planet’s surface, the Earth’s outer solid layer (the crust) and upper layer of the molten mantle,  are broken up into a jigsaw of moving plates which pull apart and collide, generating earthquakes, driving volcanic eruptions and raising mountains. But the jury is still out as to when and how plate tectonics started. The Earth is so efficient at recycling and generating new crustal material, through plate tectonics, that only a limited record of very old rocks remains making it very hard to decipher the mystery. A recently published article explores what we know and what yet remains to be discovered when it comes to plate tectonics.

Tectonic plate boundaries. By Jose F. Vigil. USGS [Public domain], distributed by Wikimedia Commons.

Oil, gas, water, metal ores: these are the resources that spring to mind when thinking of commodities which fuel our daily lives. However, there are many others we use regularly, far more often than we realise or care to admit, but which we take for granted. Sand is one of them. In the industrial world it is know as ‘aggregate’ and it is the second most exploited natural resource after water. It is running out. A 2014 United Nations Environment Programme report highlighted that the “mining of sand and gravel greatly exceeds natural renewal rates”.

Links we liked

  • Earth Art takes a whole new meaning when viewed from space. This collection of photographs of natural parks as seen from above is pretty special.
  • This round-up is usually reserved for non-EGU related news stories, but given these interviews with female geoscientists featured in our second most popular tweet of the month, it is definitely worth a share: Conversations on being a women in geoscience – perspectives on what being a female in the Earth sciences.
  • We’ve shared these previously, but they are so great, we thought we’d highlight them again! Jill Pelto, a scientist studying the Antarctic Ice Sheet and an artist, uses data in her watercolous to communicate information about extreme environmental issues to a broad audience.

The EGU story

Temperatures in the Arctic are increasing twice as fast as in the rest of the globe, while the Antarctic is warming at a much slower rate. A new study published in Earth System Dynamics, an EGU open access journal, shows that land height could be a “game changer” when it comes to explaining why temperatures are rising at such different rates in the two regions. Read the full press release for all the details, or check out the brief explainer video, which you can also watch on our YouTube channel.

 

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.