GeoLog

hurricane

September GeoRoundUp: the best of the Earth sciences from around the web

September GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, major geoscience headlines, as well as unique and quirky research, this monthly column aims to bring you the latest Earth and planetary science news from around the web.

Major stories

Latest IPCC report puts the oceans and cryosphere in focus

Last month the United Nations’ Intergovernmental Panel on Climate Change (IPCC) released a special report that details the current status of the oceans and icy regions of the planet, and assesses how these parts of the Earth will fare as the climate changes. The Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC for short) also projects how future changes to Earth’s oceans and ice will impact the global population.

“The open sea, the Arctic, the Antarctic and the high mountains may seem far away to many people,” said Hoesung Lee, Chair of the IPCC. “But we depend on them and are influenced by them directly and indirectly in many ways – for weather and climate, for food and water, for energy, trade, transport, recreation and tourism, for health and wellbeing, for culture and identity.”

The 1,170-page report is packed with scientific details that illustrate how the environment is responding to climate change and what our world may likely look like under different carbon emission scenarios. We’ve listed just a few of the report’s findings here:

  • “Small glaciers found in high mountain environments are projected to lose more than 80% of their current ice mass by 2100 under high emission scenarios.”
  • “Even if global warming is limited to well below 2°C, around 25% of the near-surface (3-4 meter depth) permafrost will thaw by 2100.”
  • “While sea level has risen globally by around 15 cm during the 20th century, it is currently rising more than twice as fast – 3.6 mm per year – and accelerating.”
  • “Sea level rise will increase the frequency of extreme sea level events, which occur for example during high tides and intense storms. Some island nations are likely to become uninhabitable due to climate-related ocean and cryosphere change.”
  • “Marine heatwaves have doubled in frequency since 1982 and are increasing in intensity.”

The key message of SROCC is that the world’s oceans are becoming warmer, more acidic and less productive, while melting glaciers and ice sheets are causing the sea level to rise. While we are already experiencing the consequences of these environmental changes, their future severity and impact on society is dependent on how much we reduce our greenhouse gas emissions, protect and restore ecosystems, manage our natural resource use, and plan for related risks.

Want to learn more about SROCC? You can check out Carbon Brief’s explainer piece that delves further into the details.

Hurricane-heavy September

The Atlantic hurricane season is usually the most active during the month of September, and this year several powerful cyclones have inflicted heavy damage on a number of coastal communities.

Hurricane Dorian destruction in Bahamas on September 2, 2019. (U.S. Coast Guard photo courtesy of Coast Guard Air Station Clearwater)

Last month, Hurricane Dorian broke records as the strongest cyclone of the season so far, and the second strongest Atlantic hurricane on record, with sustained winds reaching 300 km an hour. In its early stages, Dorian hit the Windward Islands and the US Virgin Islands, but it made the biggest impact on the Bahamas as a Category 5 hurricane. For more than 36 hours, the storm slowly dragged across the Great Abaco and Grand Bahama islands, unleashing severe wind, rain and storm surge. The American Red Cross reported that more than 13,000 houses (nearly half of the islands’ residences) were destroyed as a result. The official death toll across the country is 56, and at least 600 people are still reported missing as of 27 September.

Another notable September storm includes Tropical Storm Imelda. While Imelda’s winds were relatively slow (65 km an hour), the storm was the seventh-wettest storm on record in the United States, releasing more than a metre of rain onto southeast Texas. At least two people died from the event, and more than 1,000 high-water rescues and evacuations were made.

Hurricane Lorenzo is the latest storm to catch media attention. The storm reached Category 5 status in the central Atlantic on 28 September and was listed as the strongest hurricane on record this far north and east in the Atlantic basin. The US National Hurricane Center has reported that the storm, now a Category 1 hurricane, is passing through Portugal’s Azores Islands and is projected to make its way north to Ireland and the UK by the end of the week. While the storm’s intensity has weakened, the hurricane is still very dangerous. In the Azores Islands, Ireland and the UK, local authorities and residents have been preparing for severe weather conditions, including heavy rain and strong wind.

This graphic shows an approximate representation of coastal areas under a hurricane warning (red), hurricane watch (pink), tropical storm warning (blue) and tropical storm watch (yellow). The orange circle indicates the current position of the center of the tropical cyclone. The black line, when selected, and dots show the National Hurricane Center (NHC) forecast track of the center at the times indicated. (Credit: NOAA National Hurricane Center)

Many scientists estimate that, as the climate changes, hurricanes and storms will likely be slower, wetter and more intense.

What you might have missed 

Is ‘The Blob’ back? 

Last month news outlets have reported that a large expanse of the northeast Pacific Ocean has been experiencing unusually warm temperatures, in some places as much as 3°C higher than average records. Stretching from the Gulf of Alaska to the Hawaiian Islands, the marine heatwave is currently the second largest on record in this region in the last 40 years.

The US National Oceanic & Atmospheric Administration noted that the current heatwave resembles the early stages of ‘The Blob,’ a massive heatwave that first formed in 2014 and persisted for three years. This earlier heatwave was connected to several ecological disturbances, including large harmful algal blooms, whale entanglements, coral bleaching, sea lion malnourishment, and many fishery disasters. Scientists fear that if this new heatwave does not dissipate soon, the event could lead to similar consequences.

Sea surface temperature anomaly maps show temperatures above normal in orange and red. (Credit: NOAA)

An icy expedition

Also last month, an international team of polar scientists have launched the largest Arctic research expedition in history. On 20 September, the German research vessel Polarstern set off on a journey to the Arctic, where it will spend an entire year trapped in sea ice, allowing researchers to observe the region’s climate system. The project, known as MOSAiC (Multidisciplinary Drifting Observatory for the Study of Arctic Climate), will involve more than 300 scientists from 19 countries.

The vessel is expected to move with the natural ice drift towards the Atlantic as the year progresses, collecting valuable information on the Arctic atmosphere, sea ice, ocean, ecosystems and biogeochemistry. “We will go and do science wherever the ice might carry us,” said chief scientist Markus Rex, an atmospheric scientist at the Alfred Wegener Institute, to Nature News & Comment. Researchers hope that the data will give an updated comprehensive look into the current state of the Arctic, allowing climate models to make better estimations of the region’s future.

Other noteworthy stories

The EGU story

This month, we have launched a short survey for EGU members to provide input on what they value from EGU, the results of which will help ensure that we remain responsive to what our members want. This is particularly important in a member-led organisation like the EGU. If you are an EGU member, we’d ask you to take 5-10 minutes to give feedback on EGU and its activities.

In General Assembly related news, we have opened applications for the third edition of our Artists in Residence programme. The programme is most attractive for scientist-artists, especially those already familiar with, and interested in, the EGU General Assembly. Applications are accepted until 1 December.

Finally, a note from the EGU Executive Secretary Philippe Courtial: “After 8 successful years at the EGU office, EGU Media and Communications Manager Bárbara Ferreira has decided to give a new orientation to her career. We would like to thank her for her tireless efforts and we wish her all the best for her future career.”

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

A better framework for disasters

A better framework for disasters

The end of the Northern hemisphere summer tends to be a good time to regroup from natural hazards, as the frequency and intensity of storms, as well as the incidence of wildfires, tends to trail off. At the time of writing, however, Hurricane Willa had just crashed into Mexico, while Typhoon Yutu has just hit the Northern Mariana Islands so hard that any equipment designed to record wind-speed had been swept away. Both storms rapidly strengthened, and the latter was described by the US National Weather Service as ‘likely [to] become the new yard stick by which future storms will be judged.’

Super Typhoon Yutu (24 October 2018) making its way towards the Northern Mariana Islands, a territory of the United States. (Photo: Joshua Stevens/NASA Earth Observatory)

What if we changed the way we think about such events, though? What if, instead of focusing on the wind-speed of a typhoon or the magnitude of an earthquake, the first points of discussion were about the human aspect and impact associated with a specific event. How would this summer’s events be framed? It’s a crucial distinction; natural disaster is in some ways a paradox in terms – although the hazard, or physical manifestation, of a hurricane or earthquake is natural, the impacts, and thus the disaster, are entirely a result of human exposure and vulnerability. Let’s first explore some of the most dramatic themes from this summer’s disasters, and then try and put them in this new human context.

What links this summer’s events?

The recent Hurricanes – Yutu, Willa, Florence and Michael – encapsulate well the intensity and frequency at which we’ve seen disasters come over the last few months. Earthquakes, storms, droughts and wildfires have all caused havoc in a hugely diverse spectrum of locations, and while the specter of natural hazards is always present in many parts of the world, there seems to be something more intense and urgent with respect to this summer’s catastrophes, especially in the media coverage.

The availability of smartphones and the proliferation of social media use means we can see ever more easily from the safety of our homes what others experience in terror during disasters; who could forget the scarring imagery from the earthquake and tsunami in Lombok in September, as houses were tossed about like toys as the ground turned to liquid.

Elsewhere, Japan experienced a plethora of hazards as flooding, typhoons, landslides, earthquakes and drought brought a whole range of challenging conditions which caused a large number of fatalities, despite Japan’s status as one of the best prepared countries in the world for natural hazards.

Much of the media discussion related to disasters has focused on the links between hazards and climate change, and whether the severity of events like Hurricane Florence can be attributed in part to anthropogenic emissions. While it has historically proven difficult to attribute the strength of different storms to climate change, this summer marked the first time scientists attempted it in earnest while an event was taking place – some researchers argued that the rainfall forecast for Hurricane Florence was 50% higher than it would otherwise have been, although such estimates are still in their infancy. What is clearer from scientific predictions of future climate change is that storms will likely be stronger, wetter and slower moving, suggesting similar intense storms could become more normal.

Beyond tropical storms, records were broken by other catastrophes. The Northern hemisphere wildfire season was among the worst we’ve ever experienced on record, at least in terms of acreage burned. Californian fires were so intense that smoke was noticeable on the East Coast, while the extent of fire in western Canada was second only to the cataclysmic fires last year. Abnormally warm temperatures in Scandinavia prompted wildfires to break out north of the Arctic circle, an extremely rare and concerning occurrence.

A different way to think about catastrophes

While it’s interesting and important to discuss the potential for increased storm severity as a result of climate change, it seems that this should only form a part of the larger discussion: how will trends in climate co-evolve with trends in human exposure and vulnerability to hazards? Similarly, why focus on the numbers associated with a disaster – the earthquake magnitude, the depth of flooding, acres of forest burned – when we could instead look at who has been impacted, and how to prevent this in the future.

It’s especially important to frame the ‘cost’ of a given event in this context. Often, we think of cost in either loss-of-life or financial terms, but it’s worth considering those as functions of exposure and vulnerability. For example, Hurricane Florence, which recently made landfall on the US eastern seaboard, is likely to cost  40-50 billion US dollars. Compare this to Hurricane Maria, which devastated Puerto Rico in 2017; some estimates for the cost of the storm were around 100 billion US dollars. While Hurricane Maria cost roughly twice as much as Florence, the relative impact on Puerto Rico was far greater than that value would imply. The vulnerability of the economy of Puerto Rico to a disaster of that scale was far higher than the mainland US; with a GDP of over 10 trillion US dollars, the US economy can absorb shocks like Florence, but the GDP of Puerto Rico declined by a massive 8% in the aftermath of Maria. It is worth noting that Puerto Rico is in fact a territory of the US, and received federal funding to assist with recovery – so the economic impact might even have been more severe without it.

U.S. Customs & Border Protection & FEMA personnel deliver food and water to isolated Puerto Rico residents after their bridge was destroyed by Hurricane Maria in the mountains around Utuado, Puerto Rico (Photo: U.S. Air Force/Master Sgt. Joshua L. DeMotts via FEMA)

We can build the same framing for loss of lives; countries with well-developed disaster response and recovery mechanisms suffer significantly fewer fatalities in the face of a similar magnitude event to a poorly equipped country, all things being equal. This kind of social vulnerability to disaster is difficult to quantify, and encompasses a range of aspects including cultural awareness of natural hazards and healthcare expenditure, but it has to be considered alongside the trends in hazard intensity.

I would argue that coverage of (and research related to) disasters needs to shift away from the headline numbers, like skyrocketing costs or the increasing intensity of storms and wildfires, and instead discuss whether disasters are hitting harder in places that are more vulnerable, or whether the relative economic or human exposure to a given type of disaster is worsening or not. While it’s fascinating to see images of multiple hurricanes over a single basin, it’s an incomplete picture unless the risk is incorporated.

Flash flood impacts in Peru after torrential rain in 2013 (Photo: Galeria del Ministerio de Defensa del Perú via Flickr)

Reframing our vision of disasters would put the focus squarely on where inequality and climate change interact; if more vulnerable developing countries or regions are expected to be more exposed to disasters under a changing climate, then there is real potential for inequalities to be exacerbated – and this is indeed what the UN anticipates will occur. More fundamentally, reframing would help us shift away from a coldly analytical perspective of ‘disasters by the numbers’ and instead consider where the worst impacts would be, and who the people at risk are. While trends in the developed world indicate fewer and fewer deaths from disasters over the last 100 years, many countries don’t have the same capacity to absorb shocks.

The human tendency to dwell on the extraordinary, and the ephemeral nature of modern news coverage certainly encourages reporting to focus on the records broken by a given event. Perhaps it’s futile to add another voice to the many that have already asked for more context and temperance from such coverage, but it seems important to highlight that there may be other ways to cover disasters; those affected may benefit greatly, in both the long and short term.

Robert Emberson is a Postdoctoral Fellow at NASA Goddard Space Flight Center, and a science writer when possible. He can be contacted either on Twitter (@RobertEmberson) or via his website (https://robertemberson.com/)

Editor’s note: This is a guest blog post that expresses the opinion of its author, whose views may differ from those of the European Geosciences Union. We hope the post can serve to generate discussion and a civilised debate amongst our readers.

September GeoRoundUp: the best of the Earth sciences from around the web

September GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, major geoscience headlines, as well as unique and quirky research, this monthly column aims to bring you the latest Earth and planetary science news from around the web.

Major stories

This month has been a whirlwind of Earth and space science news; the majority focusing on natural hazards. Powerful cyclones, earthquakes, and tsunamis have received significant coverage from the geoscience media. Quickly recap on an action-packed month with our overview:

On 14 September, Hurricane Florence, made landfall in the mid-Atlantic region of the United States, making first contact near Wrightsville Beach in North Carolina then traveling up the East Coast. By the time Florence had reached the US coastline, the cyclone’s sustained wind speed had dropped considerably, downgrading the hurricane from a category 4 to category 1 storm on the Saffir–Simpson scale.

This designation may sound mild, but as many scientists and journalists have pointed out, sluggish hurricanes are especially dangerous, since they are more likely to dump heavy rainfall over a relatively small surface area compared to faster storms that distribute their rainfall over more territory. This proved to be true for Hurricane Harvey, which dumped more than 150 centimetres of rain onto some areas of Houston, Texas.

Hurricane Florence’s record-breaking rainfall forced more than a million people to evacuate their homes, and experts estimate that the storm inflicted damages worth more than $38 billion (USD). The hurricane also produced very concerning environmental damages. In Wilmington, North Carolina, for instance, the the rainfall flooded a pit of coal ash at a power plant, releasing more than 1,530 cubic metres of ash, with much of it likely ending up in a nearby lake.

Across the planet, just one day following Hurricane Florence’s landfall, Super Typhoon Mangkhut wreaked havoc on southeast Asia, pounding the Mariana Islands, the Philippines, China, Taiwan, and Vietnam with strong wind and rain. Reaching wind speed over 240 kilometres per hour, Mangkhut is the most intense storm of the year so far. The New York Times created an interesting three-dimensional visual of the storm’s intensity, using NASA satellite data.

In addition to unleashing incredibly strong winds, the typhoon’s rainfall also triggered deadly landslides. Just outside of the city Baguio, which recorded more than 75 centimetres of rain, more than 40 gold miners were buried under a landslide that hit their bunkhouse.

Big storms like Hurricane Florence and Typhoon Mangkhut are expected to be more frequent in the future as our climate changes. And this stems from many factors; a recent article from the New York Times explains that, due to climate change, the world’s oceans are warming (fueling more hurricane formation), the atmosphere is holding more moisture (leading to wetter storms), hurricane wind speeds are slowing down (causing more concentrated rainfall), and Earth’s sea levels are rising (increasing the risk of flooding).

Last week, a 7.5-magnitude earthquake struck the Indonesian island of Sulawesi, sending a massive tsunami, with waves up to 6 metres high, into Palu Bay, causing massive devastation in the regional capital Palu and surrounding areas. Officials report that nearly 1,350 people have died from the earthquake and tsunami, and the death toll is expected to rise as rescue workers make their way towards more remote places. Scientists told BBC that “a combination of geography, timing and inadequate warnings meant that what happened in Palu was a worst case scenario.”

Map of the September 28, 2018 Palu, Indonesia Earthquake. Credit: USGS.

Indonesian aid workers and humanitarian relief envoys are currently working to provide supplies and assistance to the affected communities. At the same time, scientists are still puzzling over the tsunami’s strength, which caught many experts by surprise. This is because the earthquake’s behavior isn’t known for generating catastrophic tsunamis.

Powerful tsunamis are typically caused by earthquakes with vertical motion, where part of the seafloor juts forward, disturbing the water column and consequently sending massive waves to the coast. The 2004 Indian Ocean tsunami, for example, was caused by a 9.1 magnitude megathrust earthquake. On the other hand, last week’s quake is known as a ‘strike-slip earthquake,’ where the ground shifts horizontally. This kind of movement doesn’t move ocean water as dramatically.

“Some early calculations suggest a floor displacement of perhaps half a metre. Significant but generally insufficient to produce the waves that were recorded,” reported the BBC.

While it is too early to tell what exactly happened, scientists suspect that a number of factors could have played part in helping the tsunami gather strength. For example, underwater landslides have been known to trigger tsunamis of similar strength. Additionally Palu Bay’s narrow geometry could have amplified the waves’ height.

The underlying factors that contributed to the event will hopefully become more clear as scientists analyse the series of events in more detail.

What you might have missed

This month, the Japanase spacecraft Hayabusa 2 has sent three robots to the rocky surface of an asteroid near Earth, known as Ryugu. The spacecraft had successfully reached the asteroid this June, after travelling for more than three years. The craft first released two small devices, no bigger than frying pans, which tumbled around the rock’s surface and even sent digital postcards and a short video back home. A few days ago, Hayabusa 2 released a third rover, which will use a suite of different scientific instruments to collect data on the asteroid. “Hayabusa2 itself is likely to make the first of three touchdowns on the asteroid to collect samples later this month,” said Science Magazine.

Links we liked

  • StarTrek creators once said that Spock’s fictional home planet Vulcan orbited the 40 Eridani A star. Now scientists have found an exoplanet that fits the description.
  • Rediscovered: the 19th century geological drawings of Orra White Hitchcock, a pioneering female scientific illustrator
  • Researchers discover that kidney stones grow and dissolve much like geological crystals
  • We all know about lava volcanoes, but have you heard of ice volcanoes? New study suggests that cryovolcanoes have likely been erupting for billions of years on Ceres.
  • This new map of Antarctica is like ‘putting on glasses for the first time and seeing 20/20’

The EGU story

Last week, the EGU hosted its first science-policy dinner debate in Brussels. The event, ‘Horizon Geoscience: overcoming societal challenges, creating change’, was organised in collaboration with the European Federation of Geologists (EFG) and brought together geoscientists, policymakers and industry representatives. On the EGU website, we report on the outcome of the discussion and publish the key findings from the Horizon 2020 Geoscience Survey conducted earlier this year.

Panel members during the Horizon Geoscience dinner debate. From Left to right: Jonathan Bamber, John Ludden Lieve Weirinck, Jean-Eric Paquet and Vitor Correia

In the past few weeks, we have also issued three press releases highlighting research published in some of EGU’s open access journals. Follow the links to find out how bombing raids in the Second World War impacted the ionosphere, how glacial geoengineering could help limit sea-level rise, and what the point of no return for climate action might be.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.

October GeoRoundUp: the best of the Earth sciences from around the web


Carbon dioxide plays a significant role in trapping heat in Earth’s atmosphere. The gas is released from human activities like burning fossil fuels, and the concentration of carbon dioxide moves and changes through the seasons. Using observations from NASA’s Orbiting Carbon Observatory (OCO-2) satellite, scientists developed a model of the behavior of carbon in the atmosphere from Sept. 1, 2014, to Aug. 31, 2015. Scientists can use models like this one to better understand and predict where concentrations of carbon dioxide could be especially high or low, based on activity on the ground. Credit: NASA’s Goddard Space Flight Center/K. Mersmann, M. Radcliff, producers

Drawing inspiration from popular stories on our social media channels, as well as unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major story

Our top pick for October is a late breaking story which made headlines across news channels world-wide. The World Meteorological Organization (WMO) announced that ‘Greenhouse gases in the atmosphere had surged to new records’ in 2016.

“Globally averaged concentrations of CO2 reached 403.3 parts per million in 2016, up from 400.00 ppm in 2015 because of a combination of human activities and a strong El Niño event,” reported the WMO in the their press release.

The last time Earth experienced a comparable concentration of CO2 was 3 to 5 million years ago (around the period of the Pliocene Epoch), when temperatures were 2-3°C warmer and sea level was 10-20 meters higher than now. You can put that into context by taking a look at this brief history of Earth’s CO2 .

Rising levels of atmospheric CO2  present a threat to the planet, most notably driving rising global temperatures. The new findings compromise last year’s Paris Climate Accord, where 175 nations agreed to work towards limiting the rise of global temperatures by 1.5 degrees celsius (since pre-industrial levels).

No doubt the issue will be discussed at the upcoming COP 23 (Conference of Parties), which takes place in Bonn from 6th to 17th of November in Bonn. Fiji, a small island nation particularly vulnerable to rising sea levels and extreme weather phenomena (a direct result of climate change), is the meeting organiser.

What you might have missed

The 2017 Hurricane season has been devastating (as we’ve written about on the blog previously), but in a somewhat unexpected turn of events, one of the latest storms to form over the waters of the Atlantic, took a turn towards Europe.

Storm Ophelia formed in waters south-west of the Azores, where the mid-latitude jet stream push the storm toward the UK and Ireland. By the time it made landfall it had been downgraded to a tropical storm, but was still powerful enough to caused severe damage. Ireland, battered by 160 kmph winds, declared a national emergency following the deaths of three people.

NASA-NOAA’s Suomi NPP satellite took this thermal image of Hurricane Ophelia over Ireland on Oct. 16 at 02:54 UTC (Oct. 15 at 10:54 p.m. EDT).
Credits: NOAA/NASA Goddard Rapid Response Team

The effects of the storm weren’t only felt across the UK and Ireland. In the wake of an already destructive summer fire season, October brought further devastating forest fires to the Iberian Peninsula. The blazes claimed 32 victims in Portugal and 5 in Spain. Despite many of the wildfires in Spain thought to have been provoked by humans, Ophelia’s strong winds fanned the fire’s flames, making firefighter’s efforts to control the flames much more difficult.

On 16th October many in the UK woke up to eerie red haze in the sky, which turned the Sun red too. The unusual effect was caused by Ophelia’s winds pulling dust from the Sahara desert northward, as well as debris and smoke from the Iberian wildfires.

And when you thought it wasn’t possible for Ophelia to become more remarkable, it also turns out that it became the 10th storm of 2017 to reach hurricane strength, making this year the fourth on record (and the first in over a century) to hit that milestone.

But extreme weather wasn’t only limited to the UK and Ireland this month. Cyclone Herwart brought powerful winds to Southern Denmark, Germany, Poland, Hungary and Czech Republic over the final weekend of October. Trains were suspended in parts of northern Germany and thousands of Czechs and Poles were left without power. Six people have been reported dead. Hamburg’s inner city area saw significant flooding, while German authorities are closely monitoring the “Glory Amsterdam”, a freighter laden with oil, which ran aground in the North Sea during the storm. A potential oil spillage, if the ship’s hull is damaged, is a chief concern, as it would have dire environmental concerns for the Wadden Sea (protected by UNESCO).

Links we liked

The EGU story

This month we released not one but two press releases from research published in our open access journals. The finding of both studies have important societal implications. Take a look at them below

Deforestation linked to palm oil production is making Indonesia warmer

In the past decades, large areas of forest in Sumatra, Indonesia have been replaced by cash crops like oil palm and rubber plantations. New research, published in the European Geosciences Union journal Biogeosciences, shows that these changes in land use increase temperatures in the region. The added warming could affect plants and animals and make parts of the country more vulnerable to wildfires.

Study reveals new threat to the ozone layer

“Ozone depletion is a well-known phenomenon and, thanks to the success of the Montreal Protocol, is widely perceived as a problem solved,” says University of East Anglia’s David Oram. But an international team of researchers, led by Oram, has now found an unexpected, growing danger to the ozone layer from substances not regulated by the treaty. The study is published in Atmospheric Chemistry and Physics, a journal of the European Geosciences Union.