GeoLog

greenhouse gases

Imaggeo on Mondays: Air samples from afar

Imaggeo on Mondays: Air samples from afar

I’ve taken many photos on fieldwork, everywhere from Malaysia to Antarctica but this particular photo was taken in my ‘home’ lab at the University of East Anglia (UEA) in Norwich, UK. Atmospheric scientists collect air samples canisters such as these from around the world: from high altitude research aircraft (such as the Geophysica), long-term measurement time series (such as Cape Grim) or field campaigns in urban and rural environments.

At UEA we measure these whole air samples for a suite of up to 50 trace gases, covering all the major ozone depleting substances and non-CO2/CH4 greenhouse gases. We measure compounds at ‘parts per trillion’ (ppt) level or below in samples as small as 20 ml. It’s very hard to visualise 1 ppt… but it’s equivalent to about one second in 32,000 years measured in a sample that could fit in an egg cup.

Often these air samples are also analysed at other labs in Europe and other parts of the world, adding to the total number of compounds and isotopes we can quantify. Samples such as these have helped us identify new threats to ozone recovery and to quantify emissions of climatically-important trace gases such as HFCs and PFCs. To measure such trace, trace gases requires an instrument that is both large and temperamental. As such, it doesn’t (well can’t) leave the lab and we bring all the samples back to it. Stopping to imagine where the samples came from and how rare and special they can be (air from 30 km high or from deep in an ancient ice core!) helps me get through the long and labour intensive days in the laboratory.

By Emma Elvidge, University of East Anglia, UK

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

October GeoRoundUp: the best of the Earth sciences from around the web


Carbon dioxide plays a significant role in trapping heat in Earth’s atmosphere. The gas is released from human activities like burning fossil fuels, and the concentration of carbon dioxide moves and changes through the seasons. Using observations from NASA’s Orbiting Carbon Observatory (OCO-2) satellite, scientists developed a model of the behavior of carbon in the atmosphere from Sept. 1, 2014, to Aug. 31, 2015. Scientists can use models like this one to better understand and predict where concentrations of carbon dioxide could be especially high or low, based on activity on the ground. Credit: NASA’s Goddard Space Flight Center/K. Mersmann, M. Radcliff, producers

Drawing inspiration from popular stories on our social media channels, as well as unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major story

Our top pick for October is a late breaking story which made headlines across news channels world-wide. The World Meteorological Organization (WMO) announced that ‘Greenhouse gases in the atmosphere had surged to new records’ in 2016.

“Globally averaged concentrations of CO2 reached 403.3 parts per million in 2016, up from 400.00 ppm in 2015 because of a combination of human activities and a strong El Niño event,” reported the WMO in the their press release.

The last time Earth experienced a comparable concentration of CO2 was 3 to 5 million years ago (around the period of the Pliocene Epoch), when temperatures were 2-3°C warmer and sea level was 10-20 meters higher than now. You can put that into context by taking a look at this brief history of Earth’s CO2 .

Rising levels of atmospheric CO2  present a threat to the planet, most notably driving rising global temperatures. The new findings compromise last year’s Paris Climate Accord, where 175 nations agreed to work towards limiting the rise of global temperatures by 1.5 degrees celsius (since pre-industrial levels).

No doubt the issue will be discussed at the upcoming COP 23 (Conference of Parties), which takes place in Bonn from 6th to 17th of November in Bonn. Fiji, a small island nation particularly vulnerable to rising sea levels and extreme weather phenomena (a direct result of climate change), is the meeting organiser.

What you might have missed

The 2017 Hurricane season has been devastating (as we’ve written about on the blog previously), but in a somewhat unexpected turn of events, one of the latest storms to form over the waters of the Atlantic, took a turn towards Europe.

Storm Ophelia formed in waters south-west of the Azores, where the mid-latitude jet stream push the storm toward the UK and Ireland. By the time it made landfall it had been downgraded to a tropical storm, but was still powerful enough to caused severe damage. Ireland, battered by 160 kmph winds, declared a national emergency following the deaths of three people.

NASA-NOAA’s Suomi NPP satellite took this thermal image of Hurricane Ophelia over Ireland on Oct. 16 at 02:54 UTC (Oct. 15 at 10:54 p.m. EDT).
Credits: NOAA/NASA Goddard Rapid Response Team

The effects of the storm weren’t only felt across the UK and Ireland. In the wake of an already destructive summer fire season, October brought further devastating forest fires to the Iberian Peninsula. The blazes claimed 32 victims in Portugal and 5 in Spain. Despite many of the wildfires in Spain thought to have been provoked by humans, Ophelia’s strong winds fanned the fire’s flames, making firefighter’s efforts to control the flames much more difficult.

On 16th October many in the UK woke up to eerie red haze in the sky, which turned the Sun red too. The unusual effect was caused by Ophelia’s winds pulling dust from the Sahara desert northward, as well as debris and smoke from the Iberian wildfires.

And when you thought it wasn’t possible for Ophelia to become more remarkable, it also turns out that it became the 10th storm of 2017 to reach hurricane strength, making this year the fourth on record (and the first in over a century) to hit that milestone.

But extreme weather wasn’t only limited to the UK and Ireland this month. Cyclone Herwart brought powerful winds to Southern Denmark, Germany, Poland, Hungary and Czech Republic over the final weekend of October. Trains were suspended in parts of northern Germany and thousands of Czechs and Poles were left without power. Six people have been reported dead. Hamburg’s inner city area saw significant flooding, while German authorities are closely monitoring the “Glory Amsterdam”, a freighter laden with oil, which ran aground in the North Sea during the storm. A potential oil spillage, if the ship’s hull is damaged, is a chief concern, as it would have dire environmental concerns for the Wadden Sea (protected by UNESCO).

Links we liked

The EGU story

This month we released not one but two press releases from research published in our open access journals. The finding of both studies have important societal implications. Take a look at them below

Deforestation linked to palm oil production is making Indonesia warmer

In the past decades, large areas of forest in Sumatra, Indonesia have been replaced by cash crops like oil palm and rubber plantations. New research, published in the European Geosciences Union journal Biogeosciences, shows that these changes in land use increase temperatures in the region. The added warming could affect plants and animals and make parts of the country more vulnerable to wildfires.

Study reveals new threat to the ozone layer

“Ozone depletion is a well-known phenomenon and, thanks to the success of the Montreal Protocol, is widely perceived as a problem solved,” says University of East Anglia’s David Oram. But an international team of researchers, led by Oram, has now found an unexpected, growing danger to the ozone layer from substances not regulated by the treaty. The study is published in Atmospheric Chemistry and Physics, a journal of the European Geosciences Union.

Imaggeo on Mondays: Low tide at Alexandra Fjord

Imaggeo on Mondays: Low tide at Alexandra Fjord

Today’s post takes us to the far northern reaches of our planet, to a desert like nothing you’ve seen before.

This picture is a view to the north across Alexandra Fjord, on the east coast of Ellesmere Island, in the Canadian High Arctic, with Sphynx island in the middle of the fjord. The south shore of Alexandra Fjord includes a polar oasis, an area of tundra vegetation and relatively mild climatic conditions normally found hundreds of kilometres further south. The oasis is surrounded by glaciers and icefields to the south, and polar desert on mountains to the east and west. Polar deserts can also be seen on the far shore in this picture; another scientist working in this area once described to me the ease of “doing geology” from the air due to the lack of plant or developed soil cover on much of the landscape.

The tundra ecosystems of the valley produce and consume greenhouse gases carbon dioxide, methane, and nitrous oxide because of the actions of soil dwelling microorganisms. The surrounding deserts appear nearly lifeless, with only scattered plants sheltered from the harsh winds on barren, rocky ground. Nonetheless, on a per-area basis these deserts contribute nearly as much to greenhouse gas processes as the oasis ecosystems, particularly nitrous oxide.

The surface of Alexandra Fjord freezes completely each winter, to a depth sufficient to support the weight of small aircraft. Researchers visiting this area in April and May land and take off from the ice, but we arrived in late June and used the raised beach cresh that sits some 100 metres inland as our runway. As the 24-hour daylight of summer warms the land and the sea, the ice breaks up and is flushed out towards the Davis Straight to the east. Small pieces of pack ice and small icebergs frequently ground on the shore of the fjord at each low tide, creating a stark and beautiful landscape of ice, land, and water that is best viewed at a distance due to the tendency of polar bears to wander along the shoreline in search of seals and other food.

By Martin Brummell, University of Waterloo, Ontario, Canada

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

 

Imaggeo on Mondays: Fire Watch Constellation

Imaggeo on Mondays: Fire Watch Constellation

Wild fires: raging walls of flames, capable of burning down swathes of pristine, sometimes protected and ancient, landscapes have been causing havoc around the globe. Managing and controlling them is no easy task; they can unexpectedly change their course with the wind and jump across rivers, roads and man-made fire breaks.

The significant threat they pose, and damage they can cause, to valuable ecosystems worldwide has been recently evidenced by the destruction of 180 million year old forests in Tasmanian; so unique they are a designated United Nations World Heritage wilderness land. Not only that, wildfires can have sever effects on air quality, directly impacting human health, while at the same time contributing hefty amounts of greenhouse gases to the atmosphere. As recently as the end of last year (2015), forest fires in Indonesia were hailed as a ‘crime against humanity‘, after causing over 500,000 cases of acute respiratory tract infections.

This week’s Imaggeo on Mondays photograph highlights an emerging field of research where scientists are developing new methods to try and better understand the past impact of wildfires and how they contributed (or not) to climate change.

Of his image, Egle Rackauskaite writes: This composite shows a constellation of combined visual and infrared imaging of a smouldering combustion front spreading radially over a thin sample of dry peat. The central watch is created by a series of twelve wedges. Each wedge is extracted from a photo taken every 5 min from an elevated view looking down into the sample during the one-hour lab experiment. The circular peat sample (D=22 cm) was ignited on the centre by an electrical heater. The average radial spread rate was 10 cm/h and the peak temperature 600°C. The top figures show the virgin peat (left) and the final residue (right). The bottom figures show the wedges in visual (left) and infrared (right) imaging. Smouldering combustion is the driving phenomenon of wildfires in peatlands, like those causing haze episodes in southeast Asia and Northeast Europe. These are the largest fires on Earth and an extensive source of greenhouse gases, but poorly studied. Our experiments help to understand this emerging research topic in climate-change mitigation by characterizing the dynamics of ignition, spread and extinction, and also measure the yield of carbon emissions.

If you pre-register for the 2016 General Assembly (Vienna, 17 – 22 April), you can take part in our annual photo competition! From 1 February up until 1 March, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.