GeoLog

Europe

Imaggeo on Mondays: The ash cloud of Eyjafjallajökull approaches

Imaggeo on Mondays: The ash cloud of Eyjafjallajökull approaches

This photo depicts the famous ash cloud of the Icelandic volcano Eyjafjallajökull, which disrupted air traffic in Europe and over the North Atlantic Ocean for several days in spring 2010. The picture was taken during the initial phase of the eruption south of the town of Kirjubæjarklaustur, at the end of a long field work day. Visibility inside the ash cloud was within only a few metres.

The eruption was preceded by years of seismic unrest and repeated magma intrusions. A first effusive fissure opened outside the ice shield of the volcano at the end of March 2010, followed by an explosive eruption in the main crater of the volcano in April 2010.

Iceland was well prepared for the eruption – the rest of the world obviously was not. The region around Eyjafjallajökull is sparsely populated, residents were prepared days before the eruption and the evacuation went smoothly. However, the grain size of the ejected volcanic ash was fine enough so that the unfavourable and unusual wind direction during these days transported the ash all the way to Europe and led to air space closures almost all over the continent.

By Martin Hensch, Nordic Volcanological Center, University of Iceland (now at Geological Survey of Baden-Württemberg, Germany)

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Exploring ice in the deep

Imaggeo on Mondays: Exploring ice in the deep

The occurrence of sporadic permafrost in the Alps often needs challenging fieldwork in order to be investigated. Here in the high altitude karstic plateau of Mt. Canin-Kanin (2587 m asl) in the Julian Alps (southeastern European Alps) several permanent ice deposits have been recently investigated highlighting how also in such more resilient environments global warming is acting rapidly. Important portions of the underground cryosphere are actually rapidly melting, loosing valuable paleoarchives contained in the ice.

Description by Renato R. Colucci, as it first appeared on imaggeo.egu.eu.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Can the EU become carbon neutral by 2050? A new strategy from the EU!

Can the EU become carbon neutral by 2050? A new strategy from the EU!

On Wednesday 28 November 2018, the European Commission adopted a strategic long-term vision for a climate neutral economy (net-zero emissions) by 2050!  A Clean Planet for All, tactically released ahead of the 24th Conference of the Parties (COP 24), which will be hosted in Katowice, Poland from 2-14 December, describes seven overarching areas that require action and eight different scenarios that allow the EU to significantly reduce emissions.

The EU is currently responsible for approximately 10% of global greenhouse gas emissions and is looking to become a world leader in the transition towards climate neutrality – a state where the amount of emissions produced is equal to that sequestered [1]. A Clean Planet for All highlights how the EU can reduce its emissions and, in two of the eight scenarios outlined, have a climate neutral economy by 2050.

A Clean Planet for All is a leap toward a climate neutral economy but it does not intend to launch new policies, nor alter the 2030 climate & energy framework and targets that are already in place. Instead, it will use these targets as a baseline while simultaneously setting the direction of EU policies so that they align with the Paris Agreement’s temperature objectives, help achieve the UN’s Sustainable Development Goals and improve the EU’s long-term prosperity and health.

What role did science play in the Clean Planet for All strategy?

Reports generated using climate research, such as the IPCC’s Special Report on Global Warming of 1.5ºC, have been catalysts in national climate strategies and policies around the world. This is holds true for the EU’s A Clean Planet for All which features quotes and statistics from the IPCC’s 1.5ºC Report.

International treaties and targets set by organisations such as the United Nations also put pressure on national and regional governments to act and implement their own polices to reduce emissions. Many of these treaties and global targets are based on scientific reports that describe the current state of the world and give projections based on future scenarios. One of the most noteworthy examples of a global treaty is the Paris Agreement which was ratified by 181 counties in 2015. The Sustainable Development Goals are an example of global targets created using a breadth of scientific studies and that are a major consideration when national and local governments are creating policy.

More directly, A Clean Planet for All’s eight different scenarios and their likely outcomes required a huge amount of research and calculations – these scenarios are outlined in more detail below. External scientific input was also employed with scientists and other stakeholders given the opportunity to contribute to the proposal. An EU Public Consultation was open from 17 July until 9 October 2018 and received over 2800 responses. There was also a stakeholder event on 10-11 July 2018 that brought together stakeholders from research, business and the public to discuss the issues with the upcoming strategy.

The 7 strategic building block for a climate neutral economy

A Clean Planet for All outlines seven building blocks that will enable Europe to reduce emissions and build a climate neutral economy.

  1. Energy efficiency
  2. Renewable energy
  3. Clean, safe and connected mobility
  4. Competitive industry and circular economy
  5. Infrastructure and interconnections
  6. Bio-economy and natural carbon sinks
  7. Carbon capture and storage

Figure 1: Achieving a climate neutral economy will require changes in all sectors. Source: EU Commission [3]

Scenarios toward climate neutrality

The Clean Planet for All strategy describes eight different scenarios or pathways that range from an 80% cut in emissions to net-zero emissions by 2050 (see Figure 2 below). Regardless of the scenario chosen, the Commissioner for Climate Action and Energy, Miguel Arias Cañete, emphasised that the structure of the strategy will give member states a certain amount of flexibility to follow different paths. The eight options outlined in the strategy are “what if-scenarios”. They highlight what is likely to happen with a given combination of technologies and actions. While all eight scenarios will enable the EU to reduce emissions, only the last two (shown in the figure below) provide Europe with the opportunity to build a carbon neutral economy by 2050.

The first five scenarios all focus on initiatives which foster a transition towards a climate neutral economy with the extent that electrification, hydrogen, e-fuels and energy efficiency is implemented and the role that the circular economy will play, being the variable. The anticipated electricity consumption required in 2050 also differs depending on the option selected. The energy efficiency and circular economy options have a greater focus on reducing the energy demand rather than developing new sources of clean energy and therefore require the lowest increase in electricity generation (approximately 35% more by 2050 compared with today). Despite the differences, the first five scenarios will all only achieve 80 – 85% emission reductions by 2050 compared with 1990, 15% short of a climate neutral economy.

The sixth scenario combines the first five options but at lower levels and reaches an emissions reduction of up to 90%. The seventh and eighth scenarios are the only ones that could lead to net-zero emissions by 2050. The seventh option combines the first four options and negative emissions technology such as carbon capture and storage. The eighth scenario builds on the seventh with an additional focus on circular economy, encouraging less carbon intensive consumer choices and strengthened carbon sinks via land use changes.

Figure 2: Overview of A Clean Planet for All’s 8 different scenarios to a climate neutral economy [3]

What about the economic cost?

The EU has allocated approximately 20% of its overall 2014-2020 budget (over €206 billion) to climate change-related action. This covers areas such as research and innovation, energy efficiency, public transport, renewable energy, network infrastructure, just to name a few. To achieve a climate neutral economy by 2050, the EU has proposed to raise the share spent on climate-related action to 25% (€320 billion) for the 2021-2027 period.

This is a significant increase but it’s also a smart investment! Not only will it help the EU reach net-emissions but it’s also expected to lower energy bills, increase competitiveness and stimulate economic growth with an estimated GDP increase of up to 2% by 2050. It will also help to reduce the financial impacts of climate change such as damages from increased flooding, heatwaves and droughts. According to a study published in 2018 by the Joint Research Centre, 3ºC of warming (likely in a business-as-usual scenario), would cut Europe’s GDP by at least €240 billion annually by the end of the century. That estimate drops to €79 billion with 2ºC of warming.

Fighting for a climate neutral economy is is expected to have a net-positive impact on employment but of course, some sectors and regions will see job losses. However, the EU has already outlined programmes to manage this issue, such as the European Social Fund Plus (ESF+), and the European Globalisation Adjustment Fund (EGF). As Miguel Arias Cañete (Commissioner for Climate Action and Energy), states:

“Going climate neutral is necessary, possible and in Europe’s interest.”

What are the next steps?

The strategy and scenarios will be discussed at COP24 and may even provide inspiration for other countries to implement similar strategies. You can keep an eye on COP24 developments by streaming sessions via the UNFCCC live webcast and by using #COP24 on social media.

Although already adopted by the European Commission, A Clean Planet for All still needs input and approval from the European Council, the European Parliament’s Environment Committee, the Committee of the Regions and the Economic and Social Committee. According to the Paris Agreement, all 181 nations must submit their 2030 emissions targets by 2020 so it’s likely that comments from these committees will come in early 2019.

It’s likely that there will also be a number of stakeholder events in 2019, such as Citizens Dialogues that give scientists, businesses, non-governmental organisations and the public the opportunity to share their thoughts and be involved in the process. The EGU will provide updates on relevant opportunities as they arise. To receive these updates you can join the EGU’s database of expertise!

References and further reading

[1] A Clean Planet for all. A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy

[2] Questions and Answers: Long term strategy for Clean Planet for All 

[3] In-Depth Analysis in Support of The Commission Communication Com(2018) 773

New EU plan comes out fighting for ‘climate neutrality’ by 2050

Factsheet on the Long Term Strategy Greenhouse Gas Emissions Reduction

10 countries demand net-zero emission goal in new EU climate strategy

July GeoRoundUp: the best of the Earth sciences from around the web

July GeoRoundUp: the best of the Earth sciences from around the web

Drawing inspiration from popular stories on our social media channels, as well as unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major stories  

Signs of water 55 million kilometres away

Last week scientists announced that they have found signs of existing water on Mars, offering new hope to the possibility of uncovering life on the Red Planet’s subsurface.  

Radar observations made by the European Space Agency’s Mars Express satellite, suggest that a liquid lake is buried 1.5 kilometres beneath an ice cap situated near the south pole of Mars. Scientists think that this body of water is likely a few metres deep and 20 kilometres across, “nearly three times larger than the island of Manhattan,” reported Scientific American.

A schematic of how scientists used radar to find what they interpret to be liquid water beneath the surface of Mars. (Credit: ESA)

For the last 12 years the Mars Express satellite has been taking measurements of Mars by sending beams of radar pulses into the planet’s immediate interior. As these waves bounce back, the brightness of the reflection gives information on the material lying beneath Mars’ surface.

The researchers involved came across this discovery while analysing three years worth of data collected by the spacecraft.

“The bluer the colors, the brighter the radar reflection from the material it bounced off. The blue triangle outlined in black in the middle is the purported lake,” reported Science News.

Previous observations, made by NASA’s Curiosity rover for example, have found lake beds on the planet’s exterior, signifying that water may have flowed on Mars in the past. However, if this new finding is confirmed, it would be the first discovery of an existing stable body of water, one of the conditions believed to be necessary for life to thrive.

Context map: NASA/Viking; THEMIS background: NASA/JPL-Caltech/Arizona State University; MARSIS data: ESA/NASA/JPL/ASI/Univ. Rome; R. Orosei et al 2018 (distributed via ESA)

“We are not closer to actually detecting life,” said Manish Patel from the Open University to BBC News, “but what this finding does is give us the location of where to look on Mars. It is like a treasure map – except in this case, there will be lots of ‘X’s marking the spots.”

In their study, published in Science last week, the team remarked, “there is no reason to conclude that the presence of subsurface water on Mars is limited to a single location.”

Northern hemisphere feels the heat

In other news, the two words best describing the northern hemisphere this summer could very well “hot” and “dry,” as a series of heat waves have taken hold of several regions across Europe, Asia, North America and northern Africa. Many countries this month, including Japan, Algeria and Canada, have even experienced record-breaking temperatures.

A look at how this year’s heatwave has changed the colour of our vegetation in just one month (Credit: ESA

For some places, above average temperatures and dry conditions have helped fuel devastating wildfires. More than 50 wildfires have swept through Scandinavian forests this summer, many well within the Arctic Circle, causing Sweden to request emergency aid from nearby countries.

Smoke rises from a wildfire in Enskogen. (Credit: Swedish Environmental Protection Agency/Maja Suslin)

A major wildfire also ignited near Athens, Greece this month, resulting in more than 85 death, with dozens still missing. While Greek officials claim that there are “serious indications” that the flames were brought upon by arson, they also note that the region’s climate conditions were extreme.

To many scientists, this onslaught of hot and dry conditions is a taste of what may soon become the norm.  Of course, these conditions (in Europe, for example) are partly due to weather. “The jet stream – the west-to-east winds that play a big role in determining Europe’s weather – has been further north than usual for about two months,” reports the Guardian, leading to sweltering conditions in the UK and much of Europe, while leaving Iceland cool and stormy.  

However, scientists say that heatwaves in the northern hemisphere are very much linked to global warming. “There’s no question human influence on climate is playing a huge role in this heatwave,” said Myles Allen, a climate scientist at the University of Oxford, to the Guardian in the same article.

A recent assessment on the ongoing heat wave in Europe reports that these conditions are more likely to occur due to climate change. “The findings suggest that rising global temperatures have increased the likelihood of such hot temperatures by five times in Denmark, three times in the Netherlands and two times in Ireland,” said Carbon Brief.

What you might have missed

Geologists have given a name to Earth’s most recent chapter: Meghalayan Age. The announcement was made earlier this month when the International Union of Geological Sciences updated the International Chronostratigraphic Chart, which classifies Earth’s geologic time scale. The new update has divided the Holocene Epoch (the current time series which began 11,700 years ago, when the Earth was exiting its last ice age) into three stages: the Greenlandian, the Northgrippian, and then Meghalayan.

The Meghalayan Age represents the time between now and 4,200 years ago, when a mega-drought led to the collapse of many civilisations across the world. The middle phase, Northgrippian (from 8,300 years ago to 4,200 years ago), is marked by an sudden cooling event brought on by massive glacial melt in Canada that affected ocean currents. Finally the oldest phase, Greenlandian, (from 11,700 years ago to 8,300 years ago) is marked by the end of the last ice age.

The recent update has created some unrest in the geosciences community. “There is still an active debate about assigning a new geologic slice of time to reflect specifically the influence of humans on the planet,” reported BBC News. Some scientists say that the new divisions conflict with the current work being done on proposing a new epoch classification, famously called the ‘Anthropocene,’ which would be marked by the beginning on significant human impact on Earth’s geology and ecosystems.

Links we liked

The EGU story

This month we released not one but two press releases from research published in our open access journals. The findings from both studies have important societal implications. Take a look at them below.

New study: oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”

The Baltic Sea is home to some of the world’s largest dead zones, areas of oxygen-starved waters where most marine animals can’t survive. But while parts of this sea have long suffered from low oxygen levels, a new study by a team in Finland and Germany shows that oxygen loss in coastal areas over the past century is unprecedented in the last 1500 years. The research was published in the European Geosciences Union journal Biogeosciences.

New study puts a figure on sea-level rise following Antarctic ice shelves’ collapse

An international team of scientists has shown how much sea level would rise if Larsen C and George VI, two Antarctic ice shelves at risk of collapse, were to break up. While Larsen C has received much attention due to the break-away of a trillion-tonne iceberg from it last summer, its collapse would contribute only a few millimetres to sea-level rise. The break-up of the smaller George VI Ice Shelf would have a much larger impact. The research was published in the European Geosciences Union journal The Cryosphere.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.