educational resources

Discover geology with Lego!

Discover geology with Lego!

Science communication is becoming a widely recognized skill for both established and budding geoscientists alike. Outreach activities are beneficial in many ways, as they not only showcase science to the general public, but also give scientists the chance to develop transferable skills.

If you’re in the market for a creative geoscience activity, one that especially appeals to a younger audience, look no further! In this guest blog post, Stephanie Zihms, a geomechanics postdoc at Heriot-Watt University and the EGU Union-level ECS representative, details a fun hands-on activity that teaches geoscience with the help of Lego blocks. This post is modified from a version which first appeared on Stephanie Zihms’ blogRead the original post.

I designed this activity for the Explorathon 2015 (a family orientated science event) because I was looking for a way to show how geologists work from observing the surface to gathering information from boreholes and seismic surveys to understand the subsurface. I also wanted participants to experience this process without needing to be in the field or taking rock samples.

Kit and preparation

I used a generic brand of building bricks (because my budget didn’t allow for actual Lego) and bought two boxes of mixed bricks in a bargain store. First you want to sort the bricks by colour (unless you can buy them that way). Then you want to decide what shapes to make – I opted for three simples shapes: Syncline, Anticline and Oil Reservoir with seal.

With the geology built, you then want to select three or four areas to make a ‘borehole’ with – I used single bricks but this could be done with the 2×2 squares as well. If you have enough bricks you can probably incorporate the ‘boreholes’ into the model and reveal them by extracting them – which would be super cool. Once you have the models built and boreholes prepared, you need to make some envelopes to only expose the top layer – I used brown hacking paper and packing tape to make sure they can be reused easily. That’s pretty much it.

Activity: Syncline & Anticline       

Show your participants the covered models and ask if they can tell you what the rest of it looks like. You can explain that geologists use exposures like this for mapping (having maps on hand can be useful). Also ask how sure they are that they are correct based on the information available. You can then offer more information in form of boreholes – either lay or stand them in front of the model in the correct place (you can mark your envelopes) or extract them if you went for the hiding option.

Either ask the participants to show you what they can see – following a colour for example or ask them to copy the boreholes on a bit of paper and connect colours that way (this will depend on how much time you have with each participant; borehole papers can be prepared with the columns printed on so the participants only have to colour them in).

Once that is done reveal the full model. This is normally a big ‘Ahhh’ effect because just by having that little bit of extra information they got it right. This is a great opportunity to talk about information available and how geologists infer maps and what the subsurface looks like based on similar information. (if you have boreholes logs from the local area + the iGeology app from BGS this can really help relate this to the local area). If you make a version where the boreholes can be retrieved this could be standalone activity with instructions to follow as well.

Activity: Oil reservoir with seal         

This activity is very similar to the one above except that we can’t see anything from the top layer. And before we even know where to drill for a borehole we have to do a seismic survey. After guessing what the model looks like and deciding the information is not great. Show a generic seismic line (normally easily found online or in petroleum engineering tutorials). We printed seismic lines on A5 and asked participants to colour them in – following any features or structures they could see (this could also be done with one A3 paper that’s laminated and can be re-used).

After identifying a generic reservoir structure we revealed the model to show the different layers. A set of boreholes could be done based on where participants would ‘drill’. Which would mean having a set of boreholes available or making the middle of the model retrievable.


I absolutely love this activity because it uses something people are familiar with – independent of age and it mimics a little geological survey taking participants on the journey of gathering information and making an estimation. This activity can also be easily amended for different size audiences (e.g. using DUPLO for a show & tell type event) or adding more information about the process, talking about risk and uncertainty. The response from participants, especially children, when the model is revealed is priceless.

I hope you found this how-to useful and please share how you used it at your events either in the comments or by tagging me (@geomechsteph) on Twitter.

By Stephanie Zihms

Malawi High School Teacher’s Workshop on Natural Hazards

Malawi High School Teacher’s Workshop on Natural Hazards

In July 2017, Professor Bruce Malamud and Dr Faith Taylor from King’s College London travelled to Mzuzu, Malawi to work in collaboration with Mr James Kushe from Mzuzu University, Malawi. They delivered an EGU funded workshop at Mzuzu University to high school teachers on natural hazards, with major funding provided by EGU, and also supported by Urban ARK and Mzuzu University. Faith and Bruce explain more about the trip…

Malawi is a small (118,000 km2) landlocked country in south eastern Africa, often referred to as the ‘warm heart of Africa’ due to its stability, safety, beauty and warm welcome to visitors. Yet behind this warm welcome, life for many in Malawi is hard; with an average GDP per capita of US$0.82 per day, high (although improving) prevalence of HIV-AIDs, tuberculosis and malaria and a range of natural disasters including earthquakes, floods, lightening, hail, strong winds and drought.

Although we are biased, we think life is particularly hard for Malawian Geography teachers who have a great responsibility to shape the next generation of big-thinkers and problem-solvers against the challenges such as (i) large class sizes, (ii) limited opportunity for teachers’ continued professional development and (iii) under-resourcing of schools.

With this in mind, Bruce, James and I applied for EGU funding to run a workshop for teachers on natural hazards, focusing particularly on: (i) collating and developing low-cost teaching demonstrations, (ii) equipping teachers with further information about natural hazards and (iii) learning more about their home city of Mzuzu as a resource for field trips.

Professor Bruce Malamud demonstrating seismic waves using a giant slinky.

In the months running up to the workshop, we prepared 16 Gb USB sticks for each teacher which included >35 teaching demos that we had created and/or reviewed, and then trialled, 77 videos that we selected from the many out there, 11 digital posters and 16 factsheets and 14 Powerpoint lectures from our own teaching. We also started to order a few resources that would be hard to come by in Malawi, such as slinkies for teaching about earthquake waves and mento tubes for demonstrating volcanic eruptions (try explaining a suitcase of slinkies to a customs official!).

In Mzuzu, James visited each highschool to explain the purposes of our workshop and get local interest, planned a fieldtrip to the Massassa region and started to purchase locally available resources for teaching demonstrations, such as jars and sand for teaching about the angle of repose with regard to landslides.

Upon arrival at the Mzuzu University library, where we held the workshop, we were greeted by 27 high school teachers who had travelled from up to a couple of hours away to spend three days with us. The schools they came from varied in terms of resourcing, teachers’ background and experience, but all teachers were enthusiastic about the opportunity to learn more (note to others, teachers were particularly keen on further EGU funded workshops on other topics!).

Over the three days, we delivered interactive undergraduate level lectures on a range of natural hazards, so that teachers would better understand the process behind many of the hazards, interspersed with over two dozen activities and teaching demonstrations that they could bring back to the classroom. We also had a half day microadventure facilitated by one of the teachers to a local area that had been affected by flooding and landslides. This was a good reminder that geography starts on the doorstep, and does not require expensive fieldtrips to exotic destinations to help students experience environmental phenomena and solidify their classroom based learning. There were also opportunities for the teachers to share some of their best practice – and from this, we hope the seed has been sown for teachers to establish their own professional network for sharing ideas and resources.

We have travelled to Malawi multiple times over the past few years as part of our work on the Urban ARK project where we look at multi-hazard risk to infrastructure. From this work, we know how challenging it can be for information and ideas to flow to those experiencing and managing risks. We left Malawi feeling hopeful that through those 27 bright and enthusiastic teachers, we might reach >2000 students, and through those students we might also reach their friends and family to help reduce disaster risk across the Mzuzu region.

In the coming months we will share some of the resources we generated and collated online. There is a clear need for further workshops like this across Malawi, and an appetite for building a network of teachers. It took a lot of planning and partnerships with local academics but we would strongly encourage others to consider running similar workshops for teachers in the warm heart of Africa.

By Faith Taylor and Bruce Malamud, King’s College London