GeoLog

Dead Sea

Imaggeo on Mondays: Hole in a hole in a hole…

Imaggeo on Mondays: Hole in a hole in a hole…

This photo, captured by drone about 80 metres above the ground, shows a nested sinkhole system in the Dead Sea. Such systems typically take form in karst areas, landscapes where soluble rock, such as limestone, dolomite or gypsum, are sculpted and perforated by dissolution and erosion. Over time, these deteriorating processes can cause the surface to crack and collapse.

The olive-green hued sinkhole, about 20 m in diameter, is made up of a mud material coated by a thin salted cover. When the structures collapse, they can form beautiful blocks and patterns; however, these sinkholes can form quite suddenly, often without any warning, and deal significant damage to roads and buildings. Sinkhole formations have been a growing problem in the region, especially within the last four decades, and scientists are working hard to better understand the phenomenon and the risks it poses to nearby communities and industries.

Some researchers are analysing aerial photos of Dead Sea sinkholes (taken by drones, balloons and satellites, for example) to get a better idea of how these depressions take shape.

“The images help to understand the process of sinkhole formation,” said Djamil Al-Halbouni, a PhD student at the GFZ German Research Centre for Geosciences in Potsdam, Germany and the photographer of this featured image. “Especially the photogrammetric method allows to derive topographic changes and possible early subsidence in this system.” Al-Halbouni was working at the sinkhole area of Ghor Al-Haditha in Jordan when he had the chance to snap this beautiful photo of one of the Dead Sea’s many sinkhole systems.

Recently, Al-Halbouni and his colleagues have employed a different kind of strategy to understand sinkhole formation: taking subsurface snapshots of Dead Sea sinkholes with the help of artificial seismic waves. The method, called shear wave reflection seismic imaging, involves generating seismic waves in sinkhole-prone regions; the waves then make their way through the sediments below. A seismic receiver is positioned to record the velocities of the waves, giving the researchers clues to what materials are present belowground and how they are structured. As one Eos article reporting on the study puts it, the records were essentially an “ultrasound of the buried material.”

The results of their study, recently published in EGU’s open access journal, Solid Earth, give insight into what kind of underground conditions are more likely to give way to sinkhole formation, allowing local communities to better pinpoint sites for future construction, and what spots are best left alone. This study and further work by Al-Halbouni and his colleagues have been published in a special issue organised by EGU journals: “Environmental changes and hazards in the Dead Sea region.”

By Olivia Trani, EGU Communications Officer

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Salt shoreline of the Dead Sea

Imaggeo on Mondays: Salt shoreline of the Dead Sea

This beautiful aerial image (you’d be forgiven for thinking that it was a watercolour) of the Dead Sea was captured by a drone flying in 100m altitude over its eastern coastline.

Climate change is seeing temperatures rise in the Middle East, and the increased demand for water in the region (for irrigation) mean the areas on the banks of the lake are suffering a major water shortage. As a result, the lake is shrinking at an alarming rate. Currently, it is shrinking by over 1m/year. The image was captured as part of a survey in the wider project DESERVE (Kottmeier et al. 2016) addressing the environmental changes accompanying the lake level drop.

In this case, the special focus is to look for e.g. submarine springs or other geomorphological evidence in the shallow lake water that can later turn into hazardous sinkholes (cf. recent publication on that topic Al-Halbouni et. al. 2017). Learn more about the environmental challenges and geohazard risks the region faces in this December 2016 Imaggeo on Mondays post.

The round features see in this image, nevertheless have been identified as salt accumulations following basically the sinusoidal shoreline.

The different colours of the lake indicate water of varying densities, e.g. fresh water floating on top of saltier water and possible sediments inside.

The shoreline appears with different colours each year depending on the sediment mud & evaporite material. Each line represents the retreat of a given year!

[Editor’s note: this image was a finalsit in the 2017 Imaggeo Photo Contest]

By Laura Robert and Djamil Al-Halbouni of the German Research Center for Geosciences, Physics of the Earth, Potsdam, German

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

 

Imaggeo on Mondays: The shrinking of Earth’s saltiest lake

One of the consequences of the rapid fall of the water level (>1 m per year), is that vast areas of salt-rich ground of the shrunken Dead Sea are prone to strong dissolution and mechanical erosion of the subsurface processes.

The Dead Sea is one of the saltiest lakes on Earth, located at the lowest point of the globe.  For centuries it has been known for the restorative powers of its muds and waters. Their hypersalinity means it is possible to easily float on the lake’s surface.

Bordering Israel, the West Bank and Jordan, it is a unique environment in an otherwise arid region.  Changing climate, which is seeing temperatures rise in the Middle East, and the increased demand for water in the region (for irrigation) mean the areas on the banks of the lake are suffering a major water shortage. As a result, the lake is shrinking at an alarming rate.

The changing geomorphology of the Dead Sea region is now the focus of a large international project (DESERVE) to address the resulting geohazards at the Dead Sea.

One of the consequences of the rapid fall of the water level (>1 m per year), is that vast areas of salt-rich ground of the shrunken Dead Sea are prone to strong dissolution and mechanical erosion of the subsurface processes. This leads to the widespread land subsidence and the development of sinkholes, which pose a major geological hazard to infrastructure, local population, agriculture and industry in the Dead Sea area, writes Djamil Al-Halbouni in an abstract presented at the EGU 2016 General Assembly.

Today’s Imaggeo on Monday’s image was taken in the purpose of investigating the sinkhole phenomenon along the coastline.

“Near-surface aerial photography offer valuable hints on possible processes that lead to the formation of huge depression zones, e.g. the ground and surface water flow, the existence of vegetation and water sources or simply the morphology,” explains Djamil.

Sets of images are then combined into digital terrain models to quantitatively estimate hazard potentials and development of sinkholes via repeated measurements.

Specifically, this image was taken by a camera on a helikite balloon from 150m altitude. It shows a canyon penetrating the whitish pure salt shoreline at the Jordanian coast. It also reveals, in its’ magnitude surprising for the scientists involved, round structures under the shallow water, which are interpreted as submarine springs and possible submarine sinkholes close to the shore.

 By Laura Roberts and Djamil Al-Halbouni of the German Research Center for Geosciences, Physics of the Earth, Potsdam, German

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.