GeoLog

Antarctic Peninsula

Imaggeo on Mondays: An expedition to better understand Antarctic soils

Imaggeo on Mondays: An expedition to better understand Antarctic soils

A dramatic evening sky puts the frame to a photo taken during the Brazilian Antarctic expedition to James Ross Island in 2016. Brazilian palaeontologists and soil scientists together with German soil scientists spent over 40 days on the island to search for fossils and sample soils at various locations of the northern part of the island.

The island was named after Sir James Clark Ross who led the British expedition in 1842, which first charted locations at the eastern part of the island. James Ross Island is part of Graham Land, the northern portion of the Antarctic Peninsula, separated from South America by the stormy Drake sea passage.

Map of the Antarctic Peninsula featuring the James Ross Archipelago (Credit: The Scientific Committee on Antarctic Research, Antarctic Digital Database Map Viewer)

This photo was taken in the northern Ulu Peninsula, which is the northernmost part of the relatively large James Ross Island and the largest ice-free area in the Antarctic Peninsula region. The island’s characteristic appearance is formed by Late Neogene volcanic rocks (3-7 million years old) over fossil rich Late Cretaceous sandstones (66-120 million years old).

In the photo we are looking from a higher marine terrace at the Santa Martha Cove, the ‘home’ to the 2016 Brazilian Antarctic expedition, towards the steep cliffs of Lachman Crags, a characteristic mesa formed by Late Neogene lava flows. The Lachman Crags mesa, the Spanish word for tablelands, dominates the landscape of the northern part of the Ulu Peninsula. Above the cliffs visible in the photo, a glacier covered plateau stretches to the Northwest.

The marine terrace on which the tent is standing is comprised of a flat area that has been ice-free for approximately 6000 years and thus makes for a great model system to study soil development after glacial retreat. The ground is composed of a mixture of volcanic rocks and Cretaceous sandstones rich in all sorts of fossils, from fossilised wood to shark teeth, ammonites and reptile bones.

The strong winds that can start in Antarctica from one moment to the other and the very low precipitation led to the characteristic desert pavement, with stones sorted in a flat arrangement on top of the fine textured, deeply weathered permafrost soils. Although these soils host a surprisingly high number of microorganisms, most terrestrial life is restricted to wetter areas surrounding fresh water lakes and melt water streams. Thus lakes and snow meltwater-fed areas make for higher primary production of algae and mosses, fostering biodiversity and soil development by organic matter input.

As there are no larger bird rookeries on James Ross Island the only way sea-derived nutrients reach the Ulu Peninsula is by a rather grim feature:  dead seal carcasses that lie distributed across the lowlands (< 150 m asl) of the Ulu Peninsula. Carcasses fertilise the soils in their direct vicinity while slowly decomposing over decades, thus feeding small patches of lichens and mosses within the barren cold arid desert. The region is thus an illustration of the harsh Antarctic environment where even Weddell seals, animals that are well adapted for the living in dense pack ice during the polar night, die when losing track on land on the way to the water.

By Carsten Müller, Technical University of Munich Chair of Soil Science, Germany

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

February GeoRoundUp: the best of the Earth sciences from around the web

Comparing the TRAPPIST-1 planets

Drawing inspiration from popular stories on our social media channels, as well as  unique and quirky research news, this monthly column aims to bring you the best of the Earth and planetary sciences from around the web.

Major story

Undoubtedly the story of the month is the discovery of a star system of seven Earth-sized planets just 40 light-years away from our own. What makes the finding so exciting is that three of the planets lie in the habitable zone. All could have oceans and atmospheres, making them good candidates to search for extraterrestrial life.

The seven Earth-sized worlds orbit the ultra-cool dwarf star, TRAPPIST-1, which has been known to astronomers for some time. As the planets passed in front of TRAPPIST-1, the star’s light output dipped. Using a combination of ground and spaced based telescopes, the changes in the light output were used to detect the planets and gather information about their size, composition and orbit, explains the press release by the European Southern Observatory.

This simple GIF by New Scientist illustrates the principle of how the remarkable planets were found (while at the same time highlighting the fact there is a mind-blowing number of exoplanets scattered throughout space!).

The ultra-cool dwarf star and its planetary system has an even cooler website, which comes complete with great posters, videos, short stories, poems and graphic novels; as well as a detailed timeline of all the years of work which took place behind the scenes and culminated in the announcement made earlier this month.

Our top pick for a science poem honouring the discovery is In Search of New Life by Sam Illingworth, a lecturer at Manchester Metropolitan University.  You can also find an audio version of the poem here.

Far into space, amongst the darkest Sea

New planets sit like marbles in a row.

We turn our eyes to find out what might be

And search for patterns in their ether’s flow;

Then try to see what else might lie below.

And as we probe how life’s rich web was spun,

Do they look back towards our distant sun?

 

What you might have missed

The discovery of a previously unknown continent below New Zealand and New Caledonia dominated headlines towards the middle of the month.

Dr. Mortimer, of GNS Science and lead author of the study, argues that “being more than 1 million square kilometers in area, and bounded by well-defined geologic and geographic limits, Zealandia [the name given to the newly discovered continent] is, by our definition, large enough to be termed a continent.”

But without an official authority which designates the existence of continents, it will be for the broader scientific community to recognise Zealandia as one. And the jury is still out, as Alex Witze finds in this Nature News & Comment article:

“Claiming that Zealandia is a continent is a bit like stamp collecting,” says Peter Cawood, a geologist at Monash University in Melbourne, Australia. “So what?”

While the (potentially) new Antipodean continent dominated headlines, you might have missed the discovery of another lost continent. Deep under the waters of the Indian Ocean, sandwiched between Madagascar and India, lie the scattered pieces of an ancient, drowned, microcontient called Mauritia. The authors of the study, published earlier this month in Nature Communications, dated zircons of up to 3 billion years old from Mauritanian volcanic rocks. Considering Mauritania is much younger, the researchers argue the zircons must have come from another, already existing continent.

Meanwhile, in the southern-most reaches of our planet, a huge iceberg is set to breakaway from the Larsen C Ice Shelf, on the northeastern coast of the Antarctic Peninsula. A large crack in the ice was spotted in natural-colour satellite imagery captured by NASA back in August 2016. Int January 2017 alone, the crack grew by more than 10 km in length and now stretches 175 km over the ice.

British Antarctic Survey (BAS) scientists recently captured footage of the huge crack. The video highlights what the calving of such a large iceberg might mean for the Larsen C ice shelf, while this Nature News and Comment story highlights how far glaciology has come since similar calving events in the 90s and 00s. Scientists now have a much better understanding of what might happen in the weeks and months to come.

Five links we liked

The EGU story

After long-awaited snowfall in January, parts of the Alps are now covered with fresh powder and happy skiers. But the Swiss side of the iconic mountain range had the driest December since record-keeping began over 150 years ago, and 2016 was the third year in a row with scarce snow over the Christmas period. A study published this month in The Cryosphere, a journal of the European Geosciences Union, shows bare Alpine slopes could be a much more common sight in the future.

The new research, by scientists based at the Institute for Snow and Avalanche Research (SLF) and at the CRYOS Laboratory at the École Polytechnique Fédérale in Switzerland, shows that the Alps could lose as much as 70% of snow cover by the end of the century. However, if humans manage to keep global warming below 2°C, the snow-cover reduction would be limited to 30% by 2100.

And don’t forget! To stay abreast of all the EGU’s events and activities, from highlighting papers published in our open access journals to providing news relating to EGU’s scientific divisions and meetings, including the General Assembly, subscribe to receive our monthly newsletter.