GeoLog

Regular Features

Imaggeo on Mondays: The changing landscape of Patagonia

Imaggeo on Mondays: The changing landscape of Patagonia

Pictured here is a snapshot of an environment in transition. Today’s featured photo was taken at the foot of Monte Fitz Roy, a jagged Patagonia mountain located in Los Glaciares National Park on the border between Argentina and Chile.

The Patagonia region in South America is the second biggest source of glaciers in the southern hemisphere, behind Antarctica, but the region is losing ice at a rapid rate.

Satellite imagery analysis over the last few years has suggested that the Patagonia region is losing ice more than any other part of South America, with some glaciers shedding ice faster than any place in the world.

A recent study reported that the northern and southern Patagonia ice fields in particular are losing roughly 17 billion tons of ice each year. Los Glaciares National Park alone is home to around 50 large glaciers, but because of warming temperatures, almost all of these large ice masses have been shrinking over the last 50 years.

This level of glacial ice loss can be hard to fully imagine, but in 2017, Shauna-Key Rainford, a PhD student at Pennsylvania State University in the United States and photographer of this featured image, got a first-hand glimpse of Patagonia’s changing landscape.

“Ensconced between the granite boulders I felt like I was at a pivotal moment of continued change,” said Rainford. “While the peaks of Mt. Ritz Roy remain and will likely remain tall and majestic, with each passing year the glacier continues to retreat further towards the peak and the glacial lake continues to expand more and more.”

Rainford had reached this scenic yet tragically ephemeral view after a strenuous hike up the mountain. “It was very emotional to think about what this view will look like in the future if I should ever visit the mountain again,” Rainford recalls. “It is always striking to be confronted with the adverse consequences of human actions.”

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: A slice of fossil life

Imaggeo on Mondays: A slice of fossil life

I am a petrographer at the University of Padova, Italy, studying the metamorphic rocks that form the deep Earth’s crust beneath our feet, and what happens when they get so hot to start to melt.

I’ve spent (enjoyed I should say) more than 30 years looking at rocks with an optical microscope. This simple, cheap tool, and more importantly, its skilled use, remain key ingredients for good research in petrology!

I’ve been taught by scientists, like Ron Vernon of Macquarie University in Australia, that a good micrograph is essential to document my research and strengthen my conclusions, and so I’ve always paid particular attention to the quality of photos. In the meanwhile, I have also developed a particular interest in photomicroscopy with an aesthetic purpose, realizing that the cocktail of rocks and polarized light has an extraordinary potential in the ‘sciart’ (Science-and-Art) field.

The digital revolution has marked a turning point in this activity, and 10 years ago I have started my micROCKScopica project to showcase to the public the beauty hidden in the small slices of rock that are thin sections.

When I find a photogenic rock I play with polarizers to get the desired combinations of color, and then I take a photograph. And people can enjoy the images, their colors and shapes, even without knowing the geological history behind them.

This is particularly true for this photograph: it is a thin section of a piece of dinosaur bone but I don’t know much about it (what bone, which dinosaur), only that it had been collected in Utah, in the United States. I received a small sample of the bone by Denise M. Harrison, a friend with whom I collaborated for a book on Lake Superior Agates. She is an award-winning lapidary (someone who cuts, polishes and engraves stones), and makes lovely cabochons with all sort of semiprecious, hard stones. I asked her for some leftovers to make some thin sections, because I wanted to see something new, possibly silicified (impregnated with silica during fossilization) because chalcedony – the very fine-grained variety of common quartz – may be extremely photogenic.

I had no idea of how a bone could look like under the microscope, and the first sight left me speechless! The porous structure, and the patterns of the radiating textures in the chalcedony fillings are extraordinary, and provide a wealth of possibilities for nice images.

In this shot, that I replicated in red and blue, a larger hole had been filled with a fine-grained quartz sand – the dark moon shape on top left – somehow interrupting the regular pattern of the bone tissue, that to someone may recall Australian Aboriginal artwork.

Curiously, this anatomically-related image made me quite popular among pathologists and other medical doctors, who find many analogies with their subjects of research. The ages of the specimens are some hundred million years apart, though…

By Bernardo Cesare, University of Padova, Italy

www.microckscopica.org

Editor’s note: The fossil sample featured in this photo was collected and distributed legally from Utah.

If you pre-register for the 2019 General Assembly (Vienna, 07–12 April), you can take part in our annual photo competition! From 15 January until 15 February, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: An iceberg-sized issue

Imaggeo on Mondays: An iceberg-sized issue

This was taken during a study, undertaken by me and my colleagues, on the sea ice of McMurdo Sound, Antarctica. We designed the project to document how supercooled water carrying suspended ice crystals flows along its pathway towards the open ocean. Ultimately, this work aims to assess the Ross Ice Shelf’s contribution of local melt to the long-term trend of increased sea ice cover around Antarctica – a signal which has been dominated by expansion in the Ross Sea.

However, over the winter prior to the field season an iceberg, 12 kilometres long and 1 kilometre wide that had calved from the Ross Ice Shelf, grounded itself across the middle of our intended study region. This created a significant constriction to the flow, as the iceberg forced the approximately 30 km-wide plume to squeeze into half of that space.

We quickly modified the objectives for the field season to take advantage of this, adding an element focusing on the fluid dynamics of accelerated large-scale flow around the tip of the iceberg, and another on the thermodynamics of the supercooled plume interacting with a deep wall of ice. These adjustments to our study required drilling several holes through the sea ice along lines that approached the iceberg from two different directions to collect the necessary oceanographic data.

The iceberg towers about 40 m above the frozen sea surface, with our field support team providing scale as they scope a route of safe approach. However, hidden from sight by the sea ice, the iceberg stretches a further 170 m below the surface to the point where it is grounded on the seafloor.

Conducting field science in Antarctica requires being able to adapt to a dynamic environment. In this case, our flexibility was rewarded with a unique data set – essentially a laboratory study in fluid mechanics on a real-world scale.

By Natalie Robinson, New Zealand National Institute for Water and Atmospheric Research (NIWA)

If you pre-register for the 2019 General Assembly (Vienna, 07–12 April), you can take part in our annual photo competition! From 15 January until 15 February, every participant pre-registered for the General Assembly can submit up three original photos and one moving image related to the Earth, planetary, and space sciences in competition for free registration to next year’s General Assembly!  These can include fantastic field photos, a stunning shot of your favourite thin section, what you’ve captured out on holiday or under the electron microscope – if it’s geoscientific, it fits the bill. Find out more about how to take part at http://imaggeo.egu.eu/photo-contest/information/.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

GeoTalk: Research reflections and lessons learned from Pinhas Alpert

GeoTalk: Research reflections and lessons learned from Pinhas Alpert

GeoTalk interviews usually feature the work of early career researchers, but this month we deviate from the standard format to speak to Pinhas Alpert, professor in geophysics and planetary sciences at Tel Aviv University and recipient of the 2018 Vilhelm Bjerknes Medal. Alpert was awarded for his outstanding contributions to atmospheric dynamics and aerosol science. Here we talk to him about his career, research, and life lessons he has learned as a scientist.  

Thank you for talking to us today! Could you introduce yourself and tell us a little more about your career path?

I was born in Jerusalem, Israel on 28 Sept 1949. I received my BSc (Physics, Math & Computers) and MSc (Physics) as well as my Phd (Meteorology) at the Hebrew University of Jerusalem (1980; supervised by late Prof. Yehuda Neumann, Head of the Department of Meteorology).

Then I did my post-doc studies at Harvard University (US) with Professor Richard Lindzen (1980-1982) and got a position at Tel Aviv University in 1982.

I served as the Head of the Porter School of Environmental Studies, Tel-Aviv University, Israel, from 2008 to 2013, following three years as Head of the Department of Geophysics and Planetary Sciences also at Tel Aviv University.

My research focuses on atmospheric dynamics, climate, numerical methods, limited area modeling, aerosol dynamics and climate change. As part of my PhD, I built an atmospheric model, which is used in Belgium (LLN) and Finland (UH) for research.

I’ve published three books, and I am the co-author of more than 347 articles (240 peer-reviewed; 107 in books).

Some more recent work includes developing with my colleagues a novel way for monitoring rainfall using cellular network data. From this method we were able to create a new kind of advanced flood warning system.

I also developed a novel Factor Separation Method in numerical simulations. This methodology allows researchers to calculate atmospheric synergies, and has been adapted by many groups worldwide.

I established and head the Israel Space Agency Middle East Interactive Data Archive (ISA-MEIDA). Currently it is called the Israeli Atmospheric and Climatic Data Center (IACDC), which provides easy access to geophysical data from Israel and across the globe. I served as co-director of the GLOWA-Jordan River BMBF/MOS project to study the water vulnerability in the E. Mediterranean and also served as the Israel representative to the IPCC Third Assessment Report Working Group 1.

In addition to my research projects and positions I have supervised 42 Master students and 23 Doctoral students; some of them have become professors themselves in universities in Israel and abroad.

My current group consists of nine students as well as four post-docs and researchers.

I married my wife Rachel (RN) in 1971 and we have eight children and sweet grandchildren (not to count).

This year you received the 2018 Vilhelm Bjerknes Medal for your outstanding contributions to atmospheric dynamics and aerosol science, most notably your involvement with the Factor Separation Method and novel monitoring systems.

For those readers who may not be so familiar with your work, could you give us a quick summary of your research contributions and why it’s important?

“Remember to do the research that you love the most.” (Credit: Pinhas Alpert)

The Factor Separation Method, first introduced in 1993, allowed scientists to compute the separation of synergies (or interactions or non-linear processes) among several factors for the first time in a quantitative approach.

This allowed researchers to compare for the first time different factors which contribute to some important processes like: heavy rainfall, floods, cyclone deepening, and model errors. The methods have now been applied in many areas of research, including environmental studies, paleoclimatology, limnology, regional climate change, rainfall analysis, cloud modelling, pollution, crop growth, and forecasting.

As to our novel method for monitoring atmospheric moisture: science today does not really know well enough how rainfall or moisture are distributed in the atmosphere.

This is true for all the world but it is particularly so over semi-arid or mountainous regions. For instance over Israel, a semi-arid region, we have about 100 rain gauges, while data from three cellular companies provide us with about 7000 cellular links from which we can calculate distribution of rain in real-time. Many severe flood events particularly over the semi-arid area of S. Israel have not been monitored at all by the classical approached including rain gauges and radar.

My colleagues and I developed a way to monitor such atmospheric conditions that taps into cellular communication networks (the network that lets us use our mobile phones for example). These networks are highly sensitive to the effects of weather phenomena and are widely spread across the world. By using data recorded by cellular communication providers, we found that these networks can provide important information on dangerous weather conditions.

For example, in one study published in the Bulletin of the American Meteorological Society we demonstrated that the technique could be used to monitor dense fog events. This is very important since there are no alternative methods to monitor fog on roads and highways, and furthermore they contribute to hazardous weather in which often hundreds of cars may be involved.

At the 2018 General Assembly, you gave a medal lecture on your personal perspective on the evolution of atmospheric research over time. What are some of the biggest lessons you have learned as a researcher?

My take-away messages were:

It seems impossible to predict which research will become a scientific breakthrough because,

  1. the message from your research came too early. For example, the Italian scientist Amedeo Avogadro first proposed the existence of a constant number of molecules in each kilomole of gas and calculated this number (6.022×1023). However, he was ridiculed for it, and only after he passed away was it accepted by the scientific community. Now every student must learn the Avogadro number in any basic thermodynamics course.
  2. the message was not clear or strong enough: When we are sure about our finding we must be strong in our statements and not too modest. Otherwise, the scientific community assumes that what we claim in our article is only a conjencture.
  3. the message was not given the right exposure. For example, in 1778-9 the French scholar Pierre-Simon Laplace was the first to develop the mathematical terms the Coriolis Force, an important term in physics that explains air acceleration due to Earth’s rotation. However, it was until 60 years later that the French mathematician Gaspard-Gustave Coriolis gave these terms their physical meaning, i.e. that air-parcels in the Northern Hemisphere for instance turn to the right due to the Earth rotation. And, this was the main reason why these terms were called after Coriolis and not after Laplace.

 

Pinhas Alpert receiving the Vilhelm Bjerknes Medal at the EGU Awards Ceremony during the 2018 General Assembly. (Credit: EGU/Foto Pfluegl)

I also discussed whether researchers should invest their time in a concentrated topic, or spread their interests. A common question in atmospheric research, which is particularly bothering early career researchers, is which of these primary three directions should they choose to follow: 1. theoretical approach; 2. analysis of observations and 3. Employ atmospheric models.

One option is to spread your efforts in two or three of these directions. while the more easy approach is often to focus on only one of these three routes. My take-away message during my talk was that, while it certainly more difficult to spread your research to 2-3 of these pathways, it is a very personal decision. There is no right answer that applies to everyone, and your choice depends very much on your personal preference. Remember to do the research that you love the most.

And the other most important take-away message for success is hard work. As Thomas Edison once said in an interview in 1929, “None of my inventions came by accident. I see a worthwhile need to be met and I make trial after trial until it comes. What it boils down to is one per cent inspiration and ninety-nine per cent perspiration.”

Recently, the IPCC released a special report on the consequences of global warming and the benefits of limiting warming to 1.5ºC above pre-industrial levels. You had mentioned that you served as the Israel representative to the IPCC Third Assessment Report Working Group I. What would you say were some key lessons learned from contributing to an IPCC report? Do you think it is important for researchers to be involved in the policy process?

One of the most amazing things I have learned from my participation there was how much politics and debate are involved there. There are a lot of negotiations between the representatives of the various countries, who sometimes spend hours on the wording of sentences.

Yes, it is very important for researchers to bring the messages from their work to decision makers. However, this should only be done when you are convinced that your results are important for the society. Hence, it is my opinion that early career scientists should focus more on promoting their science and be less involved in the policymaking process. Without a strong scientific backing, it may interfere with your research. Again, here as well, the decision should be strongly based on your personal feelings.

Interview by Olivia Trani, EGU Communications Officer