GeoLog

Biogeosciences

Conversations on a century of geoscience in Europe: Part 1

Conversations on a century of geoscience in Europe: Part 1

When you think about the last century of geoscience, what comes to mind? Perhaps Alfred Wegener’s theory of continental drift? Or Inge Lehmann’s discovery of Earth’s solid inner core?

Over the last 100 years, geoscientists have made incredible contributions to our understanding of the Earth, the solar system, and beyond. The science community has explored uncharted territory, challenged previously held conceptions, provided vital information to policymakers, worked to address societal challenges, and put forth paths for sustainability. Through the years, researchers have also worked to promote diversity, inclusion, transparency, and accessibility in the geosciences. Many Europe-based scientists have been at the forefront of these advances.

Inspired by the centennials of the American Geophysical Union (AGU) and the International Union of Geodesy and Geophysics (IUGG), which were both founded in 1919, we would like to highlight Europe’s role in shaping the geosciences and the great achievements of European geoscientists within the last century.

In this series of interviews, scientists across different disciplines and scientific fields reflect on the last 100 years of Earth, space and planetary sciences in Europe and share their perspectives on the future:


Anne-Marie Treguier: Research Director at the French National Centre for Scientific Research and the European Institute for Marine Studies in the Ocean Physics Laboratory

The responsibility of geoscientists is huge. We must frame our scientific questions in the context of a wide range of future scenarios..

Read interview →

 

John Burrows: Professor of the Physics of the Ocean and Atmosphere and a Director of the Institutes of Environmental Physics and Remote Sensing at the University of Bremen

The history of discoveries in the geosciences is a fascinating story, involving unexpected and perplexing observations..

Read interview →

 

Günter Blöschl: Head of the Institute of Hydraulic Engineering and Water Resources Management and Director of the Centre for Water Resource Systems of the Vienna University of Technology

As Heraclitus said, there is nothing permanent except change. Innovation needs to be permanent. We are in for an exciting future..

 

Read interview →

 

Antje Boetius: Director of the Alfred Wegener Institute (AWI) Helmholtz Center for Polar and Marine Research and Professor of Geomicrobiology at the University of Bremen

When one reads the original reports and letters, we can learn how relevant expeditions and fieldwork were – and still are – for the international, collaborative spirit of the geosciences worldwide. The amazing thing is, in many ways we have remained explorers of our own planet Earth even today..

 

 

Read interview →

 

Bernhard Diekmann, Head of the Research Unit Potsdam of the Alfred Wegener Institute (AWI) Helmholtz Center for Polar and Marine Research and Professor of Quaternary Geology at Potsdam University

During the last 100 years, the focus in geological research was understanding of processes in Earth’s interior and skin…The geosciences should no longer be seen as an individual field of research, but must be integrated into a holistic view of natural and social sciences..

 

Read interview →

Interviews by Olivia Trani, EGU Communications Officer

Imaggeo on Mondays: Penguins – a biogeochemical link between sea and land

Imaggeo on Mondays: Penguins – a biogeochemical link between sea and land

A couple of Chinstrap penguins (Pygoscelis antarctica) at their nesting site on Deception Island, maritime Antarctica. Sea birds contribute importantly to biogeochemical cycles in coastal ecosystems and on islands. Feeding on the marine food chain and nesting on land, they carry large amounts of marine nutrients into terrestrial ecosystems. This might be of particular importance for the nitrogen (N) cycle of terrestrial ecosystems in the antarctic. In the form of ammonia, marine derived N can travel far inland with the wind, and perhaps represent an important nutrient source for the growth of mosses.

Description by Daniel Wasner, as it first appeared on imaggeo.egu.eu.

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Imaggeo on Mondays: Patterns in the peatland

Imaggeo on Mondays: Patterns in the peatland

This magnificent pattern is the result of hundreds and hundreds of years of evolution. In this structured minerotrophic peatland in Northern Quebec (Canada), which can also be called a string fen or aapa mire, the green peat ridges (or strings) alternate with water-filled hollows (or flarks). Often flarks are replaced by ponds, which vary in number and size. This pattern of strings and flarks (or ponds) runs perpendicular to the flow of ground water.

Many theories exist to explain the dynamics of this pattern; however, we still do not know the mechanism responsible. Almost all of the present theories suggest that the movement of water could be a major driver of the landscape’s features. The permafrost and frost action, the gradual down-slope slipping, and expansion of peat, the merging of hollows, and fire outbreaks are also considered to be potential factors. Further research is going on to deeply understand the complex relation between abiotic and biotic factors influencing how the string fens take shape.

Vegetation in string fens differs between strings and flarks. Strings are dominated by sedges like Carex exilis, Trichophorum cespitosum, Eriophorum angustifolium, and dwarf birches (Betula glandulosa). On the other hand, flarks or ponds are dominated by Menyanthes trifoliata (also known as bogbean), depending on the level of the water within the ground. The peat moss Sphagnum subfulvum is found on strings while a different species of moss Sphagnum majus can be found on floating mats, at the margin of ponds.

This type of peatland is abundant in the boreal regions of the world, and its predominance can be explained by cooler weather conditions, that limit Sphagnum growth and foster greater surface water flow, especially when the snow melts in the spring.

I encountered this beauty on a field trip during summer of 2016 when I was looking for fens burned by natural wildfires. Unfortunately (or not) this one did not burn, even though all the forests at the margin of the peatland burned pretty heavily. Indeed, the ground of the burned forests was covered by Polytrichum strictum, a pioneer moss known to colonize burned forests or peatland soils (look for the apple green vegetation in the bottom of the photograph).

By Mélina Guêné-Nanchen, Laval University, Québec, Canada

Imaggeo is the EGU’s online open access geosciences image repository. All geoscientists (and others) can submit their photographs and videos to this repository and, since it is open access, these images can be used for free by scientists for their presentations or publications, by educators and the general public, and some images can even be used freely for commercial purposes. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. Submit your photos at http://imaggeo.egu.eu/upload/.

Geosciences Column: Using volcanoes to study carbon emissions’ long-term environmental effect

Geosciences Column: Using volcanoes to study carbon emissions’ long-term environmental effect

In a world where carbon dioxide levels are rapidly rising, how do you study the long-term effect of carbon emissions?

To answer this question, some scientists have turned to Mammoth Mountain, a volcano in California that’s been releasing carbon dioxide for years. Recently, a team of researchers found that this volcanic ecosystem could give clues to how plants respond to elevated levels of carbon dioxide over long periods of time. The scientists suggest that studying carbon-emitting volcanoes could give us a deeper understanding on how climate change will influence terrestrial ecosystems through the decades. The results of their study were published last month in EGU’s open access journal Biogeosciences.

Carbon emissions reached a record high in 2018, as fossil-fuel use contributed roughly 37.1 billion tonnes of carbon dioxide to the atmosphere. Emissions are expected to increase globally if left unabated, and ecologists have been trying to better understand how this trend will impact plant ecology. One popular technique, which involves exposing environments to increased levels of carbon dioxide, has been used since the 1990s to study climate change’s impact.

The method, also known as the Free-Air Carbon dioxide Enrichment (FACE) experiment, has offered valuable insight into this matter, but can only give a short-term perspective. As a result, it’s been more challenging for scientists to study the long-term impact that emissions have on plant communities and ecosystems, according to the new study.

FACE facilities, such as the Nevada Desert FACE Facility, creates 21st century atmospheric conditions in an otherwise natural environment. Credit: National Nuclear Security Administration / Nevada Site Office via Wikimedia Commons

Carbon-emitting volcanoes, on the other hand, are often well-studied systems and have been known to emit carbon dioxide for decades to even centuries. For example, experts have been collecting data on gas emissions from Mammoth Mountain, a lava dome complex in eastern California, for almost twenty years. The volcano releases carbon dioxide at high concentrations through faults and fissures on the mountainside, subsequently leaving its forest environment exposed to the emissions. In short, the volcanic ecosystem essentially acts like a natural FACE experiment site.

“This is where long-term localized emissions from volcanic [carbon dioxide] can play a game-changing role in how to assess the long-term [carbon dioxide] effect on ecosystems,” wrote the authors in their published study. Research with longer study periods would also allow scientists to assess climate change’s effect on long-term ecosystem dynamics, including plant acclimation and species dominance shifts.

Through this exploratory study, the researchers involved sought to better understand whether the long-term ecological response to carbon-emitting volcanoes is actually representative to the ecological impact of increased atmospheric carbon dioxide.

Remotely sensed imagery acquired over Mammoth Mountain, showing (a) maps of soil CO2 flux simulated based on accumulation chamber measurements, shown overlaid on aerial RGB image, (b) above-ground biomass (c) evapotranspiration, and (d) normalized difference vegetation index (NDVI). Credit: K. Cawse-Nicholson et al.

To do so, the scientists analysed characteristics of the forest ecosystem situated on the Mammoth Mountain volcano. With the help of airborne remote-sensing tools, the team measured several ecological variables, including the forest’s canopy greenness, height and nitrogen concentrations, evapotranspiration, and biomass. Additionally they examined the carbon dioxide fluxes within actively degassing areas on Mammoth Mountain.

They used all this data to model the structure, composition, and function of the volcano’s forest, as well as model how the ecosystem changes when exposed to increased carbon emissions. Their results revealed that the carbon dioxide fluxes from Mammoth Mountain’s soil were correlated to many of the ecological variables analysed. Additionally, the researchers discovered that parts of the observed environmental impact of the volcano’s emissions were consistent with outcomes from past FACE experiments.  

Given the results, the study suggests that these kind of volcanic systems could work as natural test environments for long-term climate research. “This methodology can be applied to any site that is exposed to elevated [carbon dioxide],” the researchers wrote. Given that some plant communities have been exposed to volcanic emissions for hundreds of years, this method could help paint a more comprehensive picture of our future environment as Earth’s climate changes.

By Olivia Trani, EGU Communications Officer

References

Cawse-Nicholson, K., Fisher, J. B., Famiglietti, C. A., Braverman, A., Schwandner, F. M., Lewicki, J. L., Townsend, P. A., Schimel, D. S., Pavlick, R., Bormann, K. J., Ferraz, A., Kang, E. L., Ma, P., Bogue, R. R., Youmans, T., and Pieri, D. C.: Ecosystem responses to elevated CO2 using airborne remote sensing at Mammoth Mountain, California, Biogeosciences, 15, 7403-7418, https://doi.org/10.5194/bg-15-7403-2018, 2018.