Laura Roberts-Artal

Laura Roberts Artal is the Communications Officer at the European Geosciences Union. She is responsible for the management of the Union’s social media presence and the EGU blogs, where she writes regularly for the EGU’s official blog, GeoLog. She is also the point of contact for early career scientists (ECS) at the EGU Office. Laura has a PhD in palaeomagnetism from the University of Liverpool. Laura tweets at @LauRob85.

Imaggeo on Mondays: Painted Hills after the storm.

The geological record preserved at John Day Fossil beds, in Oregon, USA, is very special. Rarely can you study a continuous succession through changing climates quite like you can at this National Park in the USA. It is a treasure trove of some 60,000 plant and animal fossil specimens that were preserved over a period of 40 million years during the Cenozoic era (which began 66 million years ago).

The geography of Oregon 45 million years ago was significantly different to present. The region received a whopping 1350 mm of annual rainfall (compare this to the approximate annual rainfall in London of 500 mm or 300 mm in Madrid) as the Cascades Mountain range had not yet formed, meaning moisture from the Pacific was not blocked. In addition, the climate was much warmer and Oregon was primarily subtropical, dominated by broad-leaved evergreen subtropical forests.

Then, 12 million years later temperatures began to lower and the climate changed from subtropical to temperate. Deciduous forests became abundant at low altitudes, whilst at higher altitudes coniferous forests dominated the landscape. Imagine a setting not dissimilar to the present day eastern USA. There were a number of active volcanic centres in the area at the time and ash, lava, and volcanic mudflows frequently spread over the region. The volcanicity culminated over a period of 11 million years during which the Columbia River Basalt Group, an extensive large igneous province, was emplaced. The current landscape was shaped during the most recent Ice Age as glaciers from the Cascade Mountains eroded their way towards the low lying terrain in central Oregon.

Painted Hills. (Credit: Daniele Penna, via

Painted Hills. (Credit: Daniele Penna, via

Photographs don’t really come any more dramatic than this one. “The conditions were prefect; I was very lucky”, says Daniele Penna, who photographed the striking Painted Hills Unit within the National Park , “I visited the area right after a storm, when the sky was partially clearing, leaving space for some light that contrasted with the remaining dark clouds in the background. The combination of atmospheric conditions made me enjoy this stunning place even more and gave me the opportunity to capture several striking images.”

During his PhD in hydrology, Daniele spent a few months at the Oregon State University, in 2007. He took the advantage of his time there by exploring the diverse natural beauties that Oregon boasts.

If, like Daniele, you are interested in photography he has some top tips for achieving a photograph as remarkable as this week’s Imaggeo On Mondays image: “Switching from a wide angle to a moderate telephoto lens can give free rein to the photographer’s creativity in playing with the colors, juxtaposed intersecting lines and interlacing forms. An extremely vivid image emerges as a result of the contrast of light and dark, yellow and red colours, and the contrasting curved and straight lines at Painted Hills. The best time for capturing images that make an impact is reserved for the late afternoon in summer and during late spring when the local park ranger service provides information over the telephone on which species are in bloom.”

Imaggeo is the EGU’s open access geosciences image repository. Photos uploaded to Imaggeo can be used by scientists, the press and the public provided the original author is credited. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. You can submit your photos here.

GeoTalk: Beate Humberset

GeoTalk: Beate Humberset

In this edition of Geotalk, the regular feature were we highlight the work and achievements of early career researchers, we are talking to Beate Humberset, the winner of the Outstanding Student Poster (OSP) Award for the Solar- Terrestrial Sciences Division (ST) in 2013. In addition, Beate is the Young Scientist Representative for the ST Division so we will also touch upon her responsibilities in this role.

Let me introduce Beate, pictured here with the space shuttle. (Credit: Beate Humberset).

Let me introduce Beate, pictured here with the space shuttle. (Credit: Beate Humberset).

First, could you introduce yourself Beate and tell us what it is you’ve been investigating as part of your PhD so far?

I am a physicist and Ph.D. candidate at the Birkeland Centre for Space Science at the University of Bergen. I come from the West Coast of Norway, from a place called Ørsta in Sunnmøre, that the last few years has started to be known for its majestic peaks which support great mountain hiking and off-piste skiing. This was also the place where my interest in physics started, when I discovered it at high school; since then my interest in the subject has grown driven by curiosity and an interest in understanding natural phenomenon. I moved to Bergen, the next biggest city in Norway, to study physics. Whilst studying for my bachelor and master degrees I worked at Bergen Science Centre and got interested in science outreach. In April this year I moved back after a memorable 9 months research stay as a Fulbright Scholar at the Johns Hopkins University, Applied Physics Laboratory outside Washington DC.

My research is on understanding and describing the dynamic response of Earth’s complex coupling to space. The motivation for this study is that much of our understanding of the coupling between the Earth and the near space comes from empirical modelling of various electrodynamic parameters, such as Birkeland currents. Birkeland currents are electrical currents flowing along the magnetic field between near space and Earth’s polar atmosphere. They are often assumed to be two fairly static upward and downward current sheets encircling Earth’s magnetic poles. This is a model that in many cases works well, but in reality the Birkeland currents are highly dynamic, which is something we do not understand as well as we would like to.

The main reason for this shortcoming is that most means of making measurements in space rely on single satellites, which are in constant motion, meaning that it is difficult to decide if the phenomenona we measure have changed during our measurements and how it has changed. So far, during my PhD project I have mostly been working to defeat this shortcoming and describe the dynamic behaviour of the energy transport into Earth’s polar atmosphere by finding the characteristic behaviour of auroral emissions.

After EGU 2013, you received an Outstanding Student Poster Award for your work on finding the characteristics of pulsating aurora. This certainly sounds like a challenging project! Could you tell us a bit more about pulsating aurora and why characterising them is important?

The aurora are the result of the energy in the solar wind entering Earth’s magnetic field. Some of this energy causes charged particles to precipitate in an oval around Earth’s magnetic poles. When they reach altitudes of 500 to 90 km they collide with the atmosphere, which emits the light that we see as aurora. Therefore, the auroras are a mirror of the invisible energisation processes that happens further from Earth and are a great source of knowledge. Different processes lead to different kinds of aurora. The pulsating aurora are a phenomenona which change rapidly both temporally and spatially and which recently have been shown to be much more widespread and persistent than what was thought before, and thus are more important to the near Earth space. However, it is still debated what the underlying processes that generate them are, and also if there are more than one type of pulsating aurora. The definition of pulsating aurora is broad and covers patches, arcs and arc segments from tens to several tens of km that have a periodic, quasi-periodic or variable temporal variation from 1 s to tens of seconds. You can normally see them appear after the bright discrete aurora has passed, as quite a messy sight of dim patches of different shapes, all pulsating in a variable manner and different from each other. We have therefore investigated the spatiotemporal characteristics of pulsating auroral patches to provide better observational constrains for the various proposed mechanisms.

Aurora seen from above: This video was taken from the International space station. It shows the discrete aurora that most of us are familiar with, and if you look carefully to the south of that (left in the movie) we can also see the dim pulsating aurora. Video credit: NASA. Visit the NASA website for more information about the features seen in the video.

Say I wanted to find the characteristics of pulsating aurora, how might I go about it?

First you have an excellent tool in all-sky imagers than can capture about 1000 by 1000 km of the night sky where the aurora is emitted. You can think of an all-sky movie as several multipoint measurements of the aurora meaning that you have full control over how it changes in space and time. In this way you can describe its shape, persistency, temporal behavior, spatial behavior and how they are coupled and vary with the energy being dissipated. This can again be used in the work to untangle the process or possibly several processes that together or in different locations cause the pulsating aurora.

Beate presenting her work at the General Aseembly. (Credit: Beate Humberset).

Beate presenting her work at the General Aseembly. (Credit: Beate Humberset).

What inspired you to attend the General Assembly (GA) in 2013 and present your work there?

It has been a tradition in our research group that if master students show good progress in their project, they get to travel to the GA in Vienna to present their research and experience how it is to be at a large conference and is shown a different side of what it is like to be a researcher. I was there for the first time in 2009, which made a huge impression on me. I was therefore glad I had the funding to travel there for the 2013 GA. In the few years I’ve had the chance to attend the GA, I have witnessed how the conference, in addition to be a good place where graduate student can be heard, has also become a place where useful workshops and designated mingling areas have brought attention to young and early career scientists.

What was your highlight of the 2013 General Assembly?

I must say it has been a while, but I remember that I found it fun to present my poster and got a few very inspiring discussions going thanks to interested senior scientists stopping by.

What comes next for you in terms of your research, but also going forward in your career?

In the future I will continue research on how and if abrupt changes in the polarity of the East-West component of the interplanetary magnetic field, (which is known to not change the total energy input to Earth), influences the transport of electromagnetic energy to the atmosphere. It would be great fun to continue research after my PhD project has ended, but I have an open mind. In my opinion, being a physicist, there are lots of interesting possibilities career wise.

What does your role as the Young Scientist Representative for ST division involve?

I am the first Young Scientist (YS) Representative in the ST division, starting this year, and so have had the opportunity to shape what the role involves. Basically it is to ensure that interests of the YS in Solar Terrestrial (ST) sciences are taken care of in the EGU, especially during the GA. Through meetings with other division’s YS representatives we share experiences and make suggestions of how the EGU can improve the representation of the YS community, for example: how poster session can be better promoted, how to improve the short courses at the GA and highlighted the importance of travel support and awards. For the 2015 GA I am planning a short course for the ST students and early career scientists and an informal get together to improve networking and hopefully get some questions, comments or ideas to work on for next year.

If you are planning on coming along to the General Assembly in Vienna next April, once the programme has been finalised, head over to the website were sessions, short courses and meetings that have a strong YS focus will be highlighted. You can also check the website for more details on how you can participate in the Outstanding Student Poster Award , which is open to students of all levels(undergraduate through to PhD) participating at the GA. If you’d like more information on how to apply for financial support to travel to Vienna and present your research, this blog post summarises everything you need to know; but hurry, the deadline for abstract submission is the 28th November 2014.

Finally, if Beate’s interview has inspired you to become more involved with the EGU, there are plenty of volunteering opportunities and there are two divisions currently looking for YS Representatives, could you take on the job?

Imaggeo on Mondays: Salted Moon

The eerie landscape depicted in our Imaggeo on Mondays image, is brought to you by Donatella Spano (University of Sassari, Italy).

This picture was taken at Mammoth Hot Springs, one of the largest hot spring areas at Yellowstone National Park, Wyoming, United States on August 10, 2010. Mammoth Hot Springs is divided into two sections, the Lower Terrace and the Upper Terrace Loops. The photo below shows the Upper Terrace. A combination of heat, water, limestone, and rock fractures created the terraces of the area. The main deposit is travertine, a form of limestone derived by mineral springs, especially hot springs. It is formed by a process of rapid precipitation of calcium carbonate. Travertine is often a white rock; however, the microorganisms and living bacteria create beautiful shades of oranges, pinks, yellows, greens, and browns. The constant changes in water and mineral deposits create a living sculpture. This massive hot spring is extremely photogenic. The day I took the photo there were dark clouds creating interesting contrast between the surface, the mountain, and the sky.

Salted Moon. (Credit: Donatella Spano via

Salted Moon. (Credit: Donatella Spano via

By Donatella Spano, University of Sassari, Italy


Imaggeo is the EGU’s open access geosciences image repository. Photos uploaded to Imaggeo can be used by scientists, the press and the public provided the original author is credited. Photographers also retain full rights of use, as Imaggeo images are licensed and distributed by the EGU under a Creative Commons licence. You can submit your photos here.

The known unknowns: Climate, Life, and the Solid Earth (Part V)

After four fascinating instalments in the known unknowns series we have (sadly) come to the final post. Since the series began in September we have explored the top questions that still remain unanswered when it comes to understanding the inner workings of the planet as well as how the interplay of a number of systems that occur at the Earth’s surface give rise to its varied landscapes. The series would not be complete without assessing the open questions on how climate and life have contributed to shape the planet and so it seems fitting that we should end the series with this topic. The geological record shows that climate is relatively stable over tectonic time-scales whereas it undergoes abrupt changes in periods ranging from decades to hundreds of thousand years. Past periods when the planet underwent extreme climate conditions may help to understand the mechanisms behind that behaviour and its significance for the evolution of the Solid Earth and for the current climate change challenge. However, we are still a long way from having all the answers…

65 Myr Climate Change (Image Source: Wikimediacommons; Image credit: Robert A. Rohde published as part of the Global Warming Art project)

Image Source: Wikimediacommons; Image credit: Robert A. Rohde published as part of the Global Warming Art project)

  1. What caused the largest carbon isotope changes in Earth? (Grotzinger et al., Nat. Geosc, 2011) How does Earth’s climate respond to elevated levels of atmospheric CO2?
  2. Was there ever a snow-ball Earth during the earliest stages of Life on Earth? 
  3. Were there also rivers and lakes on Mars? (Hand,Nature, 2012) Were there large outburst floods similar to those on Earth?
  4. What were the causes and what shaped the recovery from mass extinctions as those at the K-T boundary, the Permian-Triassic or the Late Triassic? Massive volcanism? Meteorites? Microbes? Some recent papers: (Rampino & Kaiho, Geology, 2012;  Lindström et al., Geology, 2012; Chen & Benton, Nat. GeoSci, 2012; Rothman et al.,PNAS, 2014).
  5. What triggered the extreme climatic variability during the Quaternary and the roughly coeval acceleration in continental erosion and sediment delivery to the margins? [Peizhen, Molnar et al., Nature, 2001; Herman et al., Nature, 2013) Was this related to the tectonic closure of the Central American Seaway? How do these climate events translate quantitatively into sea level changes?
  6. How do climate changes translate quantitatively into sea level changes? How do ice sheets and sea level respond to a warming climate? What controls regional patterns of precipitation, such as those associated with monsoons or El Niño?
  7. What caused the Quaternary extinction(s)? Human expansion? Climate Change? How sensitive are ecosystems and biodiversity to environmental change? Was the large fauna extinction ~13,000 yr ago a result of the Younger Dryas climatic event? Was this caused by an extraterrestrial impact? (see this article and this other article) Or may it be linked to the outburst of Lake Agassiz?
  8. How relevant are subsurface microorganisms to earth dynamics by controlling soil formation and the methane cycle? What are the origin, composition, and global significance of deep subseafloor communities? What are the limits of life in the subseafloor realm?
  9. The atmosphere is shaped by the presence of life, a powerful chemical force. The Earth’s evolution has seems to affect the evolution of life (see the Cambrian explosion of animal life, for instance; plus this recent paper on that). To what extent? And how much control has life on climate? (another recent paper). Is it possible to quantify these links to make reliable predictions that allow filling the data gaps or assessing the chances for extraterrestrial life?
  10. How much of the present climate change is anthropogenic and how much is natural? How will growing emissions from a growing global population with a growing consumption impact on climate? Computer models are in need of well documented extreme scenarios from the geological past to be properly calibrated and make reliable predictions in this field.

The 49 questions covered in this series address very specific problems and unresolved problems but there are broader difficulties that limit our understanding of how the planet works.

Not for the first time, we must acknowledge that technology continues to limit direct observation of process that might clarify the source of complex geological phenomena. For example, many processes including plate tectonics are known to be driven by the nature of the materials that make up the planet interiors, down to the smallest atomic scales, as thought for instance for the trigger of earthquakes. Answers may arrive via new devices and analytical tools working at the high pressures and temperatures of Earth’s interior.

Another issue is that of reconciling time scales. We can only make observations in the present, whilst the phenomena we try to understand occur in time scales with very different orders of magnitude. We are also limited by having to convincingly scale rates of lab experiments (e.g., mineral physics), and/or analogue models to corresponding geological scenarios. Not unreasonably, this approach does not always yield satisfactory/reliable outcomes.

Global Surface Reflectance and Sea Surface Temperature (Credit: MODIS Instrument Team, NASA Goddard Space Flight Cente).

Global Surface Reflectance and Sea Surface Temperature (Credit: MODIS Instrument Team, NASA Goddard Space Flight Cente).

Implementing Episodicity in Gradualism: For historical reasons, geology has generally underestimated the role of episodicity in nature. However, there is a growing interest driven to exceptional events and to the stochasticity of Earth’s subsystems. An example for this is the preeminence of extreme flooding events (larger than average) in erosion and surface sediment transport and during the evolution of landscape, and the importance of upscaling flood stochasticity into sediment transport models (eg., Lague, JGR, 2010). Even plate tectonics may have been episodic (during the Archean at least, (Moyen & van Hunen, Geology, 2011).  4D hyperscale data sets in geomorphology are increasingly showing the limits of smooth-process approaches. Future understanding of the Earth will benefit from incorporating the full frequency spectrum (the episodicity) in modeling natural phenomena, rather than systematically approaching these as gradual processes. 

Finally, whilst computer models help us understand whether the complexity of nature can be explained by the interplay between simple processes, can we further model the Earth as a complex system of complex systems? And when can we expect ‘compact’ explanations? 

With these last broad considerations we close the known inknowns series. Hopefully, it has achieved what it set out to do: provide an overview of what  earth scientists are up to and what the hot topics and questions in Earth sciences are. Understanding these will lead us ever closer to understand phenomena that are fundamental to societal needs such as mineral resources, global change, or waste disposal.

By Laura Roberts Artal, EGU Communications Officer, based on the article previously posted on RetosTerricolas by Daniel Garcia-Castellanos, researcher at ICTJACSIC, Barcelona